Neutrino masses respecting string constraints

- Introduction
- Neutrino preliminaries
- The GUT seesaw
- Neutrinos in string constructions
- The triplet model
(Work in progress, in collaboration with J. Giedt, G. Kane, B. Nelson.)

Neutrino mass

- Nonzero mass may be first break with standard model
- Enormous theoretical effort: GUT, family symmetries, bottom up
- Majorana masses may be favored because not forbidden by SM gauge symmetries
- GUT seesaw (heavy Majorana singlet). Usually ordinary hierarchy.
- Higgs triplets ("type II seesaw"), often assuming GUT, LeftRight relations
- Very little work from string constructions, even though probably Planck scale
- Key ingredients of most bottom up models forbidden in known constructions (heterotic or intersecting brane)
- Large representations difficult to achieve (bifundamentals, singlets, or adjoints)
- String symmetries/constraints restrict couplings, e.g., diagonal Majorana masses
- Very nonstandard triplet or singlet seesaws, favoring inverted hierarchy, extended seesaw, or small Dirac masses from HDO.
(Work in progress, in collaboration with J. Giedt, G. Kane, B. Nelson.)

Models and spectra

- Weyl fermion
- Minimal (two-component) fermionic degree of freedom
- $\psi_{L} \leftrightarrow \psi_{R}^{c}$ by CPT
- Active Neutrino (a.k.a. ordinary, doublet)
- in $S U(2)$ doublet with charged lepton \rightarrow normal weak interactions
- $\nu_{L} \leftrightarrow \nu_{R}^{c}$ by CPT
- Sterile Neutrino (a.k.a. singlet, right-handed)
- $S U(2)$ singlet; no interactions except by mixing, Higgs, or BSM
- $N_{R} \leftrightarrow N_{L}^{c}$ by CPT
- Almost always present: Are they light? Do they mix?
- Dirac Mass
- Connects distinct Weyl spinors (usually active to sterile): $\left(m_{D} \bar{\nu}_{L} N_{R}+h . c.\right)$
- 4 components, $\Delta L=0$
$-\Delta I=\frac{1}{2} \rightarrow$ Higgs doublet
- Why small? LED? HDO?
- Variant: couple active to antiactive, e.g., $m_{D} \bar{\nu}_{e L} \nu_{\mu R}^{c} \Rightarrow L_{e}-$ L_{μ} conserved; $\Delta I=1$

$$
\begin{array}{c|c}
\nu_{L} & v=\langle\phi\rangle \\
\boldsymbol{h} & \boldsymbol{v} \\
\boldsymbol{N}_{\boldsymbol{R}} & \boldsymbol{m}_{\boldsymbol{D}}=\boldsymbol{h} \boldsymbol{v}
\end{array}
$$

- Majorana Mass
- Connects Weyl spinor with itself: $\frac{1}{2}\left(m_{T} \bar{\nu}_{L} \nu_{R}^{c}+h . c.\right)$ (active); $\frac{1}{2}\left(m_{S} \bar{N}_{L}^{c} N_{R}+h . c.\right)$ (sterile)
- 2 components, $\Delta L= \pm 2$
- Active: $\Delta I=1 \rightarrow$ triplet or seesaw
- Sterile: $\Delta I=0 \rightarrow$ singlet or bare mass

- Mixed Masses
- Majorana and Dirac mass terms
- Seesaw for $m_{S} \gg m_{D}$
- Ordinary-sterile mixing for m_{S} and m_{D} both small and comparable (or $m_{S} \ll m_{d}$ (pseudo-Dirac))

3ν Patterns

- Solar: LMA (SNO,
Kamland)
$-\Delta m_{\odot}^{2} \sim 8 \times 10^{-5} \mathrm{eV}^{2}$, nonmaximal
- Atmospheric:
$\left|\Delta m_{\text {Atm }}^{2}\right| \sim 2 \times 10^{-3}$ eV^{2}, near-maximal mixing
- Reactor: $U_{e 3}$ small

- Mixings: let $\nu_{ \pm} \equiv \frac{1}{\sqrt{2}}\left(\nu_{\mu} \pm \nu_{\tau}\right)$:

$$
\begin{aligned}
\nu_{3} & \sim \nu_{+} \\
\nu_{2} & \sim \cos \theta_{\odot} \nu_{-}-\sin \theta_{\odot} \nu_{e} \\
\nu_{1} & \sim \sin \theta_{\odot} \nu_{-}+\cos \theta_{\odot} \nu_{e}
\end{aligned}
$$

