Constructing compact 7-manifolds with holonomy G₂

Dominic Joyce Oxford University **Riemannian geometry** Let M^n be a manifold of dimension n. Let $x \in M$. Then T_xM is the *tangent space* to M at x.

Let g be a Riemannian metric on M.

Let ∇ be the Levi-Civita connection of g. Let R(g) be the Riemann curvature of g.

Holonomy groups

Fix $x \in M$. The holonomy group Hol(q) of g is the set of isometries of $T_x M$ given by parallel trans*port* using ∇ about closed loops γ in M based at x. It is a subgroup of O(n). Up to conjugation, it is independent of the basepoint x.

Berger's classification

Let M be simply-connected and q be irreducible and nonsymmetric. Then Hol(g)is one of SO(m), U(m), SU(m), Sp(m), Sp(m)Sp(1)for m > 2, or G_2 or Spin(7). We call G_2 and Spin(7)the exceptional holonomy groups. Dim(M) is 7 when Hol(g) is G_2 and 8 when Hol(q) is Spin(7). 4

Understanding Berger's list

The four *inner product algebras* are

- \mathbb{R} real numbers.
- \mathbb{C} complex numbers.
- \mathbb{H} quaternions.
- \mathbb{O} octonions,

or Cayley numbers.

Here $\mathbb C$ is not ordered,

- $\mathbb H$ is not commutative,
- and \mathbb{O} is not associative.
- Also we have $\mathbb{C}\cong\mathbb{R}^2$, $\mathbb{H}\cong\mathbb{R}^4$
- and $\mathbb{O} \cong \mathbb{R}^8$, with $\operatorname{Im} \mathbb{O} \cong \mathbb{R}^7$.

Group	Acts on
SO(m)	\mathbb{R}^{m}
O(m)	\mathbb{R}^m
SU(m)	\mathbb{C}^m
U(m)	\mathbb{C}^m
Sp(m)	\mathbb{H}^m
Sp(m)Sp(1)	\mathbb{H}^m
G_2	$\operatorname{Im} \mathbb{O} \cong \mathbb{R}^7$
Spin(7)	$\mathbb{O}\cong\mathbb{R}^8$

Thus there are two holonomy groups for each of $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$.

Geometry of G_2 The action of G_2 on \mathbb{R}^{\prime} preserves the metric g_0 and a 3-form φ_0 on \mathbb{R}^7 . Let g be a metric and φ a 3-form on M^7 . We call (φ, g) a G_2 -structure if $(\varphi, g) \cong (\varphi_0, g_0)$ at each $x \in M$. We call $\nabla \varphi$ the torsion of (φ, q) .

If $\nabla \varphi = 0$ then (φ, q) is torsion-free. Also $\nabla \varphi = 0$ iff $d\varphi = d^*\varphi = 0$. If (φ, g) is torsion-free then $Hol(q) \subset G_2$. Conversely, if g is a metric on M^7 then $Hol(g) \subseteq G_2$ iff there is a G_2 -structure (φ, g) with $\nabla \varphi = 0$. If M is compact and $Hol(g) \subseteq G_2$ then $Hol(g) = G_2$ iff $\pi_1(M)$ is finite.

The goal of the talk To construct examples of compact 7-manifolds with holonomy G_2 . Why is this difficult? In many problems in geometry the simplest examples are symmetric. But compact 7-manifolds with holonomy G_2 have no continuous symmetries. They are not algebraic.

Sketch of constructions: First we choose a compact 7-manifold M. We write down an explicit G_2 -structure (φ, g) on Mwith small torsion.

Then we use analysis to deform to a nearby G_2 structure ($\tilde{\varphi}, \tilde{g}$) with zero torsion. If $\pi_1(M)$ is finite then $\operatorname{Hol}(\tilde{g}) = G_2$ as we want. It is not easy to find G_2 structures with small torsion! Here are three methods (A)–(C).

(A) Joyce (1995,2000) Step 1. Choose a finite group Γ of isometries of

the 7-torus T^7 , and a flat,

Γ-invariant G_2 -structure (φ_0, g_0) on T^7 . Then T^7/Γ is compact, with a torsionfree G_2 -structure (φ_0, g_0).

Step 2. However, T^7/Γ is an *orbifold*. We repair its singularities to get a compact 7-manifold M. We can resolve *complex* orbifolds using algebraic geometry.

