
Chapter 5 of Using Computers in Linguistics: A Practical Guide
 Routledge, 1998. Edited by John Lawler and Helen Aristar Dry
 (Terms in bold italics are to be found in the Glossary, references in the Bibliography.

Both are available online, along with other resources; see Page 24 below for URLs)�

The Unix™ Language Family

John M. Lawler

Linguistics Department
and Residential College
University of Michigan

1. General

The Unix™
1
operating system is used on a wide variety of computers (including but not limited

to most workstation-class machines made by Sun, Hewlett-Packard, MIPS, NeXT, DEC, IBM2,
and many others), in one or another version. If one is around computers almost anywhere, one is
within reach of a computer running Unix, especially these days, when Linux, a free version of
Unix, may be found on many otherwise ordinary-looking PCs. Indeed, more often than not Unix
is the only choice available for many computing tasks like E-mail, number-crunching, or running
file servers and Web sites. One of the reasons for the ubiquity of Unix is that it is the most
influential operating system in history; it has strongly affected, and contributed features and
development philosophy to almost all other operating systems.

Understanding any kind of computing without knowing anything about Unix is not unlike
trying to understand how English works without knowing anything about the Indo-European
family: that is, it’s not impossible, but it’s far more difficult than it ought to be, because there
appears to be too much unexplainable arbitrariness.

In this chapter I provide a linguistic sketch3 of the Unix operating system and its family of
“languages”. I use the word language here in its usual sense in computing contexts; since
computer languages are not at all the same kind of thing as natural human languages, clearly this
is a metaphorical usage. However, modern linguistic theory, strongly influenced as it is by
computer science, is capable of describing the Unix language family rather well, because these

1 Unix is a registered trademark (at press time, it was a trademark of Santa Cruz Operation, Inc.) whose provenance

and ownership, along with the traditions and variations of its use, is part of its history as a language, in much the
same way that, say, Indo-Germanic is a term with roots in the history of linguistics, and of the study of the Indo-
European language family. This point having been made, we do not hereinafter use the “™” symbol with the
word Unix. For the etymology of Unix, see Salus (1994).

2 All of these proper names are also registered trademarks; hereinafter we do not distinguish trademarks from ord-
inary proper nouns.

3 My models in this sketch, to the extent practicable, are the excellent language sketches in Comrie, ed. (1987).

http://www.umich.edu/~jlawler/
http://www.umich.edu/~jlawler/
http://www.rc.lsa.umich.edu/
http://www.umich.edu/
http://www.linux.com/

John Lawler “The UnixTM Language Family”

“languages” possess some of the ideal characteristics posited by linguistic theories: they are
completely regular, they exist in a homogeneous community, they are unambiguous, they are
context-free, they are modular in design and structure, they are acquired (by computers, if not by
humans) instantaneously and identically, they are universally interpretable in an identical fashion
(barring performance details), and there is in principle no difference between one user and any
other. Consequently the metaphor has considerable utility here for anyone familiar with
linguistics. This situation is not in fact coincidental, since Unix was designed in the first place
by people familiar with modern syntactic theory and its computer science analogs, and it shows.
As a result, linguists will find much here they can recognize, though perhaps in unfamiliar
surroundings. To that extent this chapter is simply applied linguistics. But Unix is also useful for
applying linguistics, as I attempt to demonstrate.

2. History and Ethnography of Computing
Unix is an operating system (OS). This is a special type of computer program that is, in a very
important sense, a syntactic theory that completely constrains (i.e, defines, enables, and limits)
all the programs that can run on a particular computer. In effect, the computer per se runs only
the OS, and the OS runs everything else. Up until the 1970s, and for some time thereafter, it was
normal in the computer industry for an operating system to be proprietary; that is, it was
typically developed and sold by the makers of a particular computer along with the computer,
and was limited to running on that computer alone. Any program that was to be run on that
computer would have to be compatible with its OS, which varied markedly from computer to
computer, limiting the possibility of widespread use of any program. Apple’s Macintosh-OS has
been a proprietary operating system for most of its existence, for instance, and the same is true of
DEC’s VMS; thus a program that runs on a Macintosh will not run on any other machine4. MS-
DOS, on the other hand (which has been influenced significantly by Unix), is an example of a
non-proprietary (or open) OS. Unix was the first successful open operating system.

Unix began in 1969 at Bell Laboratories in New Jersey. Ken Thompson, a member of the
technical staff, put together a small operating system, and over the next several years, modified
and developed it in collaboration with his colleagues, notably Dennis Ritchie and Brian
Kernighan. This group5 was also instrumental in developing at the same time two programming
phenomena that have become totally integrated into Unix, and vice versa: the Software Tools
movement, often called a ‘philosophy’6, and the C programming language.7 They produced a
number of enormously influential books8 still to be found almost three decades later on the desk
of most serious programmers and system designers; this is a signal accomplishment in a
publishing era where one year’s computer books are inevitably the next year’s landfill.

The Software Tools ‘philosophy’ gives an idea of why Unix is the way it is. The meta-
phoric image is that of a matched set of hand- or machine-tools that are capable of being snapped
together ad lib into any number of super-tools for specialized work on individual problems. If
you had to make table legs, for instance, you might, with this set of tools, in this virtual reality,

4 This has recently changed with the licensing of the Mac OS to other manufacturers.
5 This team did not rest on its Unix laurels. They have been working on a successor, and it is now being released

under the whimsical name Plan 9.
6 Technically, this is a pervasive metaphor theme, with accompanying social movement, rather than a philosophy

per se. Software Tools and Unix predate modern metaphor research and terminology by about a decade.
7 So-called because it was the successor of the B programming language.
8 Kernighan and Plauger: The Elements of Programming Style, Software Tools (both 1976), and Software Tools in

Pascal (1981); Kernighan and Ritchie: The C Programming Language (1978); Kernighan and Pike: The Unix
Programming Environment (1984).

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 2

John Lawler “The UnixTM Language Family”

hook up your saw to your plane, and then to your lathe, and finally to your sander, just so, feed in
sticks of wood at one end of this ad-hoc assemblage, and receive the finished table legs at the
other end. Real tools don’t work that way, alas, but software tools can, if they’re designed right.
The basic principle is to make available a number of small, well-crafted, bug-free programs
(tools) that:

• do only one well-defined task
• do it intelligently and well
• do it in a standard and well-documented way
• do it flexibly, with appropriate user-chosen options available
• take input from or send output to other program tools from the same toolbox
• do something safe, and if possible useful, when unanticipated events occur.

Linguists are familiar with at least the spirit of this concept as the principle of modularity
in syntactic theory. Modular design is a watchword in computer science as well as syntax,
however, since it allows easy construction of ad-hoc assemblages of tools for individual tasks,
just as English syntax allows easy construction of ad-hoc assemblages of ideas for individual
purposes, i.e, the proverbial infinite number of sentences.

For example, consider the task of preparing a lexical speculum. This is simply a wordlist
in reverse alphabetic order, so that bring and string might be adjacent, for instance; in a
suffixing language like English, such lists have obvious utility for linguists. (See the previous
chapter for more discussion of wordlists.) They are immensely difficult to prepare by hand,
however, and they can be tedious to program even on a computer. Below I present the Unix
solution to this problem in the form of a linguistic data analysis problem; the answer follows.
First, some preliminary information: word.big is an old wordlist from the University of
Michigan’s MTS mainframe system, salvaged from its demise. It was used by faculty and
students for 20 years to spellcheck their email and papers, so it’s full of unusual words, in all
their paradigmatic forms. To be precise as to the quantity, if not the quality, wc reports that it
contains 70,189 words on 70,189 lines, for a total of 681,980 bytes (including 70,188 newline
characters):

% ls -l word.big ↵
-rw-r--r-- 1 jlawler 681980 Mar 17 1995 word.big

% wc word.big ↵
 70189 70189 681980 word.big

And now the problem. The numbering is added for reference; the rest is verbatim. If you
type A-D at the ‘%’ Unix prompt, you get back 1-10. Describe the syntax and semantics of A-D.
Are there any generalizations?
A. % head word.big ↵ ...B. % head word.big | rev ↵

1. a ... a
2. A ... A
3. aardvark... kravdraa
4. aardwolf... flowdraa
5. aba... aba
6. abaca .. acaba
7. abaci .. icaba
8. aback .. kcaba
9. abacterial .. lairetcaba
10. abacus.. sucaba

Figure 1a. Data Analysis Problem (A-B)

