Similar to our computation above, to find β_{ρ} we must compute the renormalization counter-term δ_{ρ}. To the one-loop order, we can find δ_{ρ} by computing,

We notice that the symmetry factor of 2 , included in our evaluation of the function $V(k)$, should not be included for the penultimate and antepenultimate diagrams because distinct fields run in the loop. Therefore, the loop integral for each of those two diagrams will contribute $2 V(k)$ to to the total amplitude. Noting this subtlety, we find that

$$
i \mathscr{M}=-i(\rho / 3)+(-i \lambda)(-i \rho / 3)[V(t)+V(t)]+(-i \rho / 3)^{2}[2 V(u)+2 V(s)]-i \delta_{\rho} / 3 .
$$

Recall that we have already computed the divergence of the function $V(k)$ and noted that it was independent of k. Therefore,

$$
\begin{gathered}
i \delta_{\rho} / 3=(-i \lambda)(-i \rho / 3)[V(t)+V(t)]+(-i \rho / 3)^{2}[2 V(u)+2 V(s)] \\
=-\lambda \rho / 3 \frac{-i}{16 \pi^{2}} \log \frac{\Lambda^{2}}{M^{2}}-(\rho / 3)^{2} \frac{-i}{8 \pi^{2}} \log \frac{\Lambda^{2}}{M^{2}} \\
\therefore \delta_{\rho}=\frac{1}{16 \pi^{2}}\left[\lambda \rho+2 \rho^{2} / 3\right] \log \frac{\Lambda^{2}}{M^{2}}
\end{gathered}
$$

Because there are no divergent self-energy diagrams in this theory to one-loop order, we have that the β-function for ρ is given precisely by twice the coefficient of the log divergence in δ_{ρ}.

$$
\begin{equation*}
\therefore \beta_{\rho}=\frac{1}{8 \pi^{2}}\left[\lambda \rho+2 \rho^{2} / 3\right] \text {. } \tag{1.b.2}
\end{equation*}
$$

Let us now consider the β-function associated with the ration λ / ρ. Using the chain rule for differentiation and the definition of the general β-function, we see that

$$
\begin{align*}
\beta_{\lambda / \rho}=\frac{1}{\rho^{2}}\left[\beta_{\lambda} \rho-\beta_{\rho} \lambda\right] & =\frac{1}{\rho^{2}}\left[\frac{3 \lambda^{2} \rho}{16 \pi^{2}}+\frac{\rho^{3}}{48 \pi^{2}}-\frac{\lambda^{2} \rho}{8 \pi^{2}}-\frac{\rho^{2} \lambda}{12 \pi^{2}}\right], \\
& =\frac{(\lambda / \rho)^{2} \rho}{16 \pi^{2}}+\frac{\rho}{48 \pi^{2}}-\frac{(\lambda / \rho)}{12 \pi^{2}}, \\
& =\frac{\rho}{48 \pi^{2}}\left[3(\lambda / \rho)^{2}-4(\lambda / \rho)+1\right], \\
\therefore \beta_{\lambda / \rho}= & \frac{\rho}{48 \pi^{2}}(3 \lambda / \rho-1)(\lambda / \rho-1) . \tag{1.c.1}
\end{align*}
$$

We see immediately that the two roots of $\beta_{\lambda / r}$ occur when $\lambda / \rho=1, \frac{1}{3}$ and because the second derivative of $\beta_{\lambda / r}$ is $6>0$, we know that $\beta_{\lambda / \rho}<0$ for $\lambda / \rho \in\left(\frac{1}{3}, 1\right)$ and $\beta_{\lambda / r}>0$ for $\lambda / \rho>1$. Therefore, for all $\lambda / \rho>\frac{1}{3}, \lambda / \rho$ will flow to $\lambda / \rho=1$. See Figure 1 below.

Therefore at large distances the couplings will flow to $\lambda=\rho$. This introduces a continuous $O(2)$ symmetry into the theory. To see this, let us define $\varphi \equiv\binom{\phi_{1}}{\phi_{2}}$. In this notation, the Lagrangian simply reads

$$
\begin{equation*}
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2}-\frac{\lambda}{4!} \varphi^{4} . \tag{1.e.1}
\end{equation*}
$$

This Lagrangian is clearly invariant to $O(2)$ transformations which correspond to changing the phase of φ.

Figure 1. Renormalization Group Flow as a function of scale. Arrows show $p \rightarrow 0$ flow.

