# Black Hole Mass in Anti-de Sitter Space 

James T. Liu<br>5 August 2004

JTL and W.A. Sabra, hep-th/0405171
A. Batrachenko, JTL, R. McNees, W.A. Sabra and W.Y. Wen, in preparation

String Phenomenology 2004

## What is the mass of a black hole?

- Consider the $D=4$ Schwarzschild solution

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}
$$

- Extract the Newtonian potential

$$
-g_{t t} \sim 1+2 V(r) \quad \Rightarrow \quad V=-\frac{M}{r}
$$

- This is essentially the ADM procedure

Look for the $1 / r$ deviation from asymptotically Minkowski space

## What about AdS black holes?

- For the Schwarzschild-AdS black hole

$$
d s^{2}=-\left(1-\frac{2 M}{r}+g^{2} r^{2}\right) d t^{2}+\left(1-\frac{2 M}{r}+g^{2} r^{2}\right)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}
$$

- Focusing on the $1 / r$ behavior of $g_{t t}$ again yields mass $M$

Is this what we expect?

- Consider that the cosmological term grows as $r^{2}$

$$
-g_{t t} \sim g^{2} r^{2}\left(1+\mathcal{O}\left(\frac{1}{r^{2}}\right)+\mathcal{O}\left(\frac{M}{r^{3}}\right)\right)
$$

Thus we must extract the subleading $1 / r^{3}$ behavior

## The addition of matter

- Consider the four-dimensional $\mathcal{N}=8$ gauged supergravity

$$
\mathcal{N}=2 \text { truncation: } \quad \mathrm{SO}(8)_{R} \supset \mathrm{U}(1)^{4}
$$

- This admits a four-charge $\mathrm{AdS}_{4}$ black hole

$$
\begin{gathered}
d s^{2}=-\mathcal{H}(r)^{-1 / 2} f(r) d t^{2}+\mathcal{H}(r)^{1 / 2}\left(f(r)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}\right) \\
\mathcal{H}=\prod_{i}\left(1+\frac{q_{i}}{r}\right), \quad f=1-\frac{\mu}{r}+g^{2} r^{2} \mathcal{H}
\end{gathered}
$$

- Can we extract the mass from the $1 / r^{3}$ term?


## The addition of matter

- Asymptotically:

$$
\begin{aligned}
-g_{t t} \sim g^{2} r^{2}(1+ & \frac{\alpha_{1} / 2}{r}+\frac{1 / g^{2}-\frac{1}{8}\left(\alpha_{1}^{2}-4 \alpha_{2}\right)}{r^{2}} \\
& \left.-\frac{\left(\mu+\alpha_{1} / 2\right) / g^{2}+\frac{1}{16}\left(\alpha_{1}^{3}-4 \alpha_{1} \alpha_{2}+8 \alpha_{3}\right)}{r^{3}}+\cdots\right)
\end{aligned}
$$

where $\alpha_{1}=q_{1}+q_{2}+q_{3}+q_{4}, \alpha_{2}=q_{1} q_{2}+\cdots$, etc.

- How do we unambiguously extract the mass?
- Can we recover a linear BPS-like mass relation?

$$
M \sim \frac{1}{2} \mu+\frac{1}{4}\left(q_{1}+q_{2}+q_{3}+q_{4}\right)
$$

## Mass in anti-de Sitter space

- The notion of mass can be made more precise

Abbott and Deser (generalization of ADM)
Henneaux and Teitelboim (asymptotic SO(3,2) Killing symmetry)
Ashtekar and Das

- Alternatively, we may follow the holographic renormalization approach in AdS

In addition to mass and charge, this also yields the thermodynamic potential (regulated on-shell action)

## Holographic renormalization

1. Start with the gravitational action

$$
S=S_{\mathrm{bulk}}(\text { Einstein }+ \text { matter })+S_{\mathrm{GH}}+S_{\mathrm{ct}}
$$