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 3

John Lawler “The UnixTM Language Family”

C. % head word.big | rev | sort ↵ D. % head word.big | rev | sort | rev ↵

1. A ... A
2. a ... a
3. aba... aba
4. acaba .. abaca
5. flowdraa... aardwolf
6. icaba .. abaci
7. kcaba .. aback
8. kravdraa... aardvark
9. lairetcaba .. abacterial
1. sucaba ... abacus

 Figure 1b. Data Analysis Problem (C-D)

Using software tools (specifically the Unix programs sort and rev, and the Unix
conventions of input-output (I/O) redirection), and given a wordlist file (with one word to a
line, easy enough to prepare from any text via other Unix tools9) named word.big, the follow-
ing command will produce a file named speculum:

% rev word.big | sort | rev > speculum

A parse of this command line shows it to be very straightforward:
 % the Unix C-shell (csh) prompt; this is the context for the command that follows

rev send to output a reversed copy of each line in source file:
 word.big name of source (unmarked ablative) file, which is to be read only

 | a pipe marker, connecting the output of rev to the input of:
 sort.................. sort input alphabetically by line

 | another pipe, linking the output of sort to the input of:
 rev (another copy of) the same program invoked in the first clause
 > dative case marker, indicating where the output stream should be stored
 speculum name of goal (dative) file containing final output; to be written only.

 Figure 2. Parse of command line:
 rev word.big | sort | rev > speculum

The command is executed by sending the line to csh, which interprets and executes it.
This in turn is accomplished by pressing RETURN at the end of the line, which may be
considered a performance detail.

The programs sort and rev are both filters10; i.e, they belong to a class of programs that
read a file and do things sequentially to what they find, sending their output to a standard
output.11 This in turn can become the standard input to the next program in the pipeline. This

9 See sec. 6 of this chapter on filters for an example.
10 See sec. 3 of this chapter for further discussion of the stream metaphor. Note that pipe and filter are usefully

coherent with it.
11 The Standard Input (and Output) are abstract streams that are associated with every Unix program by the OS.

They are the ablative source (and dative goal) of any filter program. The unmarked (default) Standard Input is
the keyboard (and the unmarked Standard Output is the screen) unless they are redirected; i.e, unless overtly
referenced with a pipe “|”, as in egrep ’umich.edu’ $web.log | wc -l
or a case marker (<, >), as in mail jim@somewhere.edu < job.talk

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 4

John Lawler “The UnixTM Language Family”

is not unlike the kind of processing that linguistic theories posit for various components of a
derivation, and is directly related to the modularity inherent in the Software Tools design
philosophy. rev simply reverses the characters on each line it encounters, while sort sorts
files alphabetically by line.

The first part of the command above tells the OS to use rev on the file word.big, produ-
cing a stream of individually reversed lines. In Figure 1 above, the stream was limited to ten
lines by using the head program, which simply shows the first few lines of a text file, defaulting
to ten; in this command, however, the full word.big file would be the stream.

This stream is piped as input to sort, and sort’s output is repiped to another copy of
rev, this time re-reversing the (now sorted) strings. Finally, the resultant stream is parked in a
file called speculum; the original file word.big is not affected by this operation, since it is
only read, not written. In a test on a Sun workstation, with a word.big of 79,189 words,
production of a speculum file by this method took less than one second.

The success of this combination of Unix, Software Tools, and C is evident from the facts:
• that C is the programming language in which Unix, the most widely-used

operating system in the world, is written;
• that all the Software Tools programs are available, in C, on Unix, which is designed for their use and fits

them best (though they are also available elsewhere, and in other languages);
• that C is the most widely used professional programming language in the world;

any popular microcomputer program, for example, was almost certainly written in C.
Many of the software tools on Unix had their origin in the Tools movement, all were

written in C, and all shared a common interface language, differing only occasionally in details
of semantics and grammar. In addition, many of these tool programs (e.g, awk, sed, perl; see
section 6 below) evolved sublanguages of their own with a common core of structure, and these
in turn came to influence Unix. A well-thought-out set of tools, and ways of combining them
into useful programs, has many similarities to a well-thought-out set of phrases, and ways of
combining them into useful speech. And, while their complexity does not approach that of a real
natural language, the structure can be apprehended in similar ways, and this fact was not lost on
the developers: Unix has been oriented from the start toward the written word, with numbers
only incidental. Indeed, its first user was Bell Labs’ word-processing department.

Gradually, the fame of Unix spread outside the lab. AT&T, Bell Labs’ parent company,
was at that time enjoined as a regulated monopoly from engaging in the software business, and
thus the unlooked-for advent of a popular software product with its attendant demand was some-
thing of an embarrassment to the company. Their solution to this problem was almost as
remarkable as its origin: AT&T essentially gave away Unix. For educational institutions, AT&T
granted inexpensive licenses to run Unix on appropriate machines (originally PDP, later Digital’s
VAX line, eventually machines designed especially for Unix), with full source code (in C)
included. This meant that not only were the universities (in the personae of the students and staff
of computing centers and computer science departments, and interested others) able to run Unix,
but they were also able to modify it by changing its source code. Development proceeded
rapidly at a number of sites, most importantly at the University of California at Berkeley,
resulting eventually in the various releases of the Berkeley Standard Distribution of Unix
(BSD), which was also free, and rapidly became the standard operating system for many
computers.

This was particularly significant for American academic computing, since the late 1970s
and early 80’s was the period in which most universities switched over from large mainframe
centralized computing services to distributed departmental minicomputers, frequently running

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 5

John Lawler “The UnixTM Language Family”

Unix. Many of the design decisions in BSD Unix and its successors were thus made by
academics, not businessmen, and this strongly influenced subsequent developments. Perhaps
more importantly, the on-line culture that grew up around Unix, and proliferated into Usenet and
then the World Wide Web, was an academic culture, not a business culture, with significant
differences that were to become far more evident and important.

By the time 4.2BSD was released in 1983, AT&T had been become free under the law to
do something commercial with the rights it still held to the Unix operating system. However, the
commercial, business-oriented System V version of Unix (SysV) released by AT&T that year to
take advantage of this opportunity had serious incompatibilities with the BSD Unix that had
grown up in academe in the previous decade, and an anxious diglossia ensued. Decreolization of
these and other Unix versions in the form of eventual standardization of the competing versions
is now being pursued and in many cases has been effectively achieved; but to this day, every
version of Unix has its idioms, its gaps, its own minor examples of Traduttore, traditore. In this
survey I do not treat dialectal variations, but rather concentrate on the many mutually-intelligible
characteristics found in every version of Unix.

There are many fuller accounts available of the diachronic and dialectal development of
Unix. The best and most thorough is Salus (1994), which has the additional virtue (for the pur-
poses of this chapter) of having been written by a historical linguist who was personally involved
with the development of Unix. For synchronic analyses, the best source is Raymond (1995), the
printed version of an ongoing electronic lexicography project of impressive linguistic sophisti-
cation.

3. Bits and ASCII: Phonetics and Phonology

Unix, like all computing systems, makes use of the concept of the bit, or binary digit12.
This is what linguists know as the concept of binary opposition, e.g, voiced/voiceless. Comput-
ing exploits binary oppositions in electronic data to form its infrastructure, just as language ex-
ploits binary oppositions in perceived phonation. Unix also exploits several important elabora-
tions of the bit: the byte, the line, and the byte stream. These etic units, which are literally built
into the hardware, are structured by an emic system of byte interpretation called ASCII.13

ASCII Chart about here

 Figure 3. ASCII Chart

In computing, just as in distinctive-feature theories, all oppositions are binary: plus and
minus are the only choices for any feature. In computing, these are represented by 1 and 0.
Since these are also digits, and the only digits needed in the representation of Binary (Base-2)
integers, the possibility arises of combining these feature specifications in a fixed order to form
sequences of digits, or numbers. The fixed order is fixed by the manufacturer and may vary con-
siderably, but virtually all Unix machines assemble bits into convenient groups of eight, which
are called bytes. These are convenient because they are sufficient to define a useful-sized set.

