Five golden rules for superstring phenomenology

Hans Peter Nilles

Physikalisches Institut
Universität Bonn
Germany
S. Förste, HPN, P. Vaudrevange, A. Wingerter, hep-th/0406208

Outline

- String Theory

Outline

\square String Theory

- Physics

Outline

\square String Theory

- Physics
- Lessons from Physics

Outline

- String Theory
- Physics
- Lessons from Physics
- Five Rules

Outline

\square String Theory

- Physics
- Lessons from Physics
- Five Rules
\square Some Group Theory (if time permits)

Outline

- String Theory
- Physics
- Lessons from Physics
- Five Rules
\square Some Group Theory (if time permits)
- How to connect to explixit string constructions

Outline

- String Theory
\square Physics
- Lessons from Physics
- Five Rules
\square Some Group Theory (if time permits)
- How to connect to explixit string constructions
\square Discussion and Outlook

What does string theory give us?

- All we need
gravity
gauge interactions
matter fields

What does string theory give us?

All we need

- gravity
gauge interactions
matter fields
\square and even more
- extra dimensions
\square supersymmetry
(potential) restrictions on gauge groups

Does this ressemble the real world?

Not really!

- we see $d=4$ instead of $d=10$
- we observe $N=0$ or 1 SUSY instead of $N=8$ gauge group much smaller than e.g. $E_{8} \times E_{8}$

Does this ressemble the real world?

Not really!

- we see $d=4$ instead of $d=10$
- we observe $N=0$ or 1 SUSY instead of $N=8$
\square gauge group much smaller than e.g. $E_{8} \times E_{8}$
The world we see:
$\square S U(3) \times S U(2) \times U(1)$ gauge bosons
$\square 3$ families of quarks and leptons
- a Higgs boson???

The world we imagine

Theoretical arguments lead us to

- SUSY at the weak scale

GUTs at large scale $10^{16}-10^{17} \mathrm{GeV}$

The world we imagine

Theoretical arguments lead us to

- SUSY at the weak scale
- GUTs at large scale $10^{16}-10^{17} \mathrm{GeV}$

Observations support this point of view

- evolution of gauge couplings in MSSM
- See-saw neutrino masses

The world we imagine

Theoretical arguments lead us to
\square SUSY at the weak scale

- GUTs at large scale $10^{16}-10^{17} \mathrm{GeV}$

Observations support this point of view

- evolution of gauge couplings in MSSM
- See-saw neutrino masses

GUT picture has changed our view of the world ...

The program

We suggest the following proceedure

- Educated guess of unified picture (bottom up)
- Scan of string possibilities

The program

We suggest the following proceedure

- Educated guess of unified picture (bottom up)
\square Scan of string possibilities
New hints from string theory
- extra dimensions
\square properties of compactification
\square large gauge groups in higher dimensions

The program

We suggest the following proceedure

- Educated guess of unified picture (bottom up)
\square Scan of string possibilities
New hints from string theory
\square extra dimensions
\square properties of compactification
- large gauge groups in higher dimensions
will lead to rules for selection of models.....

Rule 1: Spinor of $S O(10)$

GUTs lead to a unified description of families of quarks and leptons

Rule 1: Spinor of $S O(10)$

GUTs lead to a unified description of families of quarks and leptons

Promising GUT groups are $S U(5), S O(10), E_{6} \ldots$

Rule 1: Spinor of $S O(10)$

GUTs lead to a unified description of families of quarks and leptons

Promising GUT groups are $S U(5), S O(10), E_{6} \ldots$
Chiral matter repr. of dimension $\overline{5}+10,16,27 \ldots$

Rule 1: Spinor of $S O(10)$

GUTs lead to a unified description of families of quarks and leptons

Promising GUT groups are $S U(5), S O(10), E_{6} \ldots$
Chiral matter repr. of dimension $\overline{5}+10,16,27 \ldots$

$S O(10)$ clearly singled out

- incorporates all the success of SU(5), Pati-Salam...
\square family in a single irreducible representation
- includes right handed neutrinos
\square no exotics

Rule 1: Spinor of $S O(10)$ (continued)

There is no alternative compelling structure for the description of a family of quarks and leptons other than

$$
\text { the } 16 \text {-dim. spinor repr. of } S O(10)
$$

Rule 1: Spinor of $S O(10)$ (continued)

There is no alternative compelling structure for the description of a family of quarks and leptons other than

$$
\text { the } 16 \text {-dim. spinor repr. of } S O(10)
$$

It incorporates

- unification of Yukawa couplings
- prediction of right handed neutrinos
- simple mathematical structure $(\pm, \pm, \pm, \pm, \pm)$

Rule 1: Spinor of $S O(10)$ (continued)

There is no alternative compelling structure for the description of a family of quarks and leptons other than

$$
\text { the } 16 \text {-dim. spinor repr. of } S O(10)
$$

It incorporates

- unification of Yukawa couplings
- prediction of right handed neutrinos
\square simple mathematical structure $(\pm, \pm, \pm, \pm, \pm)$

Does this imply that gauge group $S O(10)$ is realized?