2. Single out a radial coordinate $r$

$$
d s^{2}=N^{2} d r^{2}+h_{a b}\left(d x^{a}+V^{a} d r\right)\left(d x^{b}+V^{b} d r\right)
$$

3. The boundary stress tensor is given by

$$
T^{a b}=\frac{2}{\sqrt{-h}} \frac{\delta S}{\delta h_{a b}}
$$

4. Conserved charges are obtained by integrating $T^{a b}$ over a spacelike hypersurface at infinity

## Divergences of the action

The action in AdS is divergent and needs to be regulated

- Consider pure gravity

$$
S_{\text {bulk }}=-\frac{1}{16 \pi G} \int d^{4} x \sqrt{-g}(R-2 \Lambda)
$$

- Use the Einstein equation $R_{\mu \nu}=\Lambda g_{\mu \nu}$

$$
\begin{gathered}
-I_{\text {bulk }}=\frac{\Lambda}{8 \pi G} \int d^{4} x \sqrt{-g}=\frac{\Lambda \beta \omega_{2}}{8 \pi G} \int_{0}^{\infty} r^{2} d r=\lim _{r \rightarrow \infty} \frac{\Lambda \beta \omega_{2}}{24 \pi G} r^{3}=\infty \\
\text { where } d s^{2}=-\left(1+\Lambda r^{2} / 3\right) d t^{2}+\left(1+\Lambda r^{2} / 3\right)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}
\end{gathered}
$$

## Divergences of the action

- For the four-charge $\mathrm{AdS}_{4}$ black hole

$$
S_{\mathrm{bulk}}+S_{\mathrm{GH}}=\mathcal{O}\left(r^{3}\right)+\mathcal{O}\left(r^{2}\right)+\mathcal{O}(r)+\text { finite }+\cdots
$$

The boundary stress tensor is likewise divergent

$$
T_{\text {unreg }}^{a b}=\frac{1}{8 \pi G}\left(\Theta^{a b}-\Theta h^{a b}\right)
$$

- This yields a divergent mass

$$
M_{\mathrm{unreg}}=\lim _{r \rightarrow \infty}\left(-g^{2} r^{3}-\frac{3}{4} g^{2} \alpha_{1} r^{2}-\left(1+\frac{1}{2} g^{2} \alpha_{2}\right) r+\left(\mu+\frac{1}{4} \alpha_{1}-\frac{1}{4} g^{2} \alpha_{3}\right)\right)
$$

## The counterterm action

The divergences may be removed by the addition of boundary counterterms

- Cut off the spacetime at the large value $r=r_{0}$
- Introduce the counterterm action

$$
S_{\mathrm{ct}}=\frac{1}{8 \pi G} \int_{r=r_{0}}^{\left.d^{3} x \sqrt{-h}\left(W(\phi)+C(\phi) \mathcal{R}+D(\phi) \mathcal{R}^{2}+E(\phi) \mathcal{R}_{a b} \mathcal{R}^{a b}+\cdots\right)\right) . . . . .}
$$

- How do we choose the counterterms $W, C, D, E, \ldots$ ?


## Hamilton-Jacobi counterterms

- Consider 'time' evolution in the $r$ direction

$$
S\left[g_{\mu \nu}, \phi^{i}, A_{\mu}^{I}\right] \quad \Rightarrow \quad \mathcal{H}\left[\pi^{a b}, h_{a b}, \pi_{i}, \phi^{i}, \pi_{I}^{\mu}, A_{\mu}^{I}\right]
$$

- Diffeomorphism invariance implies $\mathcal{H}=0$
- The momenta may be written as functional derivatives of the on-shell action

$$
\mathcal{H}\left[\frac{\delta S}{\delta h_{a b}}, h_{a b}, \frac{\delta S}{\delta \phi^{i}}, \phi^{i}, \frac{\delta S}{\delta A_{\mu}^{I}}, A_{\mu}^{i}\right]=0
$$