All linguists learn that in Turkish, eight phonologically distinct vowels are possible, be-
cause there are three significant binary features, and 23 = 8; that is, there are eight different ways
to combine all possible values of the three features. With bytes, the relevant equation is 28 =

12 Besides being a genuine acronym, bit is also a remarkably apposite English name for the smallest possible unit of

information.
13 /'æski/ in American English; an acronym of American Standard Code for Information Interchange.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 6

http://www.cdrummond.qc.ca/cegep/informat/Professeurs/Alain/files/ascii.htm

John Lawler “The UnixTM Language Family”

256; that is, there are 256 different ways to combine the eight binary digits in a byte. 256 is an
order of magnitude larger than the size of the English alphabet, and indeed the English alphabet
is quite useful, even at that size. In fact, of course, the English alphabet (upper- and lower-case,
separately coded), punctuation marks, diacritics, and a number of other symbols are all
commonly coded in bytes, and that is by far the most common use of the byte, so much so that it
is useful mnemonically to think of one byte as one English letter.14

Here is a byte: 0 1 1 0 1 0 1 0 This is the Binary number that corresponds to the
Decimal15 number 106. It represents, in a textual context, the (lowercase) letter “j”, which is
number 106 in ASCII. In a different context, this byte might represent the Decimal integer 106
itself, or memory address 106, or instruction 106, or part of a more complex number, address, or
instruction. Computers use binary notation; writing numbers graphically is for humans, and
computers will write numbers any way they are told. This byte is therefore likely to exist, as
such, not as one of a series of marks on paper, but rather as a series of magnetic charges in ferrite
or silicon, or as a series of microdots on a compact disk (CD, or CD-ROM).

All Unix systems are built on ASCII, and all Unix files (or streams) are byte files which
can be interpreted in ASCII, whether they are intended to be or not. The history of ASCII will
not be treated here, but it would not be unfair to stress the fact that the “A” in the acronym
ASCII stands for American, with all that that entails from a linguistic viewpoint. That is, ASCII
represents just about everything that an early twentieth-century American engineer might have
thought would be useful in a character code. This includes the upper- and lower-case English
alphabet (coded cleverly to facilitate alphabetization), the Arabic numerals, ordinary punctuation
marks, a potpourri of non-printing control characters (like Line Feed), and virtually no
“foreign” letters or symbols.

There is provision for representing some diacritics, as separate letters: thus Spanish,
French, German, Italian, and other languages which use diacritics that have rough ASCII equiva-
lents (circumflex [caret ^], umlaut [quote mark "], acute [apostrophe '], grave [backquote `], til-
de [~]) can be represented, though with some difficulty, and not always completely (there is no
ASCII character except comma that can function as a cedilla, for instance). Languages like Tur-
kish, Hungarian, Polish, or Czech, which use letters or diacritics that have no ASCII equivalents,
are very difficult to represent properly. Languages with completely different alphabets, like Rus-
sian, Arabic, or Hebrew, require heroic measures. And non-alphabetic writing systems like Chi-
nese are out of the question; they require a completely different approach. Which is not to say
that ASCII Romanization is impossible, of course.

Within its limitations, however, ASCII is very well-designed; a number of structural char-
acteristics are worth pointing out. There are, to begin with, two parts of ASCII: Low ASCII,
represented in the chart above, from Decimal, Hex, and Binary 0 through 127 (= 27-1: Hex 7F,
Binary 01111111); and High ASCII, from Decimal 128 (= 27: Hex 80, Binary 10000000)
through 255 (28-1: Hex FF, Binary 11111111). Only the Low ASCII characters are
completely standard; High ASCII characters vary from machine to machine.

14 This is certainly as true (and mnemonically as useful) as the rough equivalences of one meter with one English

yard or of one liter with one English quart.
15 This byte is also expressible as number 6A in Hexadecimal (base 16) notation. A is a digit in Hexadecimal not-

ation, representing the number after 9, which is called ten in Decimal notation. The capital letters A–F are single
Hexadecimal digits representing Decimal 10 through 15, respectively; Decimal 16 is written 10 in Hexadecimal.
It is customary to add H after writing a Hexadecimal number (e.g, 6AH) to indicate the base; but there are other
conventions as well, such as $6A, with sources in a number of languages.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 7

John Lawler “The UnixTM Language Family”

For instance, many of the same additional characters are included in both DOS/Windows
and Macintosh text files, but not all; and they appear in different orders, with different numbers.
This is one reason why DOS and Mac text files are different. Unix cuts this Gordian knot by not
using High ASCII at all to represent characters; only Low ASCII, the first 128 characters, are
meaningful in Unix, and we will restrict our attention henceforth to these.

The most recognizable characters in ASCII are the alphanumerics, that is, the letters of the
(English) Latin alphabet plus the (English) Arabic numerals. Since the upper-case letters and the
lower-case letters are etically different, they are coded separately; since they are emically related,
they are coded analogously. The upper-case letters begin with A at Hex 41 (Decimal 65, Binary
01000001) and proceed alphabetically through Z at Hex 5A (Binary 01011010), while the lower-
case letters go from a at Hex 61 (Decimal 97, Binary 01100001) through z at Hex 7A (Binary
01111010). It can easily be seen that the difference between any given upper- and lower-case
letter is always exactly 32; in Binary terms, it’s even simpler: an upper-case letter has 0 in the
third-highest bit, while a lower-case letter has 1 there. Otherwise, they are identical; this fact
makes it simple to design software to be case-sensitive, or case-insensitive, as desired.

One of the important facts about Unix, which often disconcerts novices, is that it is case-
sensitive by default, since it uses Low ASCII fully. Individual programs may (and often do) ig-
nore case, but unless told otherwise, Unix does not. This means that a directory named News is
not the same as one named news, and will not be found or referenced by that name. And since
sort order is determined by ASCII order, and uppercase letters precede lowercase, this also
means that Zygote will appear in a sorted list before aardvark, unless the sorting software is
told to ignore case. One convention that results from this fact is that the unmarked case for Unix
commands, filenames, directories, and other special words is lower-case. Capitalized and ALL-
CAP terms are normally reserved, by convention, for special situations and system software,
though there is no absolute prohibition imposed. For instance, most Usenet newsreaders (like rn
or trn) expect to use (and will create if they don’t find one) a directory named News. (A
further behavioral modification produced by this convention is the decided predilection of some
Unix users to eschew upper case in ordinary written communication, even when not modulated
by Unix.)

Another feature of ASCII worthy of note are the Control Characters, which are non-print-
ing, and represent an action of some sort; these may be considered supra-segmental analogs.
Control characters have their own official names, taken from their original purpose (usually on
teletype machines), which are normally acronymic or mnemonic in English. For instance,
character no. 7, BEL (^G or Bell), originally rang the bell on a teletype, and now it often
produces a noise of some sort on a computer, while no. 8, BS (^H or Back Space), originally
moved the print head on a teletype back one space; now it is the code produced by the
“BackSpace” key on most16 keyboards.

The control characters occupy the first two columns17 of ASCII; thus their most significant

16 But not all. This is the source of much frustration (see next note), and explains why communication programs

like telnet include provisions to use either BS or DEL as the destructive backspace character.
17 With one exception. No. 127, DEL, is at the very end of the chart. This is binary “1111111” and represents an

original convention in (7-hole) paper tape, an early input medium. If one made a mistake in punching the tape,
one simply punched everything out and it was skipped. This later became a standard in the early Unix
community for keyboarding; thus the Back Space key on many workstation keyboards produces no. 127, DEL
(^? or Delete). This has not been completely integrated with the other early convention of using no. 8, BS (^H
or Back Space), that persists in most microcomputer applications.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 8

John Lawler “The UnixTM Language Family”

bits are “0000” or “0001”. Their least significant bits are the source of their more common
names, however. Just as the last four bits of “J” and “j” are identical (“1010”), so are the last
four bits of no. 10, LF (^J or Line Feed), which originally moved the teletype print head down
one line, and is now found as the newline character in Unix, among other uses18. Since, like all
Control characters, this can be produced on a keyboard by pressing the “Ctrl” or “Control” shift
key simultaneously with another key – in this case the “J” key – LF is often called simply
“Control-J”, or “Ctrl-J”, and frequently abbreviated, like all control characters, with a caret as
“^J”.

All computer media, like writing or speech, imply a serial order. In print, we are used to
the convention of lines of serially-ordered characters arranged horizontally on the page. For
readers, a line is a more or less natural phenomenon, governed by paper and type size. In a com-
puter, however, there is no physical page, nor any type to have a physical size. So lines, if they
are to be defined at all, must be defined, like everything else, by bytes. Text files are line files;
they consist of strings of bytes with newline characters inserted wherever a text line should be
displayed. An ASCII text file with 1000 lines of 60 characters each would thus have 61,000
bytes:19 60,000 letter bytes plus 1000 newline characters. Many of the tools in Unix, like rev,
work at the line level; others, like sort, work on whole files (though with reference to lines).20

Files are often called streams in Unix. Since a text file (and Unix is almost entirely com-
posed of text files) is simply a string of bytes (some of which are probably newline characters), it
is often convenient to view the file itself as a single string, and this is always the case whenever
anything like reading, writing, or modification has to be done to a file. In a computer, since there
is no question of moving the perceptor, conceptually it must be the bytes that are streaming past.

