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Riemannian geometry

Let Mn be a manifold of
dimension n. Let x∈M .
Then TxM is the tangent
space to M at x.
Let g be a Riemannian
metric on M .
Let ∇ be the Levi-Civita
connection of g.
Let R(g) be the
Riemann curvature of g.
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Holonomy groups

Fix x∈M .The holonomy
group Hol(g) of g is the
set of isometries of TxM
given by parallel trans-
port using ∇ about closed
loops γ in M based at x.
It is a subgroup of O(n).
Up to conjugation, it is
independent of the base-
point x.
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Berger’s classification

Let M be simply-connected
and g be irreducible and
nonsymmetric.Then Hol(g)
is one of SO(m), U(m),
SU(m), Sp(m), Sp(m)Sp(1)
for m ≥ 2, or G2 or Spin(7).
We call G2 and Spin(7)
the exceptional holonomy
groups. Dim(M) is 7 when
Hol(g) is G2 and 8 when
Hol(g) is Spin(7).
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Understanding Berger’s list

The four inner product algebras are

R — real numbers.

C — complex numbers.

H — quaternions.

O — octonions,

or Cayley numbers.

Here C is not ordered,

H is not commutative,

and O is not associative.

Also we have C ∼= R2, H ∼= R4

and O ∼= R8, with ImO ∼= R7.
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Group Acts on

SO(m) Rm

O(m) Rm

SU(m) Cm

U(m) Cm

Sp(m) Hm

Sp(m)Sp(1) Hm

G2 ImO ∼= R7

Spin(7) O ∼= R8

Thus there are two holonomy

groups for each of R,C,H,O.
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Geometry of G2

The action of G2 on R7

preserves the metric g0
and a 3-form ϕ0 on R7.
Let g be a metric and
ϕ a 3-form on M7. We
call (ϕ, g) a G2-structure
if (ϕ, g) ∼= (ϕ0, g0) at each
x ∈ M . We call ∇ϕ the
torsion of (ϕ, g).
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If ∇ϕ = 0 then (ϕ, g) is
torsion-free. Also ∇ϕ=0
iff dϕ = d∗ϕ = 0. If
(ϕ, g) is torsion-free then
Hol(g)⊆G2. Conversely,
if g is a metric on M7

then Hol(g)⊆G2 iff there
is a G2-structure (ϕ, g)
with ∇ϕ = 0. If M is
compact and Hol(g)⊆G2
then Hol(g)=G2 iff
π1(M) is finite.

8



The goal of the talk
To construct examples of
compact 7-manifolds with
holonomy G2.
Why is this difficult?
In many problems in
geometry the simplest
examples are symmetric.
But compact 7-manifolds
with holonomy G2 have
no continuous symmetries.
They are not algebraic.
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Sketch of constructions:
First we choose a
compact 7-manifold M .
We write down an explicit
G2-structure (ϕ, g) on M
with small torsion.
Then we use analysis to
deform to a nearby G2-
structure (ϕ̃, g̃) with zero
torsion. If π1(M) is
finite then Hol(g̃)=G2
as we want.
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It is not easy to find G2-
structures with small tor-
sion! Here are three meth-
ods (A)–(C).
(A) Joyce (1995,2000)
Step 1. Choose a finite
group Γ of isometries of
the 7-torus T7, and a flat,
Γ-invariant G2-structure
(ϕ0, g0) on T7. Then T7/Γ
is compact, with a torsion-
free G2-structure (ϕ0, g0).
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Step 2. However, T7/Γ
is an orbifold. We repair
its singularities to get a
compact 7-manifold M .
We can resolve complex
orbifolds using algebraic
geometry.
If the singularities of T7/Γ
locally resemble S1×C3/G
for G ⊂ SU(3), then we
model M on a crepant
resolution X of C3/G.

12



Step 3. M is made by
gluing patches S1×X into
T7/Γ. Now X carries ALE
metrics of holonomy SU(3).
As SU(3)⊂G2, these give
torsion-free G2-structures
on S1 ×X.
We join them to (ϕ0, g0)
on T7/Γ to get a
family

{
(ϕt, gt) : t ∈ (0, ε)

}

of G2-structures on M .
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Step 4. This (ϕt, gt) has
∇ϕt = O(t4). So ∇ϕt is
small for small t. But
R(gt) = O(t−2) and the
injectivity radius δ(gt) =
O(t), since gt becomes
singular as t → 0.
For small t we deform
(ϕt, gt) to (ϕ̃t, g̃t) with
∇ϕ̃t = 0, using analysis.
Then Hol(g̃t)=G2 if
π1(M) is finite.
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Other constructions

(B) Kovalev (2003)
Use Calabi–Yau analysis
to construct Asymptoti-
cally Cylindrical Calabi–
Yau 3-folds X1, X2 with
one end asymptotic to
K3 × S1 × (0,∞). Then
X1×S1 and X2×S1 are
G2-manifolds asymptotic
to K3× T2 × (0,∞).
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Glue X1×S1 and X2×S1

together near infinity to
get a compact G2-manifold
M with small torsion, then
deform to zero torsion as
before. The gluing swaps
the two S1 factors. The
two K3 surfaces must be
related by a hyperkähler
rotation.
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(C) Joyce–Karigiannis
(2007-2027?)

Let X be a Calabi–Yau
3-fold and σ : X → X
an antiholomorphic iso-
metric involution. Let L
be the fixed point set of
σ, a special Lagrangian
3-fold in X. Let S1 be
x2 + y2 = 1 in R2 and
τ act on S1 by (x, y) 7→
(x,−y), fixing (±1,0).
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Then X×S1 is a G2-man-
ifold invariant under (σ, τ).
So (X × S1)/〈(σ, τ)〉 is a
G2-orbifold, with singu-
lar set L×{(±1,0)}. The
singularities locally look
like R4/{±1} × R3.
To resolve R4/{±1}, use
an Eguchi–Hanson space
Y , with holonomy SU(2).
The family of E–H spaces
is R3 \ {0}.
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To resolve the singulari-
ties of (X × S1)/〈(σ, τ)〉
to get compact M with
holonomy G2, we glue in
a family of Eguchi–Hanson
spaces Yx parametrized by
x in L × {(±1,0)}. To
choose the family we need
a closed, coclosed 1-form
α on L×{(±1,0)} which
is nonzero at every point.
Not yet proved – v. hard.
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Including singularities
To make compact, sin-
gular G2-manifolds we could
modify the constructions
above as follows.
(A) Leave some T7/Γ sin-
gularities unresolved. Gives
an orbifold M with holon-
omy G2. Singularities al-
ways non-isolated, dim 1
or 3. (Easy. Immediate
from known work.)
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(B) Start with noncom-
pact Calabi–Yau 3-folds
X1 or X2 with k isolated
conical singularities, e.g.
conifold. Then M7 is sin-
gular along k copies of
S1. The local model is
S1 × C, for C a Calabi–
Yau 3-fold cone.
(Difficult. Not done.)

21



(C) Use a closed, coclosed
1-form α on L×{(±1,0)}
which has k isolated generic
zeroes x1, . . . , xk. Then
expect the construction
to yield M with k iso-
lated singular points, each
topologically a cone on
CP3. Probably modelled
on Bryant–Salamon CP3
cone with holonomy G2.
(Very difficult. Not done.)
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