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The expectation value for the number created is simply,
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To compute the variance, we will use the relation Var(n) = E(n?) — E(n)2. Let us compute
E(n?).

n—1

> A
Z n=1) D
— (n—1)V

o0 n—l 0 )\n—l
+ — | >
LT A o
0 )\n—l
_ —A_A -
=Xe et + de ;70172)!,
Lo )\i >\n72
= A" \%e” —_—,
— (n—2)!
=N 4\

Knowing this, it is clear that
Var(n) = 2+ X -X=\

Problem 4.4

The cross section for scattering of an electron by the Coulomb field of a nucleus can be computed, to
lowest order, without quantizing the electromagnetic field. We will treat the field as a given. classical
potential A, (z). The interaction Hamiltonian is then

H; = /d3m e@v“zﬁAw

where ¢(z) is the usual quantized Dirac field.

a) We must show that the T-matrix element for an electron scatter to off a localized classical
potential is given to the lowest order by

(psliT|ps) = —iet(ps)y"u(p:) - Au(py — pi)-

where fl# is the Fourier transform of A,,.
We may compute this contribution directly.
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b) If A,(x) is time independent, its Fourier transform contains a delta function of energy. We
therefore define

(s |iTIps) = iM - (27)3(E; — Ey).
Given this definition of M, we must show that the cross section for scattering off a time-
independent localized potential is given by
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From class we know that we can represent an incoming wave packet with momentum p; in
the z-direction and impact parameter b by the relation
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The probability of interaction given an impact parameter is then
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Therefore,
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With a properly normalized wave function, this reduces directly to (allow me to apologize for
the inconsistency with notation. It is hard to keep track of. The incoming momentum p has
energy E;.)
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Now, let us try to write an expression for do/df2.
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Therefore, we have that
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¢) We will now specialize to the non-relativistic scattering of a Coulomb potential (A = Ze/4nr).
We must show that in this limit
do a?Z?
dQ  4m?vtsin?(6/2)
Let us first take the Fourier transform of the Coulomb potential.
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From part (a) above, we calculated that

M = —iew” (pp)y*u’ (p) Au(ps — D),
—i€2Z ’ 0
= ——5u’ (pr)y u’(p).
(s —p? 7 )
In the nonrelativistic limit, £ >> p so we may approximate that
@ (pr)7u' (p) = w* T (py)u (p) = 2E5°.
Therefore, our amplitude becomes
—ie2Z ,
M= L g
(pr —p)
From part (b), we may compute do/d) directly.
do  47°¢'E62
dQ 1672 (py — p)*’
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In the nonrelativistic limit, we have that E2 ~ m2. Therefore we may conclude as desired that
do o’ Z?
dQ  4m2vtsin(0/2)
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