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The Decay of Vector into Two Scalars
We are to compute the decay rate of unpolarized vector particles of mass M into two scalars of mass

m. We should calculate the decay rate in the rest frame.
Defining p̃µ = (p̄− p)µ, the amplitude for the decay diagram is given by
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It is quite straightforward to calculate the spin-averaged square of the amplitude,
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Now, because we are computing this in the rest frame where kµ = (M, 0) and p̃µ = (0,−2|~p|), kµp̃µ = 0.
Similarly, we know that p̃2 = 4|~p|2. Therefore,
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Note that |~p| = E2 − m2 =
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. Using this and the equation for the decay rate found in
Peskin and Schroeder,

Γ =
1

2M

∫
dΩ

16π2

|~p|
M
|M|2,

=
1

2M

∫
dΩ

16π2

|~p|
M

4f2|~p|2
3

,

=
f2

24π2M2

∫
dΩ|~p|3,

∴ Γ =
f2

(
M2

4 −m2
)3/2

6πM2
.

Mott’s Formula
We are to generalize problem 2 of Homework 8 in the relativistic case. We computed then the general

amplitude to be

M =
−ie2Z

(pf − p)2
ūs′(pf )γ0us(p).

To compute the spin averaged amplitude, it will be helpful to recall our earlier kinematic result that
(pf − p)4 = 16|~p|4 sin4 θ/2. Let us now compute the amplitude squared in the spin-averaged case.
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It will be helpful to break up the trace into its four additive pieces.
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It should be clear that the two middle terms are both zero because there is an odd number of γ’s. The
last term is nearly trivial, Tr

(
γ0mγ0m

)
= 4m2. Let us now work on the first term.
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Using these results, we have that
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In the last two lines we have used the fact that ~p/E = β. Now, we showed in Homework 8 that
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.

Using the fine structure constant to simplify notation, where α2 = e4

16π2 , it is clear that
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Helicity Amplitudes in Yukawa Theory
We are to consider the amplitude given by,
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a) We are to derive the selection rules for helicity for this theory.
We can best understand the selection rules by requiring that one of the spinors is in a projec-

tion. To bring the projection operator to the neighboring spinor (in either diagram and starting
from any outside term) requires that the projection anticommutes through a γ0. Therefore, the
interaction must flip the spins. Exempli Gratia, ū 1+γ5

2 uR = u†γ0 1+γ5

2 uR = ūLuR.

b) Given these selection rules, what are the non-vanishing amplitudes? These are the only possi-
ble terms that involve both incoming states flipping their spin in the outgoing states. So, the
nonzero amplitudes are MLL;RR,MRR;LL,MLR;RL,MRL;LR,MRL;RL,MLR;LR.

c) We are to use problem 5 of Homework 5 to compute the explicit form of the two-spinors. We
should use this to find the eigenvectors uλ(p) at very high energies. This is a relatively straight
forward calculation. We derived quite some time ago that in the high energy limit for general