Rule 2: Incomplete multiplets

Complete $S O(10)$ representation is appropriate for fermions, but not for gauge bosons and Higgs

■ only $S U(3) \times S U(2) \times U(1)$ gauge bosons
\square just Higgs doublets

- doublet-triplet splitting problem of GUTS

Rule 2: Incomplete multiplets

Complete $S O(10)$ representation is appropriate for fermions, but not for gauge bosons and Higgs

■ only $S U(3) \times S U(2) \times U(1)$ gauge bosons
\square just Higgs doublets

- doublet-triplet splitting problem of GUTS

Split multiplets for gauge bosons and Higgses

Rule 2: Incomplete multiplets

Complete $S O(10)$ representation is appropriate for fermions, but not for gauge bosons and Higgs

■ only $S U(3) \times S U(2) \times U(1)$ gauge bosons
\square just Higgs doublets

- doublet-triplet splitting problem of GUTS

Split multiplets for gauge bosons and Higgses

Where are the other states?

Rule 2: Incomplete multiplets

Complete $S O(10)$ representation is appropriate for fermions, but not for gauge bosons and Higgs

- only $S U(3) \times S U(2) \times U(1)$ gauge bosons
\square just Higgs doublets
- doublet-triplet splitting problem of GUTS

Split multiplets for gauge bosons and Higgses

Where are the other states?
How is the GUT gauge symmetry broken?

Rule 2: Incomplete multiplets ...

String theory in extra dimensions can help here!
\square solution of doublet-triplet splitting in orbifolds (Ibanez, Kim, HPN, Quevedo 1987)

- GUT group not realized in d=4 but only in higher dimensions
- concept of "GUTs without GUTs"

Rule 2: Incomplete multiplets ...

String theory in extra dimensions can help here!
\square solution of doublet-triplet splitting in orbifolds (Ibanez, Kim, HPN, Quevedo 1987)

- GUT group not realized in d=4 but only in higher dimensions
- concept of "GUTs without GUTs"

There could be even larger gauge groups in $d>4$!

- $E_{8} \times E_{8}$ in heterotic string theory
$\square 16$-dimensional spinor of $S O(10)$ could be incomplete as well

Rule 3: Repetition of families?

Number of families needs an explanation

- GUTs fail to explain the number of families
- 3 families in single GUT representation requires many exotic states

Rule 3: Repetition of families?

Number of families needs an explanation

- GUTs fail to explain the number of families
$\square 3$ families in single GUT representation requires many exotic states

Again, extra dimension could help here
\square toplogical numbers in Calabi-Yau compactification

- geometrical explanation from orbifolds
- could solve flavour problem through symmetries in extra dimensions

Rule 4: $N=1$ Supersymmetry

Why is the weak scale so small compared to the Planck scale?

- Technicolour
- Supersymmetry
- Conformal symmetry

Rule 4: $N=1$ Supersymmetry

Why is the weak scale so small compared to the Planck scale?
\square Technicolour

- Supersymmetry
- Conformal symmetry

Some arguments for SUSY

- evolution of gauge couplings in MSSM
- light Higgs boson
- grand desert (neutrino see-saw)

Rule 4: $N=1$ Supersymmetry ...

Some people say that the hierarchy problem is solved by
\square SUSY or large extra dimensions

Rule 4: $N=1$ Supersymmetry ...

Some people say that the hierarchy problem is solved by
\square SUSY or large extra dimensions
Such a statement is misleading!

Rule 4: $N=1$ Supersymmetry ...

Some people say that the hierarchy problem is solved by
\square SUSY or large extra dimensions
Such a statement is misleading!
One should rather say

- Small Higgs mass or large extra dimensions

Rule 4: $N=1$ Supersymmetry ...

Some people say that the hierarchy problem is solved by
\square SUSY or large extra dimensions
Such a statement is misleading!
One should rather say

- Small Higgs mass or large extra dimensions

Remaining problems

- SUSY breakdown and " μ-problem"
\square Proton decay (via $d=5$ operators)

Rule 5: R-parity needed

Discrete symmetries important!

- Avoid proton decay (via $d=4$ operators)
- Need stable particle for cold dark matter
- Textures of Yukawa couplings
- The flavour problem
- The μ problem
\square Axions

Rule 5: R-parity needed

Discrete symmetries important!

- Avoid proton decay (via $d=4$ operators)
\square Need stable particle for cold dark matter
- Textures of Yukawa couplings
- The flavour problem
- The μ problem
\square Axions

Again, $S O(10)$ with the 16 -dimensional spinor

 representation might be perfect.R-parity is automatic!