- Hierarchical pattern
* Analogous to quarks, charged leptons
* $\beta \beta_{0 \nu}$ rate very small
- Inverted quasi-degenerate pattern
* $\boldsymbol{\beta} \beta_{0 \nu}$ if Majorana
* SN1987A energetics (if $U_{e 3} \neq 0$)?
* May be radiative unstable

The GUT Seesaw

- Elegant mechanism for small Majorana masses
- Leptogenesis
- Expect small mixings in simplest versions (can evade by lopsided e / d, Majorana textures, etc.)
- Large Majorana often forbidden, e.g., by extra $U(1)$'s
- Direct Majorana masses and large scales forbidden in some string constructions
- GUTs, adjoint Higgs, large Higgs hard to accomodate in simplest heterotic constructions
- LSND: active-sterile difficult in simple versions
- Therefore, explore alternatives, e.g., with small Dirac and/or Majorana masses
- Small Majorana from loops, \boldsymbol{R}_{p} violation, TeV seesaw, or triplet
- Small Dirac from large extra dimension or by higher dimensional operators in intermediate scale models (e.g. $\left.U(1)^{\prime}\right)$
- Variant ordinary and triplet seesaws motivated by string constructions

Neutrinos in string constructions

Key ingredients of most GUT/bottom up models forbidden or different in known constructions (heterotic or intersecting brane)

- Bifundamentals, singlets, or adjoints; not large representations
- String symmetries/constraints may forbid couplings allowed by 4d symmetries
- Diagonal superpotential terms (e.g., diagonal Majorana masses) usually absent
- GUT Yukawa relations broken
- Non-zero superpotential terms may be equal (gauge couplings)
- Hierarchies from HDO (heterotic), intersection triangles (intersecting brane)

Dirac masses

- Can achieve small Dirac masses (neutrino or other) by higher dimensional operators or by large intersection areas

$$
\begin{gathered}
L_{\nu} \sim\left(\frac{S}{M_{P l}}\right)^{p} L N_{L}^{c} H_{2}, \quad\langle S\rangle \ll M_{P l} \\
\Rightarrow m_{D} \sim\left(\frac{\langle S\rangle}{M_{P l}}\right)^{p}\left\langle H_{2}\right\rangle
\end{gathered}
$$

- Large $p \Rightarrow\langle S\rangle$ close to $M_{P l}$ (e.g., anomalous $\left.U(1)^{\prime}\right)$
- Small $p \Rightarrow$ intermediate scale $\ll M_{P l}$
- Intermediate scale in (non-anomalous) $U(1)^{\prime}$ from D and (almost) F flat direction:

Two SM singlets charged under $U(1)^{\prime}$. If no F terms,

$$
V\left(S_{1}, S_{2}\right)=m_{1}^{2}\left|S_{1}^{2}\right|+m_{2}^{2}\left|S_{2}^{2}\right|+\frac{g^{\prime 2} Q^{\prime 2}}{2}\left(\left|S_{1}^{2}\right|-\left|S_{2}^{2}\right|\right)^{2}
$$

Break at EW scale for $m_{1}^{2}+m_{2}^{2}>0$, at intermediate scale for $m_{1}^{2}+m_{2}^{2}<0$ (stabilized by loops or HDO)

The ordinary seesaw

- Active neutrinos ν_{L}, N_{R} (3 flavors each)

$$
L=\frac{1}{2}\left(\begin{array}{ll}
\bar{\nu}_{L} & \bar{N}_{L}^{c}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{m}_{T} & \mathrm{~m}_{D} \\
\mathrm{~m}_{D}^{T} & \mathrm{~m}_{S}
\end{array}\right)\binom{\nu_{R}^{c}}{\boldsymbol{N}_{R}}+\mathrm{hc}
$$

- $m_{T}=m_{T}^{T}=$ triplet Majorana mass matrix (Higgs triplet)
- $m_{D}=$ Dirac mass matrix (Higgs doublet)
- $m_{S}=m_{S}^{T}=$ singlet Majorana mass matrix (Higgs singlet); eg, 126 of $S O(10)$
- Ordinary (type I) seesaw: $m_{T}=0$ and (eigenvalues) $m_{S} \gg m_{D}$:

$$
m_{\nu}^{\mathrm{eff}}=-m_{D} m_{S}^{-1} m_{D}^{T}
$$

with

$$
U_{P M N S}=U_{e}^{\dagger} U_{\nu}
$$

- Most models assume either
- $U_{e} \sim I$ in basis with manifest symmetries for $m_{D, S} \Rightarrow$ large mixings in U_{ν}
- Large U_{e} mixings from lopsided m_{e} in basis with $m_{D, S} \sim$ diagonal (harder to achieve in $S O(10)$ than $S U(5)$)
- $S O(10)$ models usually yield ordinary hierarchy
- String constructions: may be able to generate large effective m_{S} from

$$
W_{\nu} \sim c_{i j} \frac{S^{q+1}}{M_{P l}^{q}} N_{i} N_{j} \quad \Rightarrow\left(m_{S}\right)_{i j} \sim c_{i j} \frac{\langle S\rangle^{q+1}}{M_{P l}^{q}}
$$