This metaphor is quite different from the static concept implied by file: a stream is in mo-
tion, can be used for power, provides a continuous supply of vital resources, is all of the same
kind, and is one-dimensional. A file, on the other hand, just sits there and waits for you to do
something with it, offers little help, is entirely passive, may consist of many parts of different
kinds, and is at least two-dimensional. This distinction between the metaphors of stream and
file is not unlike Whorf’s presentation (1956:210) of the distinction between the two Hopi words
for ‘water’. It turns out that the stream concept lends itself to convenient programming.

The result is that many Unix resources are designed around the concept of manipulating,
measuring, analyzing, abstracting, modifying, sampling, linking, comparing, and otherwise fool-
ing around with streams of text data, and since they share a common structure of conventions,

18 Again, early conventions have resulted in variation. In DOS and Windows ASCII files, each text line is termi-

nated by a cluster consisting of no. 13, CR (^M, or Carriage Return, which originally returned the teletype print
head to the left margin without advancing a line), immediately followed by no. 10, LF. In Mac ASCII files, the
standard newline character that terminates lines is CR alone, and in Unix it is LF alone.

19 Or roughly 60 Kilobytes (KB). The kilo- prefix, normally denoting 1000, refers in computing contexts to 1024,
which is 210. Similarly, mega- is 1,048,576 (220), rather than 1,000,000. While this is not standard metric, it
rarely causes confusion.

20 One important qualification must be made here. Text files in word-processing programs (on Unix or elsewhere)
are not Standard ASCII files, and rarely mark individual lines with anything; on the contrary, most use newline
to end paragraphs only, preferring to reformat lines on the fly. In fact, each wordprocessor has its own
proprietary file format, in which control characters and High ASCII characters are used to code information
peculiar to the particular program that writes (and expects to read) the file. In general, one may assume that any
two wordprocessors’ files are incompatible unless special steps, like format translation or translation to a
common interlanguage, such as Rich Text Format (RTF), have been taken. Virtually all wordprocessors,
however, have the capability to save text as a standard ASCII file, in some cases with or without line breaks
specified, and this format is universally compatible.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 9

John Lawler “The UnixTM Language Family”

they can be used together in surprisingly powerful ways. This is inherent in the way the simple
speculum example above works; further examples may be found in Section 6 below.

4. Grammar

The Unix language family is inflected. This is not common (though not unknown,21 either)
in computing languages. There is, for instance, complex clausal syntax, including clitics, marked
lexical classes, a case system, and a very powerful morphological system for paradigmatic
matching called regular expressions.

Regular expressions permeate Unix. Originally developed by the logician Stephen Kleene
(1956), they found their place as Type 3, the lowest, of the Chomsky Hierarchy (Chomsky
1963), where they are equivalent to finite-state (“right-linear”) grammars, or finite automata.
The most common type of regular expression morphology is the use of “*” (the Kleene closure)
to indicate “any string” in such contexts as *.doc, meaning (in context) all files with names
ending in the string “.doc”; this is the shell regular expression dialect, the simplest but not the
only one. The Unix program egrep, for instance, uses an elaborated version of regular
expressions to search text files for lines containing strings matching a expression.

Suppose, for instance, one has a World Wide Web server, which stores a record of each
“hit” (i.e, file request) on a separate line in a logfile with a long and unmnemonic name.
Suppose further that one has decided to think of this file as weblog for convenience. Then one
creates a shell variable, stores the name in it, and then uses weblog to refer to that file
thereafter. This could be done by putting a line like the following in one’s .cshrc file:

weblog=/usr/etc/bin/httpd/log
Once set, this variable is available, and may be referred to, in any command. Unix makes a

philosophically nice use/mention distinction here between the variable itself and the value of the
variable. That is, weblog is the variable, while $weblog is its content, namely the string
“/usr/etc/bin/httpd/log”.

To return to our example: this web log file, however it is named, or referenced, is filled
with automatically-generated information from the Web server program, which runs in the
background22 The format of each line is invariable, since it’s generated automatically, and
begins with the date in a particular format (e.g, “01/3/96”), followed by other information,
terminating in the name of the file requested and the number of bytes served. Then the
command:

egrep umich $weblog

will find and display every line in the file web.log containing the string “umich”.23 There

21 The apl programming language is an example of a polysynthetic computer language, for instance.
22 The usual metaphor is that programs like those that serve files on the Web (httpd), respond with personal

information on the finger command (fingerd), or make ftp connections (ftpd), etc, are d(a)emons,
whence the suffixal -d in their names. Daemons are invisible slavey programs that run only in the background,
checking every so often to see if what they’re looking for has come in, responding to it if it is, and going back to
sleep. This metaphor refers to Selfridge’s (1958) “Pandemonium” model of perception, which is fairly close to
the way many net programs work.

23 Note that the argument immediately after egrep on the command line is interpreted as a regular expression,
while the one following that is interpreted as a file name; we have here a system of subcategorization that
specifies the lexical class and morphological properties of verbal case roles. The string to be matched by egrep

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 10

John Lawler “The UnixTM Language Family”

may be very many of these, and one may only want to know how many, so the output of egrep
may be piped to wc -l24:

egrep umich $weblog | wc -l

which simply provides the number of lines found, instead of a listing of all of them. This works
for more complex strings, too, though one is well-advised to use quotation marks to delimit the
search string. If, for example, one wanted to count how many requests were made for a given
file, say “FAQ”, on a given day; the command would be:

egrep ’01/23/98.*FAQ’ $weblog | wc -l25

Since “.” matches any character and “*” matches any number of the preceding character,
“.*” comprises a regular expression idiom that matches any string at all, and
“01/23/98.*FAQ” thus matches any string26 containing the date and the file name, in that
order.

We alluded above to the analogs to the ablative (source) and dative (goal) cases, with refer-
ence to the input or output of a command on the command line, i.e, whatever the user types after
the Unix prompt.27 It is worth looking at the command line in some detail, since it is the prin-
cipal linguistic structure of Unix, analogous to the Sentence level in natural language. The basic
syntactic structure is

command [-switches] [arguments]

That is, verb, plus optional (marked) adverbials, plus optional noun phrases; some com-
mand verbs are intransitive, some are transitive, some are bitransitive, and some vary in the
number of arguments they take. These linguistic analogies are reasonably straightforward:
virtually every Unix command is, as the name suggests, an imperative verb, directing some
action to be taken; the arguments, like nouns, refer to a person, place or thing, generally a user, a
path or directory, or a string or file, respectively; and the switches, like adverbials, specify
optional modes and manners in which the action is to be performed.

Commands are not always simplex; they may be conjoined or embedded, and there can be
quite intricate flow of information from one to another, as we have seen. Concatenation of com-
mands is straightforward: to instruct Unix to perform several commands, one merely separates
them with semicolons; when the RETURN key is pressed, each is performed in order.

cd ~/News; trn; cd
changes the current directory to one’s own News directory (which is used by news readers like
rn, trn, or tin), invokes trn, and returns to the home directory28 when trn exits. These are

need not be quoted (though it may be). However, one is well advised to ’single-quote’ complex search strings
containing space and other special characters, to avoid unexpected misinterpretations.

24 From “word count”; wc counts lines, words, and characters; the optional -l, -w, and -c switches say which.
25 It is also possible to have Unix supply the current date in the appropriate format as the search string (thus making

the command indexical), by means of the backquote convention (see below):
egrep `date +%d/%h/19%y` $weblog | wc -l

26 As a matter of fact, it will match the longest such string in the line, if there is any ambiguity in the match.
27 The prompt is usually “%” (possibly with other information, like the name of the machine), and sometimes “$”.
28 cd (from “change directory”) changes the directory location to the one specified; when issued without an

argument, it defaults to the user’s home directory.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 11

John Lawler “The UnixTM Language Family”

coordinately conjoined clauses,29 unlike the subordinate complement clauses produced by
input/output redirection, where each successive command depends on a previous one.