Intermediate conclusion

We need spinors of $S O(10)$

- family of quarks and leptons
- R-parity

Intermediate conclusion

We need spinors of $S O(10)$

- family of quarks and leptons
- R-parity

We need extra dimensions
\square split multiplets
repetition of families

Intermediate conclusion

We need spinors of $S O(10)$

- family of quarks and leptons
- R-parity

We need extra dimensions
\square split multiplets
repetition of families
We need supersymmetry

Some group theory

Chirality in $d=4$ requires gauge groups A_{n}, D_{n} or E_{n}
Chiral spectrum easier to obtain in $d=4 k+2$, especially $d=8 k+2$

Some group theory

Chirality in $d=4$ requires gauge groups A_{n}, D_{n} or E_{n}
Chiral spectrum easier to obtain in $d=4 k+2$, especially $d=8 k+2$

String theory points towards $d=10$:

- Majorana-Weyl spinor as 8 of $S O(8)$ in $S O(9,1)$
- even 248 of E_{8} is chiral in $d=10$

Some group theory

Chirality in $d=4$ requires gauge groups A_{n}, D_{n} or E_{n}
Chiral spectrum easier to obtain in $d=4 k+2$, especially $d=8 k+2$

String theory points towards $d=10$:

- Majorana-Weyl spinor as 8 of $S O(8)$ in $S O(9,1)$
- even 248 of E_{8} is chiral in $d=10$

This suggests the E_{n}-series:
$E_{8} \rightarrow E_{7} \rightarrow E_{6} \rightarrow E_{5}=S(10) \rightarrow E_{4}=S U(5) \rightarrow$
$E_{3}=S U(3) \times S U(2) \times U(1)$

The conjectured E_{n} Series

The Dynkin diagram of $E_{8} \ldots$

The conjectured E_{n} Series

... leads to E_{7} by removing a "dot" ...

The conjectured E_{n} Series

... and to E_{6} by removing a second "dot" ...

The conjectured E_{n} Series

... $E_{5}=D_{5}=S O(10)$ connects to the D-series ...

The conjectured E_{n} Series

\ldots and $E_{4}=A_{4}=S U(5)$ to the A-series ...

The conjectured E_{n} Series

... and finally $E_{3}=S U(3) \times S U(2)(\times U(1))$

Explicit string constructions

- heterotic $S O(32)$

Explicit string constructions

- heterotic $S O(32)$
- heterotic $E_{8} \times E_{8}$

Explicit string constructions

- heterotic $S O(32)$
- heterotic $E_{8} \times E_{8}$
\square type I $S O(32)$

Explicit string constructions

- heterotic $S O(32)$
\square heterotic $E_{8} \times E_{8}$
- type I $S O$ (32)
\square type II (orientifolds)

Explicit string constructions

- heterotic $S O(32)$
- heterotic $E_{8} \times E_{8}$
- type I SO(32)
\square type II (orientifolds)
\square intersecting branes $U(N)^{M}$

Explicit string constructions

- heterotic $S O(32)$
- heterotic $E_{8} \times E_{8}$
- type I $S O$ (32)
\square type II (orientifolds)
- intersecting branes $U(N)^{M}$
\square M-theory on manifolds with G_{2} holonomy

Explicit string constructions

- heterotic $S O(32)$
- heterotic $E_{8} \times E_{8}$
- type I SO(32)
\square type II (orientifolds)
- intersecting branes $U(N)^{M}$
\square M-theory on manifolds with G_{2} holonomy
■ heterotic M-theory (Horava-Witten)

Conclusion

THE

HETEROTIC $E_{8} \times E_{8}$ THEORY

SEEMS TO BE MOST PROMISING!

talks by Kim, Ovrut, Raby, Faraggi, Park, Zhang, Wingerter ...

Basic questions

- how to get spinor of $S O(10)$

Basic questions

- how to get spinor of $S O(10)$
which gauge group in $d=4$

Basic questions

- how to get spinor of $S O(10)$
which gauge group in $d=4$
\square three families

Basic questions

- how to get spinor of $S O(10)$
\square which gauge group in $d=4$
\square three families
\square split multiplets for gauge and Higgs bosons

Basic questions

- how to get spinor of $S O(10)$
\square which gauge group in $d=4$
\square three families
\square split multiplets for gauge and Higgs bosons
\square R-parity and proton decay

Basic questions

- how to get spinor of $S O(10)$
\square which gauge group in $d=4$
\square three families
\square split multiplets for gauge and Higgs bosons
\square R-parity and proton decay
- the flavour problem

Basic questions

- how to get spinor of $S O(10)$
\square which gauge group in $d=4$
\square three families
\square split multiplets for gauge and Higgs bosons
- R-parity and proton decay
- the flavour problem
\square gauge unification $\left(\sin ^{2} \theta_{W}\right)$

Basic questions

- how to get spinor of $S O(10)$
\square which gauge group in $d=4$
\square three families
\square split multiplets for gauge and Higgs bosons
- R-parity and proton decay
- the flavour problem
\square gauge unification $\left(\sin ^{2} \theta_{W}\right)$
- Yukawa textures

Basic questions

- how to get spinor of $S O(10)$
\square which gauge group in $d=4$
\square three families
- split multiplets for gauge and Higgs bosons
- R-parity and proton decay
- the flavour problem
\square gauge unification $\left(\sin ^{2} \theta_{W}\right)$
- Yukawa textures
- the μ problem