This is the Hamilton-Jacobi equation

## Hamilton-Jacobi counterterms

- After expanding $\mathcal{H}$ and collecting appropriate terms, one ends up with differential equations for the counterterms $W$, $C, D, E, \ldots$
- For $W$ one obtains

$$
V=2 \mathcal{G}^{i j} \partial_{\phi^{i}} W \partial_{\phi^{j}} W-\frac{3}{2} W^{2}
$$

This is just the relation between potential and superpotential in gauged supergravity

## Hamilton-Jacobi counterterms

In four dimensions, we obtain

- The unregulated stress tensor

$$
T_{\text {unreg }}^{a b}=\frac{1}{8 \pi G}\left(\Theta^{a b}-\Theta h^{a b}\right)
$$

- The counterterm contribution

$$
T_{\mathrm{ct}}^{a b}=\frac{1}{8 \pi G}\left(h^{a b} W(\phi)-\frac{1}{2 g}\left(2 \mathcal{R}^{a b}-\mathcal{R} h^{a b}\right)\right)
$$

## The regulated black hole mass

Back to the four-charge black hole...

- Three dilatonic scalars parameterized by a constrained set of fields $X_{1} X_{2} X_{3} X_{4}=1$
- The potential and superpotential

$$
V=-g^{2} \sum_{i<j} X_{i} X_{j}, \quad W=\frac{1}{2} g \sum_{i} X_{i}
$$

- For the black hole solution

$$
X_{i}=\frac{\mathcal{H}^{1 / 4}}{H_{i}}, \quad H_{i}=1+\frac{q_{i}}{r}
$$

## The regulated black hole mass

- The unregulated mass

$$
M_{\mathrm{unreg}}=\lim _{r \rightarrow \infty}\left(-g^{2} r^{3}-\frac{3}{4} g^{2} \alpha_{1} r^{2}-\left(1+\frac{1}{2} g^{2} \alpha_{2}\right) r+\left(\mu+\frac{1}{4} \alpha_{1}-\frac{1}{4} g^{2} \alpha_{3}\right)\right)
$$

- The counterterm contribution

$$
M_{\mathrm{ct}}=\lim _{r \rightarrow \infty}\left(g^{2} r^{3}+\frac{3}{4} g^{2} \alpha_{1} r^{2}+\left(1+\frac{1}{2} g^{2} \alpha_{2}\right) r+\left(-\frac{1}{2} \mu+\frac{1}{4} g^{2} \alpha_{3}\right)\right)
$$

- This results in a finite black hole mass

$$
M=\frac{1}{2} \mu+\frac{1}{4} \alpha_{1}=\frac{1}{2} \mu+\frac{1}{4}\left(q_{1}+q_{2}+q_{3}+q_{4}\right)
$$

## The regulated black hole mass

- The expression for the mass

$$
M=\frac{1}{2} \mu+\frac{1}{4}\left(q_{1}+q_{2}+q_{3}+q_{4}\right)
$$

agrees with expectations

1. Could have been obtained by careful expansion of $g_{t t}$
2. Yields a linear BPS relation
3. Dual to energy in the CFT (obeys the first law of black hole thermodynamics)

## Advantages of holographic renormalization

- No need for a reference background subtraction

Intrinsically defined quantities for arbitrary black hole configurations
Avoids issues of insufficiently rapid falloff of fields in non-asymptotically flat backgrounds

- Easily applied to more complicated objects

Non-extremal charged rotating black holes. . .
Thermodynamic investigations of the dual field theories (AdS/CFT)

## Advantages of holographic renormalization

- Additional symmetries may be read off from the boundary stress tensor

$$
\begin{aligned}
\operatorname{AdS}_{5} \times S^{5} \Rightarrow & S O(2,4) \\
& \times, S_{1}, S_{2},
\end{aligned} \begin{aligned}
& J_{1}, J_{2}, J_{3}(6)
\end{aligned}
$$

- Rigorous treatment of black hole thermodynamics

$$
\Omega_{\mathrm{reg}}=E_{\mathrm{reg}}-T S-\Phi^{I} Q_{I}
$$

... but watch out for potential log divergences
Related to the conformal anomaly

