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Abstract: This paper reports on a study of problem solving differences between scientific
experts in the field of complex systems and novice undergraduate students. Significant
differences were found both at the conceptual level and at the level of basic epistemological
and ontological presuppositions and beliefs. It is suggested that helping students understand
and use complex systems knowledge will require helping students construct a richer
conceptual ecology which embraces both non-reductive and decentralized thinking, multiple
causality, non-linearity, randomness, and so on. It is hoped that this research might contribute
to efforts that are exploring ways for students to acquire a powerful conceptual toolkit based
on emerging scientific and social science research into the dynamics of complex systems.
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How does the immune system respond to constantly changing bacterial and viral invaders? How do birds
achieve their flocking formations? Why do we have highly skewed wealth distribution patterns? How do galaxies
form? Despite the diversity of these questions, each has been the focus of research at the frontiers of science, and
each involves phenomena that may be regarded as complex systems. The central concepts of complex systems,
including new ways of doing science involving computer explorations and computational modeling, have been
found to apply in many different areas. Yaneer Bar-Yam has written, "The study of the dynamics of complex
systems creates a host of new interdisciplinary fields. It not only breaks down barriers between physics, chemistry
and biology, but also between these disciplines and the so-called soft sciences of psychology, sociology, economics,
and anthropology" (Bar-Yam, 1997). Thus the concepts related to complex systems may function as unifying cross-
disciplinary scientific themes which are essential to understanding emerging interdisciplinary perspectives in the
natural and social sciences. Unfortunately, considerable research has documented the difficulties that students have
learning scientific ideas from the past 300 years (e.g., Newtonian physics, Darwinian evolution). Helping students to
learn emerging scientific knowledge and the unifying cross-disciplinary themes related to complexity and complex
systems will no doubt prove even more challenging.

Complex Systems and Learning Issues
Briefly, complex systems may be characterized by the interactions of numerous individual elements or

agents (often relatively simple), which self-organize at a higher hierarchical level of the system that in turn show
emergent and complex properties not exhibited by the individual elements. There are also ways that living (or
artificial life) agents in complex systems take in data from their environments, find regularities in the data, and
compress these perceived regularities into internal models that are used to describe and predict its future (Gell-
Mann, 1994). Complex systems exhibit evolutionary processes in that an agent’s internal models are subjected to
selection pressures in the context of specific environmental conditions and mutations resulting in changes to the
internal models over time. Finally, the emergent characteristics of a particular complex system frequently form an
individual agent at a higher hierarchical level of the system. For example, the immune system antibodies
continuously self-organize and evolve while being a part of the many “organism agents” of a bird, and that bird is in
turn an agent in the formation of a flock of birds, and the flock of birds is in turn an agent that is part of a particular
ecosystem niche, and so on. Central concepts related to complex systems that are frequently referenced in the
literature include: multiple agents, agent internal models determine actions, sensitivity to initial conditions and
chaos, fitness landscapes, self-organization, selection, positive feedback, emergence characteristics, hierarchical
levels, local activation - distant inhibition, and homeostasis.
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Unfortunately, there is reason to believe that many of the core concepts associated with these new scientific
ways of thinking may be counter-intuitive or conflict with commonly held beliefs (Casti, 1994). For example, order
is regarded from a complex systems perspective as a dynamic and emergent characteristic of self-organizing
complex systems (e.g., a “flock” of flying birds), a view which challenges a common belief that order can only
occur through centralized control imposed from within or outside a system (Feltovich, Spiro, & Coulson, 1989;
Resnick, 1994). Also, learning ideas concerning randomness or stochastic processes are often difficult for students,
possibly because these ideas conflict with teleological beliefs that ascribe purposefulness to events in the world.
Resnick has proposed that there is a “centralized bias” which is a mindset that favors explanations assuming central
control and single causality (Resnick, 1994; Resnick, 1996). Further, another centrally important process of complex
systems--evolution by natural selection--has proven extremely difficult for learners to understand, even high ability
students at high school and university levels (Bishop & Anderson, 1990; Brumby, 1984; Greene, 1990; Jacobson &
Archodidou, 2000; Settlage, 1994).