- Can one have such terms simultaneously with Dirac couplings, consistent with flatness and other constraints? (Under investigation for Z_{3} orbifold.)
- $c_{i i}=0$ in all known examples \Rightarrow

$$
m_{S}=\left(\begin{array}{ccc}
0 & m_{12} & m_{13} \\
m_{12} & 0 & m_{23} \\
m_{13} & m_{23} & 0
\end{array}\right)
$$

- Very different from standard seesaw textures
- Case with three large eigenvalues requires complicated m_{D} and/or m_{e}
- 2×2 case could resemble special pseudo-Dirac inverse hierarchy model found for triplets
- Extended seesaw with greater than 3 N fields? (Coriano, Faraggi; F., Thormeier)

Triplet models

- Introduce Higgs triplet $T=\left(T^{++} T^{+} T^{0}\right)^{T}$ with weak hypercharge $Y=1$
- Majorana masses m_{T} generated from $L_{\nu}=\lambda_{i j}^{T} L_{i} T L_{j}$ if $\left\langle T^{0}\right\rangle \neq 0$
- Old Roncadelli-Gelmini model: $\left\langle T^{0}\right\rangle \ll$ EW scale with explicit L violation
- Excluded by $Z \rightarrow$ Majoron + scalar (equivalent to $\Delta N_{\nu}=2$)
- Modern triplet models (type II seesaw) break L explicity by THH couplings, giving large Majoron mass (Lazarides, Shafi, Wetterich, Mohapatra, Senjanovic, Schechter, Valle, Ma, Hambye, Sarkar, Rossi, ...)
- Often considered in $S O(10)$ or LR context, with both ordinary and triplet mechanisms competing and with related parameters, but can consider independently.
- General SUSY case

$$
\begin{aligned}
W_{\nu}= & \lambda_{i j}^{T} L_{i} T L_{j}+\lambda_{1} H_{1} T H_{1}+\lambda_{2} H_{2} \bar{T} H_{2} \\
& +M_{T} T \bar{T}+\mu H_{1} H_{2}
\end{aligned}
$$

T, \bar{T} are triplets with $Y= \pm 1, M_{T} \sim 10^{12}-10^{14} \mathrm{GeV}$. Typically,

$$
\begin{gathered}
\left\langle T^{0}\right\rangle \sim-\lambda\left\langle H_{2}^{0}\right\rangle^{2} / m_{T} \Rightarrow \\
\mathrm{~m}_{i j}^{\nu}=-\lambda_{i j}^{T} \lambda_{2} \frac{v_{2}^{2}}{M_{T}}
\end{gathered}
$$

String constructions

- Expect $\lambda_{i j}^{T}=0$ for $i=j$ (off-diagonal) $\Rightarrow m_{i i}^{\nu}=0$
- Also, need multiple Higgs doublets $H_{1,2}$ with $\lambda_{1,2}$ off diagonal
- Partial explanation: $S U(2)$ triplet with $Y \neq 0$ requires higher level embedding, e.g., of $S U(2) \subset S U(2) \times S U(2)$ (Have Z_{3} constructions with some but not all of the features.)

$$
W \sim \lambda_{1 j}^{T} L_{1}(2,1) T(2,2) L_{j}(1,2), j=2,3
$$

yields

$$
m^{\nu}=\left(\begin{array}{ccc}
0 & a & b \\
a & 0 & 0 \\
b & 0 & 0
\end{array}\right)
$$

- Typical string case: $|a|=|b|$
- HDO (or $S U(2) \subset S U(2) \times S U(2) \times S U(2))$ can give $m_{23}^{\nu} \neq 0$
- For

$$
m^{\nu}=\left(\begin{array}{ccc}
0 & a & b \\
a & 0 & c \\
b & c & 0
\end{array}\right)
$$

can take a, b, c real w.l.o.g. by redefinition of fields (not true for general m^{ν})