Or, using the backquote convention, whole commands may function as nouns, like
complement clauses30, with the output of the complement command functioning as the argument
of the matrix command. Quoting a command inside backquotes “`” runs that command in the
background and then uses its output as the argument for the main command, so that:

finger `whoami`

first runs the whoami program, which returns the current user’s login name, then uses that string
as the argument for finger, which provides information about a user from their name.

Unix is a multi-user, multi-tasking system. This means that several (on larger systems,
several hundred) people can simultaneously use the same machine, and each of them can, in the-
ory, run several processes simultaneously.31 With such complexity, it is obvious that there are a
lot of people, places, and things to refer to, and Unix has a file and directory system that accom-
modates this. The basic unit in Unix, as in most computer systems, is the file, which is by de-
fault a text file. Each file resides in some directory, and every user has their own home
directory, usually named for their login ID.

Thus, if my login is jlawler, my home directory on a given Unix system might be
/usr/jlawler, while hdry’s home directory would be /usr/hdry. A file named
wordlist in my home directory has a full pathname of /usr/jlawler/wordlist, and it
would be accessible from anywhere on the system with that name. Most Unix systems use a spe-
cial referential convention to the effect that “~jlawler” means “jlawler’s home directory”,
while “$HOME” is an indexical, referring to the current user’s (first person singular) home
directory. Finally, one always has a current directory, which is thought of (and referred to) in
locative terms: i.e, one is in /usr/hdry and goes to it with the cd command: cd
/usr/hdry. Files referred to without a pathname, i.e, by the name of the file alone (e.g,
wordlist) are interpreted as being in the current directory by default. Thus, for anyone who is
in my home directory, “wordlist” is sufficient; for someone in /usr/hdry,
“~jlawler/wordlist” is necessary; and I can always refer to it as $HOME/wordlist, no
matter what directory I’m in.

Directories may contain other directories, and references to them are simply concatenated
with the directory separator slash “/”. A file wordlist that was in a subdirectory lists
under a subdirectory English under my home directory would have a fully-specified pathname
of /usr/jlawler/English/lists/wordlist, and other users could reference it this
way, or as ~jlawler/English/lists/wordlist, etc. The concept of hierarchical
directories originated in Unix, but it has spread to most modern systems. Users of DOS will be
familiar with this convention, although DOS uses backslash “\” instead of slash as a directory
separator; in Macintosh usage, directories are called “folders”, and colon “:” is used in
pathnames.

29 With the usual Western “narrative presupposition” to the effect that the conjuncts occur in the order they are

mentioned. In this case, of course, it is not so much a presupposition as a performative.
30 In particular, they are very reminiscent of conjunctive embedded questions of the form

 I know who Bill invited
where in fact what I know is the answer to the question “Who did Bill invite?”.

31 Any Unix command, for instance, can be run “in the background”, i.e, simultaneously, by suffixing “&” to it.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 12

John Lawler “The UnixTM Language Family”

Unix filenames are normal ASCII strings of varying lengths32, and may contain any alpha-
numeric character, and a number of non-alphanumerics. They may (but need not, except for spe-
cial purposes) end with an extension of a period followed by a short string denoting the file type.
Thus, C program code files end in .c, HTML files accessed by Web browsers end in .html,
and compressed tar archive files end in .tar.Z. Some programs require special extensions
on filenames, but most Unix tools do not, though they are often defaults.

In natural languages, imperative forms are almost always regular, frequently based on sim-
ple verb roots unless elaborated by a politeness system. In dealing with machines politeness is
not an issue, hence the lack of verbal inflection per se in Unix. There is, however, an elaborate
clitic system, called switches.33 By way of example, let us examine the common Unix command
ls, which displays file names and information, like the DIR command in DOS. The online
manual entry for ls (the Unix command to display it is man ls) starts this way:

LS(1) UNIX Programmer’s Manual

NAME

 ls - list contents of directory

SYNOPSIS

 ls [-acdfgilqrstu1ACLFR] name

 Figure 4. Top of man page for ls command:
 man ls | head

The heading shows that the ls command is in part 1 of the Manual (most ordinary com-
mands are there); the next part gives its name (in lower case) and its purpose. The “synopsis”
then gives all the possible switches, each a single character, that it may take. The square brackets
signal that they are optional; the hyphen character precedes any switch markers, which may be
concatenated, in any order. The rest of the man page then details the operation of ls; in particu-
lar, the operation of ls with each switch is discussed separately.

For instance, here is what it says about the -t, -s, and -r switches:

-t Sort by time modified (latest first) instead of by name.
-s Give size in kilobytes of each file.
-r Reverse the order of sort to get reverse alphabetic or

 oldest first as appropriate.

 Figure 5. From man page for ls command:

 effects of -t, -s, and -r switches.

32 The length of filenames was one of the major differences between BSD Unix and System V; Berkeley filenames

could generally be longer, and this caused many problems in adapting programs.
33 Sometimes called options. These are generally adverbial in nature.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 13

John Lawler “The UnixTM Language Family”

This means that ls -rst34 will present the names of the files in the directory name,35
with their sizes, sorted by time, most recently modified files last. Each of the other letter
switches listed in the Synopsis does something different; further, what each does is context-sen-
sitive, in that it may vary if used with some other switch, like the combination of -r with -t,
which changes the sort order from reverse alphabetic to reverse temporal.

ls has 18 switches in this dialect; which is a larger degree of modification than most Unix
commands have. Each command has a unique set of switches, however, most of which are only
infrequently needed. The syntax ranges from extremely simple to rather complex. Below are
some syntactic synopses of other Unix commands. Underlining indicates variables to be
supplied by the user, and square brackets optional elements – switches separately bracketed
require separate “-” prefixes. Vertical bar “|”, like linguists’ curly brackets, requires a choice
among elements.

 rev: reverse the order of characters in each line rev [file]
cp: copy files ... cp [-ip] file1 file2
mv: move or rename files ... mv [-i] [-f] [-] file1 file2
 head/tail: give first/last few lines of a file.............................. head/tail [-count] [file]
 mail: send and receive mail .. mail [-v] [-i] [-n] [-s subject] [user ...]
 uniq: remove or report adjacent duplicate lines.................... uniq [-cdu [+|-n] [inputfile [outputfile]]
diff: display line differences between files.......................... diff [-bitw] [-c [#] | -e | -f | -n | -h] file1 file2
spell: report spelling errorsspell [-blvx] [-d hlist] [-h spellhist] [-s hstop] [+localfile] [file]

 Figure 6. Synopses and syntax of selected Unix commands.

In each of these, the switches may be expected to have a different meaning. All this might seem
a large burden to place on the user, and it would indeed be excessive, were it not for the facts
that:

• a complete list with glosses is always available via the man command
• some, at least, of the switches are mnemonic (in English): -time, -reverse, -size
• one need never learn any switch more than once, since any useful configuration can be made into an

alias or script with a name chosen by (and presumably significant to) the user; thus ls -rts
can be renamed, say, reversedate with the command

 alias reversedate ls -rts
Any command, or sequence of commands, can be given a name, thus making it into an

idiom, or a little program. This facility is provided by the Unix shell, the tool that coordinates
the other tools by interpreting commands. There are two principal shells, and each provides a dif-
ferent facility for command formation. csh, the “C-shell”,36 provides aliases; it is principally
used interactively, where it identifies itself with a “%” prompt. sh, the “Bourne shell”,37 is used
mostly to interpret files containing shell scripts; it has fewer interactive features, but when it is

34 Or the command ls -r -st, or ls -rs -t, or ls -t -r -s, etc. Switches need not be concatenated.
35 In case name is not specified (as it isn’t in the command in the previous line), ls assumes the current directory

is intended. This is an example of the Software Tools philosophy in action; instead of requiring literal
compliance with the syntax, make the defaults useful.