Complex Systems Problem Solving Research
A consistent recommendation in recent socio-cognitive learning theory and research is to involve students,

either individually or in groups, in actively working on challenging problems. If knowledge about complex systems
does pose a special learning challenge for students, it seems likely that students would experience difficulties when
given problem solving tasks involving complex systems phenomena. To date, there have been few qualitative or
observational reports on students solving problems dealing with complex systems (e.g., Resnick, 1996; Resnick &
Wilensky, 1998; Wilensky, 1996). Further, there has been no reported research that has examined complex systems
problem solving in a manner intended to identify differences between experts (i.e., complex systems scientists) and
novices (e.g., university students). A study was conducted to investigate expert and novice differences related to
complex systems problem solving. This research examined problem-solving responses given by individuals who
were professionally active in the field of complex systems (i.e., experts) and undergraduate college students (i.e.,
complex systems novices). The main experimental hypotheses were that there would be different complex systems
problem solving profiles between the experts and the novices. The experts were hypothesized to solve the problems
with not only more complex systems concepts (e.g., self-organization, emergence, evolution and selection), but also
with statements reflecting epistemological and ontological beliefs about the world that were non-reductive, viewed
control as being decentralized, described causality in terms of the interaction of multiple variables, described system
changes as being non-teleological, nonlinear, or stochastic. (See Figure 1.) In contrast, the university students were
hypothesized to use fewer complex systems concepts in their problem solutions and to use statements that reflected
beliefs that were reductive, viewed control from a central source, described causality as being linear and related to a
single source, and described the changes in a system as being deterministic, purposeful, or teleological.1

Method
The subjects for this study were from two different groups who were assumed to have relatively low and

high levels of expertise related to complexity and complex systems. The novice subjects were seven undergraduate
university students at a public research university who were paid for their participation. These students were
working on degrees in the social sciences or humanities (e.g., English, education, pre-law); none were majoring in
science or mathematics. The subjects met individually with the experimenter and an assistant for a single session of
approximately two hours. The expert subjects consisted of a national and international group of scientists and
advanced graduate students who responded to a request for participation posting to an electronic discussion list
moderated by a non-profit educational and research organization in Boston, the New England Complex Systems
Institute (NECSI). Nine subjects with academic or research credentials that suggested professional competence in
the area of complex systems were selected to participate in the study.

There were two slightly different versions of the instruments administered to the two groups. Both
instruments requested general background and demographic information (e.g., major area, gender), and included
nine identical problem questions dealing with complex systems, such as: How do ants find and collect their food?
How would you design a city so that there will be goods and services but minimal shortages or surpluses? How did
cheetahs evolve to run so fast? Is it possible for a butterfly in Brazil to cause a snowstorm in Alaska? How do traffic
jams form? These problems were based on issues or examples described in books or papers dealing with complex
and dynamic systems (Bar-Yam, 1997; Casti, 1994; Gell-Mann, 1994; Holland, 1995; Kauffman, 1995; Resnick,
1994), and from prior research on evolution problem solving (Jacobson & Archodidou, 2000). These problems were
written such that they could be answered in a qualitative manner appropriate for both complex systems experts and
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for individuals who had not received formal or informal (i.e., self-educated) training in areas dealing with complex
and dynamical systems.

Problems to Solve
Traffic, Ants, Design a City

 "Complex Systems"
Mental Model

Self-organization, Emergence, *Multiple Agents

Control

De-centralized

Ontology

Equilibration
processes

EXPERTS NOVICES

Component Beliefs

Control

Centralized

Ontology

Event

Component Beliefs

 "Clockwork"
Mental Model

*Multiple Agents

Figure 1. Diagram of hypothesized knowledge structure differences related to expert and novice
complex systems problem solving. The “*” next to “multiple agents” highlights that some

component beliefs might be used in either mental model.

For the novice subjects, a cognitive verbal protocol methodology was used in which the subjects were read
the questions and then verbally reported all ideas they had as they solved the problems (Chi, 1997; Ericsson &
Simon, 1993). Also, an experiment monitor asked clarifying or probing questions to better understand the subjects’
responses. All responses were audio taped and transcribed. The expert group was sent the written version of the
instrument by electronic mail. The written responses were read and questions were asked via e-mail of several
individuals in the expert group in order to clarify or better understand specific responses.