If the singularities of T^7/Γ locally resemble $S^1 \times \mathbb{C}^3/G$ for $G \subset SU(3)$, then we model M on a crepant resolution X of \mathbb{C}^3/G . **Step 3.** M is made by gluing patches $S^1 \times X$ into T^7/Γ . Now X carries ALE metrics of holonomy SU(3). As $SU(3) \subset G_2$, these give torsion-free G_2 -structures on $S^1 \times X$.

We join them to (φ_0, g_0) on T^7/Γ to get a family $\{(\varphi_t, g_t) : t \in (0, \epsilon)\}$ of G_2 -structures on M. **Step 4.** This (φ_t, g_t) has $\nabla \varphi_t = O(t^4)$. So $\nabla \varphi_t$ is small for small t. But $R(q_t) = O(t^{-2})$ and the injectivity radius $\delta(q_t) =$ O(t), since g_t becomes singular as $t \rightarrow 0$. For small t we deform (φ_t, g_t) to $(\tilde{\varphi}_t, \tilde{g}_t)$ with $\nabla \tilde{\varphi}_t = 0$, using analysis. Then Hol $(\tilde{q}_t) = G_2$ if $\pi_1(M)$ is finite.

Other constructions (B) Kovalev (2003) Use Calabi-Yau analysis to construct Asymptotically Cylindrical Calabi-Yau 3-folds X_1, X_2 with one end asymptotic to $K3 imes \mathcal{S}^1 imes$ (0, ∞). Then $X_1 \times S^1$ and $X_2 \times S^1$ are G_2 -manifolds asymptotic to $K3 \times T^2 \times (0,\infty)$.

Glue $X_1 \times S^1$ and $X_2 \times S^1$ together near infinity to get a compact G_2 -manifold M with small torsion, then deform to zero torsion as before. The gluing swaps the two \mathcal{S}^1 factors. The two K3 surfaces must be related by a hyperkähler rotation.

(C) Joyce–Karigiannis (2007-2027?)

Let X be a Calabi–Yau 3-fold and σ : $X \to X$ an antiholomorphic isometric involution. Let Lbe the fixed point set of σ , a special Lagrangian 3-fold in X. Let \mathcal{S}^1 be $x^2 + y^2 = 1$ in \mathbb{R}^2 and au act on \mathcal{S}^1 by $(x,y) \mapsto$ (x, -y), fixing $(\pm 1, 0)$.

Then $X \times S^1$ is a G_2 -manifold invariant under (σ, τ) . So $(X \times S^1) / \langle (\sigma, \tau) \rangle$ is a G_2 -orbifold, with singular set $L \times \{(\pm 1, 0)\}$. The singularities locally look like $\mathbb{R}^4/\{\pm 1\} \times \mathbb{R}^3$. To resolve $\mathbb{R}^4/\{\pm 1\}$, use an Eguchi–Hanson space Y, with holonomy SU(2). The family of E–H spaces

is $\mathbb{R}^3 \setminus \{0\}$.

To resolve the singularities of $(X \times S^1) / \langle (\sigma, \tau) \rangle$ to get compact M with holonomy G_2 , we glue in a family of Eguchi–Hanson spaces Y_x parametrized by x in $L \times \{(\pm 1, 0)\}$. To choose the family we need a closed, coclosed 1-form α on $L \times \{(\pm 1, 0)\}$ which is nonzero at every point. Not yet proved -v. hard.

Including singularities To make compact, singular G_2 -manifolds we could modify the constructions above as follows. (A) Leave some T^7/Γ singularities unresolved. Gives an orbifold M with holonomy G_2 . Singularities always non-isolated, dim 1 or 3. (Easy. Immediate from known work.)

(B) Start with noncompact Calabi-Yau 3-folds X_1 or X_2 with k isolated conical singularities, e.g. conifold. Then M^7 is singular along k copies of \mathcal{S}^1 . The local model is $\mathcal{S}^1 \times C$, for C a Calabi– Yau 3-fold cone. (Difficult. Not done.)

(C) Use a closed, coclosed 1-form α on $L \times \{(\pm 1, 0)\}$ which has k isolated generic zeroes x_1, \ldots, x_k . Then expect the construction to yield M with k isolated singular points, each topologically a cone on \mathbb{CP}^3 . Probably modelled on Bryant–Salamon \mathbb{CP}^3 cone with holonomy G_2 . (Very difficult. Not done.)