1. The Decay of a Scalar Particle

From the Lagrangian given by,

$$\mathcal{H} = \frac{1}{2} (\partial_{\mu} \Phi)^2 - \frac{1}{2} M^2 \Phi^2 + \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \mu \Phi \phi^2,$$

we are to determine the lifetime of a Φ particle to decay into two ϕ 's to the lowest order in μ assuming that M > 2m.

We first notice that the interaction Hamiltonian is $\int d^3x \mu \Phi \phi \phi$. From this, we can directly calculate the amplitude associated with our desired diagram: ϕ

The factor of 2 comes from Bose statistics associated with the two identical final ϕ particles. So,

$$|\mathcal{M}|^2 = 4\mu^2.$$

We have shown before that we can directly compute the decay width of a particle from the amplitude by using the relation,

$$\Gamma = \frac{1}{2M} \int \frac{d\Omega}{16\pi^2} \frac{|\vec{k}|}{E_{cm}} |\mathcal{M}|^2.$$

In the center of mass frame, the rest frame of the Φ , $E_{cm} = M$, $p = (M, \vec{0}), k_1 = (M/2, \vec{k})$, and $k_2 = (M/2, -\vec{k})$. From simple kinematics it is clear that $|\vec{k}| = \left(\frac{M^2}{4} - m^2\right)^{1/2} = \frac{M}{2} \left(1 - 4\frac{m^2}{M^2}\right)^{1/2}$. This leads to

$$\Gamma = \frac{4\mu^2 M^2}{64\pi^2 M^2} \left(1 - 4\frac{m^2}{M^2}\right)^{1/2} \int d\Omega.$$

When we integrate over the solid angle Ω , we should only cover 2π because the ϕ 's are identical. After integrating and simplifying terms we find that

$$\Gamma = \frac{\mu^2}{8\pi M} \left(1 - 4\frac{m^2}{M^2} \right)^{1/2}.$$
(1.1)

$$\therefore \tau = \frac{8\pi M}{\mu^2} \left(1 - 4\frac{m^2}{M^2} \right)^{-1/2}.$$
(1.2)

όπερ έδει δεῖξαι

2. Massless Fermion Scattering in Yukawa Theory

a) We are to write the complete amplitude for scattering two massless fermions in Yukawa theory. From previous homework and class notes this is,

2