2. We are given the Lorentz commutation relations,

$$
\left[J^{\mu \nu}, J^{\rho \sigma}\right]=i\left(g^{\nu \rho} J^{\mu \sigma}-g^{\mu \rho} J^{\nu \sigma}-g^{\nu \sigma} J^{\mu \rho}+g^{\mu \sigma} J^{\nu \rho}\right)
$$

a) Given the generators of rotations and boosts defined by,

$$
L^{i}=\frac{1}{2} \epsilon^{i j k} J^{j k} \quad K^{i}=J^{0 i}
$$

we are to explicitly calculate all the commutation relations. We are given trivially that

$$
\left[L^{i}, L^{j}\right]=i \epsilon^{i j k} L^{k}
$$

Let us begin with the K 's. By direct calculation,

$$
\begin{aligned}
{\left[K^{i}, K^{j}\right] } & =\left[J^{0 i}, J^{0 j}\right]=i\left(g^{0 i} J^{0 j}-g^{00} J^{i j}-g^{i j} J^{00}+g^{0 j} J^{i 0}\right) \\
& =-i J^{i j} \\
& =-2 i \epsilon^{i j k} L^{k} .
\end{aligned}
$$

Likewise, we can directly compute the commutator between the L and K 's. This also will follow by direct calculation.

$$
\begin{aligned}
{\left[L^{i}, K^{j}\right] } & =\frac{1}{2} \epsilon^{l k}\left[J^{i l k}, J^{0 j}\right] \\
& =\frac{1}{2} \epsilon^{i l k} i\left(g^{l 0} J^{i j}-g^{i 0} J^{l j}-g^{l j} J^{i 0}+g^{i j} J^{l 0}\right) \\
& =i \epsilon^{i j k} J^{0 k} \\
& =i \epsilon^{i j k} K^{k}
\end{aligned}
$$

We were also to show that the operators

$$
J_{+}^{i}=\frac{1}{2}\left(L^{i}+i K^{i}\right) \quad J_{-}^{i}=\frac{1}{2}\left(L^{i}-i K^{i}\right),
$$

could be seen to satisfy the commutation relations of angular momentum. First let us compute,

$$
\begin{aligned}
{\left[J_{+}, J_{-}\right] } & =\frac{1}{4}\left[\left(L^{i}+i K^{i}\right),\left(L^{j}-i K^{i}\right)\right], \\
& =\frac{1}{4}\left(\left[L^{i}, L^{j}\right]+i\left[K^{i}, L^{j}\right]-i\left[L^{i}, K^{j}\right]+\left[K^{i}, K^{j}\right]\right), \\
& =0
\end{aligned}
$$

In the last line it was clear that I used the commutator $\left[L^{i}, K^{j}\right]$ derived above. The next two calculations are very similar and there is a lot of 'justification' algebra in each step. There is essentially no way for me to include all of the details of every step, but each can be verified (e.g. $i\left[K^{i}, L^{j}\right]=-i\left[L^{j}, K^{i}\right]=(-i) i \epsilon^{j i k} K^{k}=-\epsilon^{i j k} K^{k} \ldots e t c$). They are as follows:

$$
\begin{aligned}
{\left[J_{+}^{i}, J_{+}^{j}\right] } & =\frac{1}{4}\left[\left(L^{i}+i K^{i}\right),\left(L^{j}+i K^{j}\right)\right] \\
& =\frac{1}{4}\left(\left[L^{i}, L^{j}\right]+i\left[K^{i}, L^{j}\right]+i\left[L^{i}, K^{j}\right]+i\left[L^{i}, K^{i}\right]-\left[K^{i}, K^{j}\right]\right) \\
& =\frac{1}{4}\left(i \epsilon^{i j k} L^{k}-\epsilon^{i j k} K^{k}-\epsilon^{i j k} K^{k}+i \epsilon^{i j k} L^{k}\right) \\
& =i \epsilon^{i j k} \frac{1}{2}\left(L^{k}+i K^{k}\right)=i \epsilon^{i j k} J_{+}^{k}
\end{aligned}
$$

Likewise,

$$
\begin{aligned}
{\left[J_{-}^{i}, J_{-}^{j}\right] } & =\frac{1}{4}\left[\left(L^{i}-i K^{i}\right),\left(L^{j}-i K^{j}\right)\right] \\
& =\frac{1}{4}\left(\left[L^{i}, L^{j}\right]-i\left[K^{i}, L^{j}\right]-i\left[L^{i}, K^{j}\right]+i\left[L^{i}, K^{i}\right]-\left[K^{i}, K^{j}\right]\right) \\
& =\frac{1}{4}\left(i \epsilon^{i j k} L^{k}+\epsilon^{i j k} K^{k}+\epsilon^{i j k} K^{k}+i \epsilon^{i j k} L^{k}\right) \\
& =i \epsilon^{i j k} \frac{1}{2}\left(L^{k}-i K^{k}\right)=i \epsilon^{i j k} J_{-}^{k}
\end{aligned}
$$

b) Let us consider first the $\left(0, \frac{1}{2}\right)$ representation. For this representation we will need to satisfy

$$
J_{+}^{i}=\frac{1}{2}\left(L^{i}+i K^{i}\right)=0 \quad J_{-}^{i}=\frac{1}{2}\left(L^{i}-i K^{k}\right)=\frac{\sigma^{i}}{2}
$$