The data analysis for this study focused on the epistemological and ontological “component beliefs”2 and
the models constructed by the experts and students when solving complex systems problems. In order to analyze the
responses, a complex systems mental models framework (CSMM) was developed to code the problem solving
responses. The CSMM was based on previous research conducted in the domain of evolutionary biology (Jacobson
& Archodidou, 2000), and on the Vosniadou and Brewer mental model analysis methodology originally used in the
domain of astronomy (Vosniadou & Brewer, 1992; Vosniadou & Brewer, 1994). The CSMM framework consists of
eight component beliefs that are hypothesized to be associated with complex systems concepts (see Table 1). These
component beliefs were derived from an analysis of papers and books by various researchers working in the area of
complex systems (Casti, 1994; Casti, 1994; Dennett, 1995; Gell-Mann, 1994; Holland, 1995; Kauffman, 1993;
Kauffman, 1995; Mitchell, 1996; Pagels, 1988; Prigogine & Stengers, 1984; Resnick, 1994; Waldrop, 1992). For
example, Resnick has proposed many people have a bias favoring centralized over decentralized explanations, and
Casti has suggested there are common “intuitions” held by people such as “small effects cause small actions.” It is
important to note that many of these component beliefs are accurate for certain classes of phenomena (e.g., "small
effects cause small actions is appropriate for linear phenomena such as Newtonian mechanics), but may be
inappropriate with respect to complex, dynamical systems such as the weather (e.g., small actions have large
effects).

The problem solutions in this study were coded on the component beliefs level (i.e., see Table 1). The
higher order models were initially determined from the composition of the component beliefs used based on the
theory of complex systems problem solving (i.e., Clockwork, Complex Systems) (Jacobson, 1999). In the present
study, only the component beliefs were coded, and statistical tests were conducted for correlations with
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hypothesized high order models (see Results). It was hypothesized that complex systems novices would tend to
answer the questions with statements similar to or consistent with component beliefs in the Clockwork Set column
of Table 1, while experts would tend to employ statements consistent with the component beliefs in the Complex
Systems Set column of Table 1. A second level of coding examined the responses for the use of concepts associated
with complex systems theory and research, such as emergence, self-organization, or multiple agents. It was expected
that complex systems experts would use more complex systems concepts than the novices, even though the novices
would have been exposed to several of those concepts as part of general high school and college level science
courses (e.g., evolution and selection, homeostasis). One trained rater coded all of the responses, and a second rater
coded a subset of the responses (approximately 15%), with the few differences discussed until a consensus was
achieved.

Table 1. Complex Systems Mental Models Framework.

Categories of Component
Beliefs

Types of Component Beliefs

Clockwork Set Complex Systems Set

1. Understanding phenomena Reductive (e.g., step-wise sequences,
isolated parts)

Non-reductive: whole-is-greater-than-
the-parts

2. Control Centralized (within system)
External agent (external to system)

De-centralized (system interactions)

3. Causes Single Multiple

4. Actions effects Small actions --> small effects Small action --> big effect

5. Agent actions Completely predictable Not completely predictable / stochastic /
random

6. Complex actions From complex rules From simple rules

7. Final causes or purposefulness
of natural phenomena

Teleological Non-teleological or stochastic

8. Ontology Static structures
Events

Equilibration processes

Results
The problem solving score means, standard deviations, and F-tests are shown in Table 2. The reliability of

Clockwork and Complex Systems scales in terms of their respective component beliefs was evaluated with the
Cronbach alpha test. The eight Clockwork component beliefs were found to have a moderately high alpha = .72 and
the reliability for the Complex Systems component beliefs scale was .76. Next, the correlation matrix and the inter-
item statistics for each of the scales were examined to determine if certain component belief variables had low
correlations with the overall scale. For the scale of Clockwork component beliefs, five items were found to have low
Item – Total Correlations values (r < .4): single causes, event ontology, complex rules explain complex phenomena,
teleology. These component belief variables were removed, leaving a revised Clockwork scale of reductive,
centralized, small actions – small effects, and predictable as the items with the highest Item – Total Correlations
(.45 - .87), and yielding a reasonably high reliability alpha of .81. Inspection of the Complex Systems correlation
matrix and Item – Total Correlations for the eight variables lead to removing the items small actions lead to big
effects, simple rules explain complex phenomena, and non-teleology. The revised Complex Systems Component
Beliefs scale consisted of non-reductive, de-centralized, multiple causes, randomness, and equilibration processes.
These variables had Item – Total Correlations between .55 and .79, and an overall reliability of .85. As expected,
there was a negative and significant correlation between the revised Clockwork and Complex Systems component
belief scales (r = -.57, p = .02). Significant negative correlations were also found between the two component beliefs
scales and Complex Systems Concepts: Clockwork Component Beliefs and Complex Systems Concepts, r = -.64, p
= .008; Complex Systems Component Beliefs and Complex Systems concepts, r = .94, p = .000.