36 So-called because it incorporates many features of the C programming language.
37 Named after its inventor. sh was an earlier shell, superseded for interactive use by csh; however, its simplicity

has made it the default choice for shell programming.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 14

John Lawler “The UnixTM Language Family”

being used interactively, it identifies itself with a “$” prompt.38

The command reversedate could be either an alias (as in the example above), or a
shell script. Generally, simple commands like this are more likely to be made into aliases, since
the process is easier, and doesn’t involve creating and activating a file. Of course, to make an
alias permanent, it is necessary to record it; each csh user has a file called .cshrc39 that may
be customized in a number of ways, including a list of their aliases. One of the first aliases some
users put in .cshrc is something like the following:
alias define 'edit $HOME/aliases;unalias *;alias -r $HOME/aliases40

which allows them to define new aliases on the fly.41 A good rule to follow is that any command
one notices oneself typing more than a few times should become an alias with a mnemonic
name; and to keep track of these, it is also useful to have a few aliases whose purpose is to
remind oneself of one’s previous aliases. The Unix tool which is helpful here; which
define, for instance, will return the following information:42

 define - aliased to: edit $HOME/aliases;unalias *;source $HOME/aliases

egrep can be used to advantage as well, to refresh one’s memory about previous lexicography.
Suppose you have several aliases for ls with various switches, but you don’t recall all of them;
the following command will then print each line in .cshrc containing the string “ls ”.43

% definitions 'ls '

alias dates 'ls -sACFt | more'

alias dir 'ls -alF'

alias lf 'ls -sF'

alias ll 'ls -l'

alias lc 'ls -lc'

alias whichls 'ls -l `which \!*`'

 Figure 7. Operation of the definitions alias.

by means of the following alias:
 alias definitions "egrep \!* $HOME/aliases "

38 Others include ksh, the “Korn Shell”, which combines features of sh and csh, and tcsh, an improved csh.
39 The period prefix is obligatory; most Unix programs use such dot files containing customizations or preferences.

The ls command does not display dot files unless instructed to with the -a switch.
40 The three successive commands separated by semicolons respectively: (a) edit the user’s aliases file,

presumably to insert a new alias; (b) remove all current aliases; (c) reload the presumably modified aliases.
41 Provided this is where their aliases are; the following command should be the last line in the dot file .cshrc:

alias -r $HOME/aliases This will load the alias file when the shell starts, e.g, at login.
42 Besides aliases, which will also locate any executable files (shell scripts or programs) matching a name that are

in the user’s path. As such, a command like which foobar answers the question: “If I type foobar, will
anything happen?”.

43 Note the final space, to restrict the match to commands. Quotes are used to disambiguate strings whenever
necessary, as with spaces and special characters, but they are not necessary with simple strings. There is a
principled pragmatic difference between single and double quotes in Unix.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 15

John Lawler “The UnixTM Language Family”

“\!*” is the C-shell code for a command parameter, i.e, whatever appears on the command line
after the alias; in this example, it is translated by the shell into the string “ls ” (note the space),
and passed on to egrep, which dutifully searches $HOME/aliases 44 for lines containing this
string and prints the result.

Of the various aliases above, dates shows multi-column output sorted by time, oldest
last, and pipes the output to a file viewer that shows only a screen at a time; this is useful for dir-
ectories with a large number of files. ll and lc both produce a “long directory”, with all details
of each file printed on a separate line; lc is sorted by time of last edit, most recent first. The last
alias, whichls, uses the backquote convention; which finds executable programs, scripts, or
aliases anywhere in the user’s path, but it returns only the name and location, and not the size,
date, or any other information. If one wants more information, one can then use ls to find it;
but it’s often convenient to combine the steps, as here.

By contrast with an alias, a shell script:
• is interpreted by the Bourne shell sh (aliases are interpreted by csh, the

C-shell; this means that aliases and scripts use somewhat different conventions)
• consists of a file and resides on disk, like other Unix programs (aliases are loaded from a file

when csh starts at login and are thus in-memory commands)
• is generally longer and more complex than an alias, which is usually a short

sequence of commands or a mere synonym for a single command
As an example of a shell script, consider a problem one often encounters: making a simple

change in multiple files. This could be done individually with an editor, making the change by
hand in one file, loading the next file and making it by hand again, etc. But this is not only
wasteful of time but also prone to error, and Unix provides better facilities for such tasks. Sup-
pose the files in question are all HTML files in a single directory on a Web server, and that what
needs to be done is to change a URL link that may occur several times in each file (or may not
occur at all) to a new address, because the server that the URL points to has been renamed (this
particular task that is likely to be with us for some time).

A two-step process will serve best here: first, a shell script (call it loopedit) to loop
over the files and edit each one with the same editing commands, and a separate file (call it
editcmds) of editing commands. This has the benefit of being reusable, since subsequent edit-
ing changes can be made with the same script merely by changing the contents of editcmds.
The Unix cat45 tool will print any file on the screen, so we can see the files:

% cat loopedit
#!sh
for i in *.html
 do
 ex - $i < editcmds
 done

 Figure 8a. The loopedit script, with commands in editcmds file (Fig. 8b).

44 Each user’s dot and customization files are located in their home directory, to which cd returns when invoked

without arguments, and which is contained in the system variable $HOME.
45 From “catenate”, since the tool will concatenate multiple files named as arguments.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 16

John Lawler “The UnixTM Language Family”

The first line invokes the sh shell to interpret the script (one gets to specify the language
and dialect). The next line (a “for” statement) instructs the shell to carry out the line(s)46
between the following “do” and “done” markers once for each file ending in “.html”,47 just
as if it were typed at the keyboard. At each successive iteration of the command, the shell
variable “i” is to be set to the name of each successive file in the set of those ending in
“.html”. The fourth line is the command itself; it runs the ex line editor (using ex’s silent
switch “-” that tells ex not to print its usual messages on the standard output for each file,
unnecessary with multiple files), and the name of each file (referenced as the value of i, or $i)
as its argument. ex is further instructed by the input redirection (ablative) marker “<” following
the argument to take its next input – the commands themselves – from the file editcmds.

The contents of editcmds can be similarly displayed:

% cat editcmds
g/www.umich.edu\/\~/s//www-personal.umich.edu\/\~/g
wq

 Figure 8b. The editcmds file, input to ex in the loopedit script (Fig 8a).

There are only two lines necessary; the first makes the changes, and the second saves
(“writes”) the file and quits. The second line is trivial, but the first is fairly complex.48 There are
several technical wrinkles, due to peculiarities of ex commands and of URL syntax, that render
it more complex than usual; this makes it a good example of a number of things, and worth our
while parsing out character-by-character below.

First, let us examine the precise change to be made. URLs begin with the address of the
server to be contacted; in the case of the University of Michigan, there are several, all beginning
with “www.”. As the Web has grown, it has become necessary for some Web pages to be moved
to different servers to equalize the load. In particular, at the University of Michigan, personal
Web home pages, which are named using a tilde convention similar to the Unix home directory
convention, have had to be moved from the server having the address “www.umich.edu” to a
special server for such pages only, with the address “www-personal.umich.edu”. Thus
Eric Rabkin’s home page, which used to have the URL “www.umich.edu/~esrabkin/”,
can now be found at the URL “www-personal.umich.edu/~esrabkin/”, and this
change must be made for thousands of URLs in many Web pages. The change should only be
made to personal pages, however; other (e.g, departmental) pages, which are not named with the
tilde convention, remain on the original server and retain the “www.umich.edu” address.

46 There can be many lines between do and done, but we need only one for such a simple task.
47 Thus, by default, lying in the current directory; this also applies to editcmds. This means that editcmds

should be in the same directory as the files to be edited, and that that should be the current directory.
loopedit, however, need not be there, since as an executable script it can be located anywhere in the user’s
path (the series of directories searched by the shell to find programs to be executed). ex itself resides in a
system directory, where it is accessible to (but not modifiable by) ordinary users.

48 And in fact took a couple of tries to get right. However, once debugged it can be saved and reused indefinitely, a
major feature of the Software Tools philosophy.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 17

John Lawler “The UnixTM Language Family”

We therefore need to search for all lines in a file that contain the URL address string
“www.umich.edu/~”, and to change each occurrence of this string on each of these lines to
“www-personal.umich.edu/~”. That is what the first line does. The “s” (for “substitute”)
command in ex has the syntax s/re1/re2/, where re1 and re2 are regular expressions; it
substitutes re2 for re1, and is thus a variant of the Structural Description : Structural Change
transformation notation that generative linguists put up with for over a decade. s//re/ is a
zero pronominal reference, and substitutes re for whatever the last search string has been; in this
case, that has already been specified by the preceding search (the slash-delimited regular
expression beginning the line). In the event of a search failure, the “s” command will not
execute. However, this particular command has a special twist: slash “/” and tilde “~” are
themselves both meaningful characters to ex, and thus cannot be searched for directly.

