Lecture 33

Science, Education \& Gender

Overview

* Public understanding
- Curriculum Development
* Access
- Gender

Public understanding:

* Public Interest \sim policy issues
* Public Interest ~ education
* Public understanding \sim terms \& concepts
* Public understanding ~ scientific inquiry
- Most followed news stories 1990s

News stories 2001

* More recent popular science stories
\checkmark Sequencing of the human genome (16% followed closely)
\square Gas and oil prices
F-Science \& technology account for 2% of public news reading

Survey of public understanding

- More than 70 percent of those interviewed knew that:
\square Oxygen comes from plants.
\square The continents have been moving for millions of years and will continue to move in the future.
\square Light travels faster than sound.
\square The Earth goes around the Sun (and not vice versa).
- All radioactivity is not man-made.
mAbout one-half or fewer of the respondents knew that:
\square The earliest humans did not live at the same time as dinosaurs.
\square It takes the Earth one year to go around the Sun.
\square Electrons are smaller than atoms.
- Antibiotics do not kill viruses
∇ Lasers do not work by focusing sound waves.

Curriculum development:

* Sputnik, 1958, crisis year
* National Science Foundation increased funding for science education
* Developed new curricula

Science programs, 1960s-70s

- BSCS Biology
* PSSC Physics
* Chem Bond \& Chem Study
- MACOS (Man A Course Of Study)
- New Math

Access to science education

* US being overtaken in SE degrees
\square More women in non-US universities
* Increases in women \& URM modest
* Declines in some areas
* Rise in need for remedial education
* Master teacher program in Congress caught in political differences

US population

-1/4 URM--Hispanic, African American, Native American (22\%)

- 50% middle of the next century

Workplace:

- 75% entering will be minorities and women
- 2000, women 47% of workforce
-2000, minorities and immigrants 32% of U.S. jobs

URM in Health Professions

- 10.3% enrollment in medical schools
- 3.5% of health faculty and researchers
- 7% of physicians

F 8% of nurses and physician assistants

- 3% of allied health professionals
- 5% of dentists

URM PhDs in Science and Engineering

- Less than 10% of total
ω AA, less than 2% and declining

Charts

- PhDs in S\&E (\% new PhDs)
* Percent URM PhDs in S\&E, 1991 Doctoral Recipients
* Median Salaries

Women in science

- 40-50\% labor workforce
* 10% and below in science and engineering

Charts

* Graduate enrollment in S\&E
- Full Professors, 1994
* Women in Physics (1990)
- Salaries

Explanation of the numbers:

ω Gender and race stereotyping
-Overt gender and race bias
-Hidden gender and race bias
ω Affirmative action and correction
Affirmative action programs
Test score adjustments
\square Debate over gender balance in schools

Gender and science

-Feminist critique of science emerges in the 1970s
FSchools of thought
\square 1. science is not socially/gender constructed
$\downarrow 2$. some science is socially/gender constructed
\square 3. all science is socially/gender constructed

Examples

- Biology \& medicine
- Caroline Merchant, Death of Nature

Logical positivists

m-Science is not socially/gender constructed
*Sheila Widnall, MIT
\cdots Mary Good, National Science Board

Middle of the road position

m-Some science may be socially/gender constructed
*Anne Fausto-Sterling, Myths of Gender (1985)

- Evelyn Fox Keller, Reflections on Gender and Science (1985)
ω Donna Harraway, Primate Visions (1989)

Social constructionists

m-Science can be no more than the individuals who do science
m-Sandra Harding, The Science Question in Feminism (1986)

PhDs in S\&E (\% new PhDs)

Percent URM PhDs in S\&E

Median Salaries

