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2. We are given the Lorentz commutation relations,

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ).

a) Given the generators of rotations and boosts defined by,

Li =
1
2
εijkJjk Ki = J0i,

we are to explicitly calculate all the commutation relations. We are given trivially that

[Li, Lj ] = iεijkLk.

Let us begin with the K’s. By direct calculation,

[Ki,Kj ] = [J0i, J0j ] = i(g0iJ0j − g00J ij − gijJ00 + g0jJ i0),

= −iJ ij ;

= −2iεijkLk.

Likewise, we can directly compute the commutator between the L and K’s. This also will
follow by direct calculation.

[Li,Kj ] =
1
2
εlk[J ilk, J0j ],

=
1
2
εilki(gl0J ij − gi0J lj − gljJ i0 + gijJ l0),

= iεijkJ0k;

= iεijkKk.

We were also to show that the operators

J i
+ =

1
2
(Li + iKi) J i

− =
1
2
(Li − iKi),

could be seen to satisfy the commutation relations of angular momentum. First let us
compute,

[J+, J−] =
1
4

[
(Li + iKi), (Lj − iKi)

]
,

=
1
4

(
[Li, Lj ] + i[Ki, Lj ]− i[Li,Kj ] + [Ki, Kj ]

)
,

= 0.

In the last line it was clear that I used the commutator [Li,Kj ] derived above. The next
two calculations are very similar and there is a lot of ‘justification’ algebra in each step.
There is essentially no way for me to include all of the details of every step, but each can be
verified (e.g. i[Ki, Lj ] = −i[Lj , Ki] = (−i)iεjikKk = −εijkKk...etc). They are as follows:

[J i
+, Jj

+] =
1
4

[
(Li + iKi), (Lj + iKj)

]
,

=
1
4

(
[Li, Lj ] + i[Ki, Lj ] + i[Li,Kj ] + i[Li, Ki]− [Ki,Kj ]

)
,

=
1
4

(
iεijkLk − εijkKk − εijkKk + iεijkLk

)
,

= iεijk 1
2
(Lk + iKk) = iεijkJk

+.

Likewise,

[J i
−, Jj

−] =
1
4

[
(Li − iKi), (Lj − iKj)

]
,

=
1
4

(
[Li, Lj ]− i[Ki, Lj ]− i[Li,Kj ] + i[Li, Ki]− [Ki,Kj ]

)
,

=
1
4

(
iεijkLk + εijkKk + εijkKk + iεijkLk

)
,

= iεijk 1
2
(Lk − iKk) = iεijkJk

−.
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b) Let us consider first the (0, 1
2 ) representation. For this representation we will need to satisfy

J i
+ =

1
2
(Li + iKi) = 0 J i

− =
1
2
(Li − iKk) =

σi

2
.

This is obtained by taking Li = σi

2 and Ki = iσi

2 . The transformation law then of the (0, 1
2 )

representation is

Φ(0, 1
2 ) −→ e−iωµνJµν

Φ(0, 1
2 ),

= e−i(θiLi+βjKj)Φ(0, 1
2 ),

= e−
iθiσi

2 + βjKj

2 Φ(0, 1
2 ).

The calculation for the ( 1
2 , 0) representation is very similar. Taking Li = σi

2 and Ki = −σi

2 ,
we get

J i
+ =

1
2
(Li + iKi) =

σi

2
J i
− =

1
2
(Li − iKk) = 0.

Then the transformation law of the representation is

Φ( 1
2 ,0) −→ e−iωµνJµν

Φ( 1
2 ,0),

= e−i(θiLi+βjKj)Φ( 1
2 ,0),

= e−
iθiσi

2 − βjKj

2 Φ( 1
2 ,0).

Comparing these transformation laws with Peskin and Schroeder’s (3.37), we see that

ψL = Φ( 1
2 ,0) ψR = Φ(0, 1

2 ).

3. a) We are given that Ta is a representation of some Lie group. This means that

[Ta, Tb] = ifabcTc

by definition. Allow me to take the complex conjugate of both sides. Note that [Ta, Tb] =
[(−Ta), (−Tb)] in general and recall that fabc are real.

[Ta, Tb]∗ = (ifabcTc)∗,

[T ∗a , T ∗b ] = −ifabcT ∗c ,

∴ [(−T ∗a ), (−T ∗b )] = ifabc(−T ∗c ).

So by the definition of a representation, it is clear that (−T ∗a ) is also a representation of the
algebra.

b) As before, we are given that Ta is a representation of some Lie group. We will take the
Hermitian adjoint of both sides.

[Ta, Tb]† = (ifabcTc)†,

(TaTb)† − (TbTa)† = −ifabcT †c ,

T †b T †a − T †aT †b = −ifabcT †c ,

[T †b , T †a ] = −ifabcT †c ,

∴ [T †a , T †b ] = ifabcT †c .

So by the definition of a representation, it is clear that T †a is a representation of the algebra.
c) We define the spinor representation of SU(2) by Ta = σa

2 so that

T1 ≡ 1
2

(
0 1
1 0

)
T2 ≡ 1

2

(
0 −i
i 0

)
T3 ≡ 1

2

(
1 0
0 −1

)
.

We will consider the matrix S = iσ2. Clearly S is unitary because (iσ2)(iσ2)† = 1. Now,
one could proceed by direct calculation to demonstrate that

ST1S
† =

1
2

(
0 −1
−1 0

)
= −T ∗1 ST2S

† =
1
2

(
0 −i
i 0

)
= −T ∗2 ST3S

† =
1
2

( −1 0
0 1

)
= −T ∗3 .

This clearly demonstrates that the representation −T ∗a is equivalent to that of Ta.