Significant differences (p < .05) were found between the two groups in terms of the individual component
beliefs understanding phenomena: reductive, control: centralized, control: de-centralized, and complex systems
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concepts. Significant differences between the two groups were also found for the revised Clockwork and Complex
systems component beliefs scales. A near significant difference (p = .09) was found for the Agent Actions: Random
component belief. However, given the relatively small sample size for this exploratory study, the cell sizes for some
of the variables were too small to allow for calculation of certain ANOVAs (e.g., none of the experts were found to
solve a problem with the Small actions – small effects component belief).

Table 2. Means, SD, and ANOVA for main variables.

Dependent Measures Novices Experts F Sig.
Understanding phenomena: Reductive 3.14 (1.35) 0.89 (1.27) 11.79 .004

Understanding phenomena: Non-
reductive

1.14 (1.07) 2.22 (1.48) 2.63 .127

Control: Centralized 1.57 (0.98) 0.55 (0.53) 7.17 .018

Control: De-centralized 1.86 (0.90) 4 .00 (1.00) 19.69 .001

Causes: Single 0.71 (1.11) 0.78 (.67) .02 .889
Causes: Multiple 3.86 (1.35) 4.67 (1.80) .98 .339

Small actions – small effects 1.00 (0.00) 0.22 (.44) N/A N/A

Small actions – large effects 0.14 (0.38) 0.44 (0.53) N/A N/A

Agent actions: Predictable 1.57 (0.98) 1.33 (1.66) .113 .712

Agent Actions: Random 1.00 (1.53) 2.56 (1.81) 3.316 .090

Complex actions: From complex rules .14 (.38) 0.0 (0.0) N/A N/A

Complex actions: From simple rules .29 (.76) .11 (.33) .39 .543
Final causes: Teleological or purposeful .14 (.38) 0.0 (0.0) N/A N/A
Final causes: Non-teleological .43 (1.13) 0.0 (0.0) N/A N/A
Ontology: Static structures 0.14 (.38) 0.0 (0.0) N/A N/A
Ontology: Equilibration Process 0.0 (0.0) 2.11 (1.90) N/A N/A

Clockwork Component Beliefs Subscale 8.42 (3.26) 3.78 (3.99) 6.23 .026

Complex Systems Component Beliefs
Subscale

6.86 (2.85) 13.0 (5.10) 14.15 .002

Complex Systems Concepts 8.87 (3.45)      17.33 (5.22)    5.10      .040

Discussion
It is important to note that this was an exploratory study into the differences in solving problems about

complex systems phenomena that might exist between novices and experts. Consequently, the results reported here
are provisional and future research is needed with a greater number of subjects and a wider range of age and grade
levels. Also, although the overall number of subjects was small (N = 16), the total number of problem solving
responses (16 x 8 = 128) represents a sufficiently large pool of items from which to establish the internal validity of
the instrument used to assess the component beliefs and models of the subjects. The findings of this study suggest
that there was in fact a differential conceptual structure to the responses constructed by the university students and
the complex systems experts to solve problems dealing with complex and dynamical systems. The experts used
technical complex systems concepts that the students rarely used. This finding was expected, as the scientists who
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participated in this study should have had a much greater background knowledge in this area based on their
advanced graduate training and research experiences where they learned complex systems concepts and
methodologies. In contrast, there would typically be little opportunity for undergraduate students to learn complex
systems concepts such as self-organization, emergence, and so on as these perspectives are not currently part of K –
16 curricula. However, concepts such as evolutionary selection or homeostasis are part of the college and precollege
curricula, yet there was little evidence of these concepts in the student problem solving protocols. This finding is
consistent with a considerable body of research that has documented the “inert knowledge” problem and the
difficulties students have with transferring their acquired knowledge to new problems and new situations (Bereiter &
Scardamalia, 1985; Cognition and Technology Group at Vanderbilt, 1997; Feltovich, Coulson, Spiro, & Dawson-
Saunders, 1992; Gick & Holyoak, 1983; Gick & Holyoak, 1987; Lave, 1988; Perkins, 1992; Salomon & Globerson,
1987; Voss, 1987; Whitehead, 1929).