- $\operatorname{Tr} m^{\nu}=0$ and $m^{\nu}=m^{\nu \dagger} \Rightarrow m_{1}+m_{2}+m_{3}=0$
- $\left|\Delta m_{\text {Atm }}^{2}\right| \sim 2 \times 10^{-3} \mathrm{eV}^{2}, \Delta m_{\odot}^{2} \sim 8 \times 10^{-5} \mathrm{eV}^{2} \Rightarrow$ two solutions
- For $\Delta m_{\odot}^{2}=0$
(a) $m_{i} \propto 1,-\frac{1}{2},-\frac{1}{2}$ (ordinary, with shifted masses)
(b) $m_{i} \propto 1,-1,0$ (inverted)
- With $\Delta m_{\odot}^{2} \neq 0$
(a) $m_{i}=0.054,-0.026,-0.026 \mathrm{eV}\left(\sum\left|m_{i}\right|=0.107 \mathrm{eV}\right.$ (cosmology))
(b) $m_{i}=0.046,-0.045,-0.001 \mathrm{eV}\left(\sum\left|m_{i}\right|=0.092 \mathrm{eV}\right.$ (cosmology))

$$
m_{a}^{\nu} \sim\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \quad m_{b}^{\nu} \sim\left(\begin{array}{ccc}
0 & a & b \\
a & 0 & 0 \\
b & 0 & 0
\end{array}\right)
$$

- (a) leads to unrealistic mixing matrix \Rightarrow consider (b)

A special texture

- The $L_{e}-L_{\mu}-L_{\tau}$ conserving texture

$$
m^{\nu} \sim\left(\begin{array}{ccc}
0 & a & b \\
a & 0 & 0 \\
b & 0 & 0
\end{array}\right)
$$

has been considered phenomenologically by many authors (Zee; Barbieri, Hall, Smith, Strumia, Weiner; King, Singh; Ohlsson; Barbieri, Hambye, Romanino; Lebed, Martin; Babu, Mohapatra; Lavignac, Masina, Savoy; Feruglio, Strumia, Vissani; Altarelli, Feruglio, Masina)

$$
m^{\nu} \sim\left(\begin{array}{ccc}
0 & a & b \\
a & 0 & 0 \\
b & 0 & 0
\end{array}\right)
$$

- New aspects
- Strong string motivation
- Motivation for special case $|a|=|b|$
- Most likely perturbation in 23 element from HOT
- Diagonalization: $\tan \theta_{\mathrm{Atm}}=b / a \Rightarrow$ need $|b|=|a|$ for maximal
- $\tan ^{2} \theta_{\odot}=1$ (maximal) (experiment $\tan ^{2} \theta_{\odot}=0.40_{-0.07}^{+0.09}$)
- Majorana mass matrix

$$
m^{\nu} \sim\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

- Inverted hierarchy
- Bimaximal mixing for $U_{e}=I$:

$$
U_{\nu} \sim\left(\begin{array}{rrr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

- Perturbations on m^{ν} cannot give both Δm_{\odot}^{2} and $\frac{\pi}{4}-\theta_{\odot} \sim \theta_{C} \sim$ 0.23 without fine-tuning between terms, e.g.,

$$
\frac{1}{4 \sqrt{2}} \frac{\Delta m_{\odot}^{2}}{\Delta m_{\mathrm{Atm}}^{2}}=-\frac{\epsilon_{23}}{4} \sim 0.007 \neq \frac{\pi}{4}-\theta_{\odot} \sim 0.23
$$

- However, $U_{e} \neq I$ with small angles (comparable to CKM) can can give agreement with experiment (Frampton, Petcov, Rodejohann; Romanino; Altarelli, Feruglio, Masina)

$$
U_{e}^{\dagger} \sim\left(\begin{array}{ccc}
1 & -s_{12}^{e} & 0 \\
s_{12}^{e} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

yields

$$
\begin{aligned}
\theta_{\odot} & \sim \frac{\pi}{4}-\frac{s_{12}^{e}}{\sqrt{2}}=0.56_{-0.04}^{+0.05} \\
\left|U_{e 3}\right|^{2} & \sim \frac{\left(s_{12}^{e}\right)^{2}}{2} \sim(0.023-0.081), 90 \%(\exp :<0.03) \\
m_{\beta \beta} & \sim m_{2}\left(\cos ^{2} \theta_{\odot}-\sin ^{2} \theta_{\odot}\right) \sim 0.020 \mathrm{eV}
\end{aligned}
$$

In progress

- Detailed Z_{3} constructions for higher level embeddings (triplets) and for heavy Majorana neutrinos
- Implications for m_{e}, m_{q}
- Implications of additional Higgs
- RGE effects
- Leptogenesis

Conclusions

- Neutrino mass likely due to large or Planck scale effects, but little work in string context
- Specific orbifold string constructions (heterotic, intersecting brane) not consistent with common GUT and bottom up assumptions for m_{ν}
- Preliminary conclusion: inverted hierarchy (pseudo Dirac), extended seesaw, or small Dirac favored
- Inverted hierarchy (e.g., from triplet) very predictive