Slash is used to delimit search strings,49 and in order to search for slash itself in a string, or
for strings containing it, it must be escaped with a backslash “\” literal prefix. I.e, “\” quotes
the next character literally, so that the string “\/” means “the character ‘/’ ”; the slash will not
be interpreted by ex as a string delimiter. Similarly, unescaped tilde implicitly refers to the last
replacement string (re2) used in a previous “s” command (just as unescaped ampersand “&”
refers to the search string (re1) of the current “s” command), and to the empty string if there
have been no previous “s” commands, which will be the case in this script. So the actual string
we must instruct ex to search for is “www.umich.edu\/\~”, with both slash and tilde
escaped,50 and the replacement string is “www-personal.umich.edu\/\~”.

The two “g”, for “general”, commands, one at the beginning and one at the end, refer to
two different contexts. The initial “g” instructs ex to find all lines in the file with an occurrence
of the following search string, and to execute the command following on those lines where it is
found, while the final “g” refers only to the (line-oriented) “s” command, and instructs ex to
perform all possible substitutions on the indicated line; this covers the case where there is more
than one occurrence of the string on the line. Without the suffixal “g”, the “s” command could
only be executed once on any line.

49 As in this command. Although any character may function as a string delimiter in an “s” command, slash is

most common. Using a different character for the “s” command would eliminate one pair of backslashes in this
command. However, slash is the canonical delimiter for searching and may not be changed in that sense.

50 Actually, we could do without the escaped slash in the search string. Since any string containing
“www.umich.edu” followed by one character followed by a tilde is acceptable, we could simply use a period,
which will match any character, instead of an escaped slash in the search string: “www.umich.edu.\~”.
Indeed, the periods in “www.umich.edu” will match any character, too; the fact that they are intended to
match literal periods is entirely coincidental. However, in the replacement string, period is not interpreted,
while slash is, so the escaped slash is necessary there.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 18

John Lawler “The UnixTM Language Family”

g“general”find all occurrences of the following search string in the file

 /.......string delimiterbegin search string; find a line containing the
 following string and make it the current line

 www.umich.edu\/\~.....................string to be searched for, including escaped
 (i.e, literal) slash / and tilde ~ characters
 /.......string delimiterend search string

s“substitute”.................. replace first following string with second once on current line

 /.......string delimiterbegin search string

 (nothing) use last previous search string by default

 /.......string delimiterend search string, begin replacement string

 www-personal.umich.edu\/\~ replacement string, including escaped
 (i.e, literal) slash / and tilde ~ characters
 /.......string delimiterend replacement string

g“general” execute the preceding “s” command as often as possible on a line

 Figure 8c. Parse of the edit command in editcmds file (Fig 8b)
 interpreted by ex in the loopedit script (Fig 8a).

With these files in place, the only thing remaining is to activate loopedit as an
executable (i.e, program) file with the chmod51 command. From then on it works the same as
any Unix program. One need hardly add that, with several hundred Unix tools available to be
used, singly or together, plus dozens of specialized sublanguages for instructing them, shell
scripts offer unlimited possibilities for automated text processing to every Unix user. For
instance, the LINGUIST List is edited, distributed, archived, abstracted, and put on the Web via
a large suite of Unix scripts that depend on tools like the ones discussed in this chapter.

5. Editing and Formatting

The Unix toolbox always includes an editor, actually several editors, of several different
kinds. Editors are programs that create and change the contents of ASCII files. They may do
many other things as well, and some, for instance emacs, can become an entire environment.
An editor is a significant part – the part that connects keyboard, screen, and disk – of the usual
microcomputer word-processing programs; the usual metaphor is a typewriter, without paper, but
with a memory. A wordprocessor is a large complex program with many capabilities; the usual
metaphor is a typewriter that not only has paper, but also a print shop, an art studio, a type foun-
dry, and a reference library. Wordprocessors are used to produce actual printed pages, while an
editor need only fool around with bits and bytes, not fonts and footnotes. An editor is thus usu-
ally much smaller and faster, because it is a tool that only does one thing and doesn’t try to do
others.

51 From “change modifiers”, a reference to the executability of the file. The command that activates loopedit as

a program is chmod u+x loopedit, which means that the user adds executability to the file’s properties. If
this seems difficult to remember (and it is hardly intuitive), an alias renders it more memorable:
alias activate chmod u+x

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 19

John Lawler “The UnixTM Language Family”

They are also especially useful in Unix, because Unix was originally invented by pro-
grammers for programmers, and its editors, though mostly used for ordinary writing, are
designed to be especially useful for programmers. In order to make a shell script or save an
alias, for instance, one must use an editor. Which one? That is a semi-religious matter for many.
The choices include:

 • pico, the screen editor that is a part of the pine e-mail package. Many people have found it easy to
use, and the editor is available separately from email. Furthermore,
pico’s key commands are a subset of the standard key commands for:

 • emacs, the most powerful and flexible editor in the computer world. It can be found on most Unix
systems in academia, though not always in business. It is the product of the Free Software Foundation
and must be given away free. Though it is not simple to install, nor to learn completely, it is thoroughly
programmable (in Lisp) and can do almost anything with ASCII text. emacs’ main competitor is:

 • vi, universally pronounced /viyáy/, which, growing out of a short tradition of line editing, was the first
screen editor available on Unix, and, as part of the standard Unix distribution, may be found on every
Unix system, along with its relatives:

 • ex and edit, essentially command-line versions of vi (they become vi with the "v" command); and
ed, the first Unix line editor, still a functional tool within its limitations.

All of them work, but they all work differently. In this chapter, I use the ex line editor,
both as a least common denominator, and because it is the editor I use myself by choice for most
simple file editing tasks like adding or modifying aliases, mail names, text Web pages, and
writing small scripts. It is fast and convenient for these tasks, and can easily be automated.
Thus the details of the editing in the transcriptions that follow are independent of the rest, in that
the editing could have been done visually.

But it’s irrelevant, from the standpoint of the Software Tools philosophy, or of Unix,
which tools you use, as long as they work, because all of the tools work together. There is thus a
wide choice of programs available for virtually any task, and editors are no exception. Indeed,
editors are so important to programmers that they are constantly improving them, often on their
own time, for glory; and since programming glory involves efficiency and power, among other
things, this leads to some very interesting tools.

There is an important class of word-processing tool program, called a text formatter, which
is also usually part of a wordprocessor, but may be used as a separate tool in combination with
an editor. Examples are TeX and LaTeX, programs used by many scientists to produce technical
text, and the Unix programs roff (for ‘run off’) and troff (for ‘typesetter runoff’), all of
which implement special printing instructions from special tags or commands embedded in a text
file. Formatters and embedded commands are common with file structures that follow SGML or
HTML, or some equivalent markup scheme, like Web browsers (see chapters 1, 4, and 6 in this
book for further discussion of markup, TeX, and SGML). In all of these, the stream and pipe
metaphors of information flow control via tool programs can easily be discerned. Separate
formatter programs are not as widely used in ordinary writing as previously, since the locus of
most text construction has moved to microcomputers with full-featured wordprocessing
programs with built-in formatting; but they are still a common type of program, one of the larger
class called filters.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 20

John Lawler “The UnixTM Language Family”

6. Filters

As mentioned above, a filter program is one that takes input (prototypically textual input) from
some source, performs some regular transformation on it, and sends the resulting output to some
terminus. This may be sequential, like the speculum example, or interactive, like a Web browser
interpreting HTML code; but frequently enough filters employ regular expressions, used in
special filter languages, to specify their transformation.

Regular expressions are far more powerful than simple string search examples would sug-
gest. Besides “.” and “*”, there are a host of other special inflections with special senses, as in
any synthetic morphology:

• “?” means 0 or 1 of the preceding character, so “s?” means that “s” is optional

• “+” means a string of one or more of the preceding characters (“*” is zero or more)

• “|” indicates alternation, so “to(day|morrow)” matches either today or tomorrow

• “[A-Z]” matches any single character from the ASCII range between “A” and “Z”

• “[^AUZ]” matches any character except “A”, “U”, and “Z”

• “[^A-Z]” matches any character except an uppercase letter, so

• “[A-Za-z0-9]” matches any single alphanumeric character, while

• “[A-Za-z0-9]*” matches any string consisting only of alphanumerics, and

• “[^0-9]*” matches any any string that does not contain numeric characters

• “$” means the end of a line, and “^” means its beginning, so “^$” matches an empty line.

 Figure 9a. Simple examples of regular expressions and the strings they match.

Special characters intended to be used literally, rather than interpreted like this,52 are preceded by
“\”, thus “\. ” matches a period with two spaces afterward, and “\\” matches a single (literal)
backslash.