Another research hypothesis was that there would be a significant difference in the component beliefs used
by the undergraduate students who were complex systems novices and the complex systems experts. As expected,
the undergraduate novices had a higher mean score on Clockwork Component Beliefs scale while the experts had a
higher mean score on the Complex Systems Component Beliefs scale. These differences were in the expected
directions, and analysis of variance indicated these were significant differences. The third hypothesis, which was
also confirmed, was that there would be a significant positive correlation between the higher order complex systems
concepts and the Complex Systems Component Beliefs scale (r = .94) and a negative correlation with the
Clockwork Component Beliefs scale (r = -.64). In particular, the correlation between the Complex Systems
Component Beliefs and the Complex Systems Concepts was quite high, and the significant negative correlation
between the Clockwork Component Beliefs and Complex Systems Concepts was in the anticipated direction. Taken
together, these findings suggest there was a consistent pattern to the component beliefs used by the university
novices and experts when solving problems involving complex systems, but the component beliefs and the higher
order mental models used by these two groups were significantly different.

Implications
Although this study focused on the characteristics of complex systems problem solving, there are

potentially important implications for teaching and learning as well. We are beginning to see interest in infusing
concepts related to complex and dynamical systems into K – 16 curricula. However, the results of this study, and the
theory and related research that have informed it, suggest that students (and many adults) may have difficulty
learning about complex systems if the focus is only on the conceptual level. From the perspective of recent socio-
cognitive theory and research on conceptual change (Chi, 1992; Chi, Slotta, & de Leeuw, 1994; Ferrari & Chi, 1998;
Slotta & Chi, 1996; Vosniadou & Brewer, 1992; Vosniadou & Brewer, 1994), an individual’s particular
epistemological and ontological component beliefs may support or constrain the construction of higher order mental
models that are characteristic of individuals who are competent and experienced in a domain. It follows that that the
learner must have a conceptual ecology or a cognitive complex system that consists of an appropriate set of
epistemological and ontological component beliefs from which to construct the higher order mental models
associated with expertise in a domain. Lacking such conceptual primitives would make it difficult for the learner to
construct new mental models that are qualitatively similar to expert models. This study suggests that the conceptual
ecology employed by the university novices and by the complex systems experts were quite different. As such, a
critical educational challenge for helping students learn about complex systems will be to enrich (not necessarily
replace) the conceptual ecology that learners have available to use when dealing with problems and constructive
learning activities involving complex systems.3 Further research is needed to explore this hypothesis.

Finally, a more general issue relates to why it might be valuable to learn knowledge about complex
systems. An underlying assumption of this program of research has been a vision of the importance of complex
systems concepts and approaches as a means to help foster what might become a new and principled type of
scientific literacy that would help students and adults to understand and to use emerging scientific knowledge to
address issues and problems. The cross-disciplinary concepts and new ways of doing science related to complexity
and complex systems provide an opportunity to present important dimensions of the increasing quantity of scientific
knowledge in an interconnected and coherent manner that is grounded in the natural and social sciences and
cognitive manageable. The applicability of complex systems concepts such as self-organization and selection, and
methodologies such as multi-agent modeling, to a wide range of natural and social phenomena offers a rich palette
for educators to both reach students and to help them learn important scientific knowledge and skills.
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In conclusion, this paper has reported on a study of problem solving differences between scientific experts
in the field of complex systems and novice undergraduate students. Significant differences were found both at the
conceptual level and at the level of basic epistemological and ontological presuppositions and beliefs. It was
suggested that helping students understand and use complex systems knowledge will require attention to issues of
conceptual change and to helping students construct a richer conceptual ecology which embraces both non-reductive
and decentralized thinking, multiple causality, non-linearity, randomness, and so on. It is hoped that this research
might contribute to efforts that are exploring ways for students to acquire a powerful conceptual toolkit based on
emerging scientific and social science research that is robust with respect to analyzing a wide range of problems
from physics and biology to economics and political science. The challenges of the 21st century will certainly
require a citizenry with such skills.

Endnotes
(1) Further a more complete discussion of the theoretical rational for these hypotheses, see Jacobson (1999).

(2) The phrase “component beliefs” is used to refer collectively to epistemological and ontological beliefs in order
to highlight the function of these beliefs as components of higher order mental models a learner constructs in
problem-solving contexts.

(3) There are additional implications of this study that relate to conceptual change and to the nature of knowledge
transfer demonstrated by the experts and how these findings might be used to inform the design of learning
materials and activities intended to help students learn complex systems knowledge. For a discussion, see
Jacobson (1999).
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