The calculation on the previous page clearly shows that particles that were created by b^{\dagger} contribute oppositely to those created by a^{\dagger} to the total charge. We concluded in Homework 2 that this charge was electric charge.
2. a) We are asked to compute the general, K-type Bessel function solution of the Wightman propagator,

$$
D_{W}(x) \equiv\langle 0| \phi(x) \phi(0)|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} e^{-i p x}
$$

Because x is a space-like vector, there exists a reference frame such that $x^{0}=0$. This implies that $x^{2}=-\mathbf{x}^{2}$. And this implies that $p x=-\mathbf{p} \cdot \mathbf{x}=-|p||x| \cos (\theta)=-|p| \sqrt{-x^{2}} \cos (\theta)$. We can then write $D_{W}(x)$ in polar coordinates as

$$
\begin{aligned}
D_{W}(x) & =\frac{1}{(2 \pi)^{3}} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} e^{i|p| \sqrt{-x^{2}} \cos (\theta)} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \\
& =\frac{1}{(2 \pi)^{2}} \int_{0}^{\pi} d \theta e^{i|p| \sqrt{-x^{2}} \cos (\theta)} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \\
& =\frac{1}{(2 \pi)^{2}} \int_{-1}^{1} d \xi e^{i|p| \sqrt{-x^{2}} \xi} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \\
& (\text { where } \xi=\cos (\theta)) \\
& =\frac{1}{4 \pi^{2}} \int_{0}^{\infty} p^{2} d p \frac{1}{2 \sqrt{p^{2}+m^{2}}} \frac{1}{i|p| \sqrt{-x^{2}}}\left(e^{i|p| \sqrt{-x^{2}}}-e^{-i|p| \sqrt{-x^{2}}}\right), \\
& =\frac{1}{4 \pi^{2} \sqrt{-x^{2}}} \int_{0}^{\infty} d p \frac{p \sin \left(|p| \sqrt{-x^{2}}\right)}{\sqrt{p^{2}+m^{2}}}
\end{aligned}
$$

Gradsteyn and Ryzhik's equation (3.754.2) states that for a K Bessel function,

$$
\left.\int_{0}^{\infty} d x \frac{\cos (a x)}{\sqrt{\beta^{2}+x^{2}}}=K_{0}(a \beta)\right)
$$

By differentiating both sides with respect to a, it is shown that

$$
-\int_{0}^{\infty} d x \frac{a \sin (a x)}{\sqrt{\beta^{2}+x^{2}}}=-\beta K_{0}^{\prime}(a \beta)=\beta K_{1}(a \beta)
$$

We can use this identity to write a more concise equation for $D_{W}(x)$. We may conclude

$$
D_{W}(x)=\frac{m}{4 \pi^{2} \sqrt{-x^{2}}} K_{1}\left(m \sqrt{-x^{2}}\right)
$$

b) We may compute directly,

$$
\begin{aligned}
i D(x) & =\langle 0|[\phi(x), \phi(0)]|0\rangle, \\
& =\langle 0| \phi(x), \phi(0)|0\rangle-\langle 0| \phi(0), \phi(x)|0\rangle, \\
& =D_{W}(x)-D_{W}(-x), \\
\Longrightarrow D(x) & =i\left(D_{W}(-x)-D_{W}(x)\right) .
\end{aligned}
$$

Similarly,

$$
D_{1}(x)=\langle 0|\{\phi(x), \phi(0)\}|0\rangle=D_{W}(x)+D_{W}(-x) .
$$

It is clear that both function 'die off' very rapidly at large distances. I was not able to conclude that they were truly vanishing, but they are certainly nearly-so at even moderately small distances.