Some other examples of regular expressions, all working with egrep (and all delimited
with ’quotes’):

52 There are other possible interpretations; for instance, the ex editor has a special meaning for slash “/”.

See above for examples.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 21

John Lawler “The UnixTM Language Family”

’ .*is?tic(|al(|ly) ’any word ending (note the spaces) in -itic, -istic,

 -itical, -istical, -itically, or -istically

’ [A-Z][a-z]* ’..............any Capitalized word (note the spaces)

’ [A-Z][a-z]*[A-Z][a-z]+ ’any CapiTalized word containing one other CapiTal

’^[^]*$ ’....................... a complete line containing no spaces (* matches empty line, + doesn’t)

’^[A-Z].*\.$ ’ a complete line beginning with a Capital and ending with a period.

’ spr?[^\.?,:;!]*[\.?,:;!]’any word beginning with sp- or spr-;

this expression specifies that the string must begin with a space, and may not contain period, question mark,

comma, colon, semicolon, or bang, while it must terminate with one of them, or with space, making it

suitable for searching in normally punctuated text.

’[A-Z][A-Za-z]* [A-Za-z]*: ?([Tt]he|[aA]n?) [A-Z]?[a-z]* of .*’

.......... a specification for certain styles of academic title like

 Regular Titles: An analysis of technical paper nomenclature.

 Figure 9b. Complex examples of regular expressions and the strings they match.

Besides egrep, many other Unix tools can use these regular expressions. The text editors
ed, ex, vi, and emacs, for example, can perform very complex string manipulations based on
regular expressions. In addition, the text filter languages sed,53 awk,54 and perl55 make ex-
tensive use of regular expressions. sed, from “stream editor”, is the simplest filter tool. It can
do the same things as ex, but operates on the entire text stream with predetermined instructions.
It is useful for repetitive editing tasks; since these are character-based editors, sed is best at
character-level manipulations. awk is a more complex language, based on the concept of the
word instead of the character, but still oriented toward sequential operation on each line in a
filter operation. awk is somewhat more like a conventional programming language, and one can
write quite complex programs in it, but is simple enough for useful short programs to be written
on the fly. It works best for formatting repetitive and relatively predictable text data. perl is a
general-purpose programming language oriented toward text handling, which is very widely used
on the Internet, especially the Web. It is very powerful and efficient, and, though relatively easy
to learn, is more complex than awk, and does not presuppose the filter metaphor so literally.

53 From “stream editor”. sed can do the same things as ed, but operates on the entire text stream with predeter-

mined instructions, instead of interactively. It is useful for repetitive editing tasks.
54 An acronym of “Aho, Weinberg, Kernighan”, the authors of the program. awk is more powerful than sed, and

is designed specifically for use as a text filter, especially for repetitively-formatted files.
55 An acronym of “Practical Extraction and Report Language”. Perl is a full programming language, oriented

towards manipulating large texts. It is widely used on the Web for CGI scripts; a very simple example is the
Chomskybot , whose URL is: http://stick.us.itd.umich.edu/cgi-bin/chomsky.pl
the URL of its Perl script is: http://www.lsa.umich.edu/ling/jlawler/fogcode.html
I do not consider Perl much further here, except to point out ways of learning it easily, by automatic translation.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 22

John Lawler “The UnixTM Language Family”

7. Unix resources for users

There are thousands of books on Unix in press. Since it has not changed in its basics since the
1970s, even books published a long time ago can still be useful. Rather than attempt to survey
this vast and variable market, I will point to a few standard references (many of which can be
found in used book stores).

I have already mentioned the various books by Brian Kernighan & assorted co-authors;
they remain standard, even though their examples show signs of aging in some environments.
The single best source of printed information (both on Unix, and on regular expressions and their
use in filters as well) for sophisticated beginners remains the first four chapters of Kernighan and
Pike’s classic (1984) The UNIX Programming Environment, which treat much the same topics as
this chapter. This is pretty condensed stuff, but admirably clear; Kernighan is not only the k in
awk, and one of the creators of UNIX, but also one of the best writers in information science.

For those curious about how software is designed and developed, Brooks (1995) explains a
great deal about the mistakes that can be made and the lessons that have been learned. For the
historically-inclined, Salus (1994) covers the territory very well. Raymond (1996) is the latest
installment of an online lexicographic project called the Jargon File; it contains a lot of good
linguistics and ethnography, and some wonderful metaphors. Other books of historic and
ethnographic interest include Kidder (1981), Levy (1984), Libes (1989), and Stoll (1990).

Regular expressions are covered in every book on Unix. They are especially well-treated
in books on filter languages. A good source for all of these is the set of books from O’Reilly and
Associates (the ones with the strange beasts on the cover); they publish good manuals on sed
and awk, regular expressions, Perl, and many other topics, centered on Unix and the Internet.

When evaluating a Unix book for reference purposes, look for a thick book with a good
index and multiple appendices. Like good linguistics, it should give copious examples of
everything, and say what each is an example of. A good check for the index (a vital part to any
reference grammar) is to see if it’s easy to find out how to refer to command-line arguments in a
C-shell alias – you should be able to find the arcane formula (\!* or \\!*) without looking
hard. Check the index also for mentions of useful commands like sed, ls, head, sort,
uniq, rev, and awk. Check the table of contents for a separate section on regular expressions
near the beginning of the book; there should also be discussions (ideally, entire sections) on
aliases and customization, as well as shell programming in both the Bourne shell and the C-
shell. Both vi and emacs should be treated in detail, with examples, and commands for both
should be listed in detail.

Marketing hype about how the book makes Unix easy, even for those unwilling to attend
to details, is extremely suspect, just as it would be if it were encountered on a linguistics book;
one needs reference grammars as well as phrasebooks.

For technical reference, the official source is the Unix edition of the Bell System Technical
Journal (1979, 1987), and Bell Laboratory's Unix Programmer's Manual, which is largely a
collection of standard man pages. (The online man system always provides the most up-to-date
and deictically-anchored – and terse – Unix information available). Stallman (1993) is the
standard reference on the editor emacs, by its designer and author; the result is comprehensive,
though as always the author of a program is not necessarily the best possible author of its
manual.

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 23

http://www.tuxedo.org/~esr/jargon/

John Lawler “The UnixTM Language Family”

Below is a list of URLs for online resources from this book.

• The top Web page for this book, at
http://www.routledge.com/linguistics/using-comp.html
(from which one can reach online Appendices for all chapters)

• Chapter 1 (“Introduction”) of this book, complete online, at
http://www.routledge.com/linguistics/introduction.html

• The Glossary of all the technical terms in boldface italics used in this book, at
http://www.umich.edu/~jlawler/routledge/glossary.html

• The Bibliography of all references cited in this book, at
http://www.umich.edu/~jlawler/routledge/bibliography.html

• Chapter 5 (“The UnixTM Language Family”) of this book, complete online, at
http:/www.umich.edu/~jlawler/routledge/unixlanguage.pdf
(i.e, this file)

• The online Appendix for Chapter 5, at
http://www.umich.edu/~jlawler/routledge/unix.html
which points to pages on

 General Resources, at
http://www.umich.edu/~jlawler/routledge/unixweb.html

 Regular Expressions, at
http://www.umich.edu/~jlawler/routledge/regex.html

 Filter Languages (sed, awk, and perl), at
http://www.umich.edu/~jlawler/routledge/sedawkperl.html

 Shells, Aliases, and Scripts, at
http://www.umich.edu/~jlawler/routledge/alias.html

Chapter 5 of Using Computers in Linguistics: A Practical Guide Routledge 1998 24

http://www.routledge.com/linguistics/using-comp.html
http://www.routledge.com/linguistics/introduction.html
http://www.umich.edu/~jlawler/routledge/glossary.html
http://www.umich.edu/~jlawler/routledge/bibliography.html
http://www.umich.edu/~jlawler/routledge/unixlanguage.pdf
http://www.umich.edu/~jlawler/routledge/unix.html
http://www.umich.edu/~jlawler/routledge/unixweb.html
http://www.umich.edu/~jlawler/routledge/regex.html
http://www.umich.edu/~jlawler/routledge/sedawkperl.html
http://www.umich.edu/~jlawler/routledge/alias.html

	The Unix™ Language Family
	General
	History and Ethnography of Computing
	Bits and ASCII: Phonetics and Phonology
	Grammar
	Editing and Formatting
	Filters
	Unix resources for users