This is obtained by taking $L^{i}=\frac{\sigma^{i}}{2}$ and $K^{i}=\frac{i \sigma^{i}}{2}$. The transformation law then of the $\left(0, \frac{1}{2}\right)$ representation is

$$
\begin{aligned}
\Phi_{\left(0, \frac{1}{2}\right)} & \longrightarrow e^{-i \omega_{\mu \nu} J^{\mu \nu}} \Phi_{\left(0, \frac{1}{2}\right)}, \\
& =e^{-i\left(\theta^{i} L^{i}+\beta^{j} K^{j}\right)} \Phi_{\left(0, \frac{1}{2}\right)}, \\
& =e^{-\frac{i \theta^{i} \sigma^{i}}{2}+\frac{\beta^{j} K^{j}}{2}} \Phi_{\left(0, \frac{1}{2}\right)} .
\end{aligned}
$$

The calculation for the $\left(\frac{1}{2}, 0\right)$ representation is very similar. Taking $L^{i}=\frac{\sigma^{i}}{2}$ and $K^{i}=-\frac{\sigma^{i}}{2}$, we get

$$
J_{+}^{i}=\frac{1}{2}\left(L^{i}+i K^{i}\right)=\frac{\sigma^{i}}{2} \quad J_{-}^{i}=\frac{1}{2}\left(L^{i}-i K^{k}\right)=0 .
$$

Then the transformation law of the representation is

$$
\begin{aligned}
\Phi_{\left(\frac{1}{2}, 0\right)} & \longrightarrow e^{-i \omega_{\mu \nu} J^{\mu \nu}} \Phi_{\left(\frac{1}{2}, 0\right)}, \\
& =e^{-i\left(\theta^{i} L^{i}+\beta^{j} K^{j}\right.} \Phi_{\left(\frac{1}{2}, 0\right)}, \\
& =e^{-\frac{i \theta^{i} \sigma^{i}}{2}-\frac{\beta^{j} K^{j}}{2}} \Phi_{\left(\frac{1}{2}, 0\right)} .
\end{aligned}
$$

Comparing these transformation laws with Peskin and Schroeder's (3.37), we see that

$$
\psi_{L}=\Phi_{\left(\frac{1}{2}, 0\right)} \quad \psi_{R}=\Phi_{\left(0, \frac{1}{2}\right)}
$$

3. a) We are given that T_{a} is a representation of some Lie group. This means that

$$
\left[T_{a}, T_{b}\right]=i f^{a b c} T_{c}
$$

by definition. Allow me to take the complex conjugate of both sides. Note that $\left[T_{a}, T_{b}\right]=$ $\left[\left(-T_{a}\right),\left(-T_{b}\right)\right]$ in general and recall that $f^{a b c}$ are real.

$$
\begin{aligned}
{\left[T_{a}, T_{b}\right]^{*} } & =\left(i f^{a b c} T_{c}\right)^{*} \\
{\left[T_{a}^{*}, T_{b}^{*}\right] } & =-i f^{a b c} T_{c}^{*} \\
\therefore\left[\left(-T_{a}^{*}\right),\left(-T_{b}^{*}\right)\right] & =i f^{a b c}\left(-T_{c}^{*}\right) .
\end{aligned}
$$

So by the definition of a representation, it is clear that $\left(-T_{a}^{*}\right)$ is also a representation of the algebra.
b) As before, we are given that T_{a} is a representation of some Lie group. We will take the Hermitian adjoint of both sides.

$$
\begin{aligned}
{\left[T_{a}, T_{b}\right]^{\dagger} } & =\left(i f^{a b c} T_{c}\right)^{\dagger}, \\
\left(T_{a} T_{b}\right)^{\dagger}-\left(T_{b} T_{a}\right)^{\dagger} & =-i f^{a b c} T_{c}^{\dagger} \\
T_{b}^{\dagger} T_{a}^{\dagger}-T_{a}^{\dagger} T_{b}^{\dagger} & =-i f^{a b c} T_{c}^{\dagger} \\
{\left[T_{b}^{\dagger}, T_{a}^{\dagger}\right] } & =-i f^{a b c} T_{c}^{\dagger} \\
\therefore\left[T_{a}^{\dagger}, T_{b}^{\dagger}\right] & =i f^{a b c} T_{c}^{\dagger}
\end{aligned}
$$

So by the definition of a representation, it is clear that $T_{a_{a}}^{\dagger}$ is a representation of the algebra.
c) We define the spinor representation of $S U(2)$ by $T_{a}=\frac{\sigma^{a}}{2}$ so that

$$
T_{1} \equiv \frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad T_{2} \equiv \frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad T_{3} \equiv \frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We will consider the matrix $S=i \sigma^{2}$. Clearly S is unitary because $\left(i \sigma^{2}\right)\left(i \sigma^{2}\right)^{\dagger}=1$. Now, one could proceed by direct calculation to demonstrate that
$S T_{1} S^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=-T_{1}^{*} \quad S T_{2} S^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)=-T_{2}^{*} \quad S T_{3} S^{\dagger}=\frac{1}{2}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=-T_{3}^{*}$.
This clearly demonstrates that the representation $-T_{a}^{*}$ is equivalent to that of T_{a}.

