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The concepts of size and scale are important to both science and science learning. 
These concepts must be robust if students are to use them to connect their science 
learning, as reform documents suggest. Yet recent research shows that most 
people do not have a firm grasp on size and scale. Improved curriculum, 
instruction, and assessment of size and scale can be guided by a learning 
progression – a characterization of learners’ successively more sophisticated ways 
of thinking about a topic over time. This empirical study uses interviews and card 
tasks with 7th graders through undergraduates to generate a preliminary learning 
progression describing how well and in what order students establish connections 
among four conceptions of size: ordering, grouping, number of times bigger one 
object is than another, and absolute size. Students’ knowledge ranges from 
entirely disconnected to well connected, varying widely within pre-college 
grades. Science course and academic ability are significant predictors of 
connectedness; gender, race, and grade are not. The progression fits 46 of 48 
students in one of two closely related trajectories. The connection between 
number of times bigger one object is than another, and absolute size, is the last to 
be made. Implications for practice are suggested. 

 
 
A paper presented at the annual meeting of the National Association of Research in Science 
Teaching, April 2007, New Orleans, LA. 
 
This research is funded by the National Center for Learning and Teaching in Nanoscale Science 
and Engineering, grant number 0426328, from the National Science Foundation. Any opinions 
expressed in this work are those of the authors and do not necessarily represent those of the 
funder. 
 

 



NARST 2007 Delgado. Students’ Conceptions of Size 
 

 2 

THE DEVELOPMENT OF STUDENTS’ CONCEPTIONS OF SIZE 
 
 

The Importance of Size and Scale 
In Scientific Theory 
 
Greek atomism was the most influential ancient theory “to account for the apparent order and 
regularity found in the world” (Berryman, 2004) without resorting to teleological or theological 
explanations (Berryman, 2005). Atomism was revived in the seventeenth century to explain the 
natural world, although there was no empirical evidence for the theory at that time and atoms lay 
“far beyond the domain of observation”  (Chalmers, 2005).  By the nineteenth century, “the fact 
that the properties of chemical compounds are due to an atomic structure that can be represented 
by a structural formulae [sic] was beyond dispute” (Chalmers, 2005). In the twentieth century, 
empirical investigation of the atomic nature of matter finally vindicated aspects of the ancient 
Greek theory. According to Thomas Kuhn,  
 

only the civilizations that descend from Hellenic Greece have possessed more 
than the most rudimentary science. The bulk of scientific knowledge is a product 
of Europe in the last four centuries. No other place and time has supported the 
very special communities from which scientific productivity comes. (1996/1962, 
p. 168) 

 
Today, the central importance of atomic theory to science is well established. In Feynman’s 
words: 
 

If, in some cataclysm, all scientific knowledge were to be destroyed, and only one 
sentence passed on to the next generation of creatures, what statement would 
contain the most information in the fewest words? I believe it is the atomic 
hypothesis (or atomic fact, or whatever you wish to call it) that all things are 
made of atoms - little particles that move around in perpetual motion, attracting 
each other when they are a little distance apart, but repelling upon being 
squeezed into one another. In that one sentence you will see an enormous amount 
of information about the world, if just a little imagination and thinking are 
applied. (1963, I, 1-2) 

  
Just as the concept of the atom is central to science, size is an essential attribute of the atom. In 
Democritus’ atomistic theory, the only perceptible qualities in atoms are size, shape, and perhaps 
weight (Berryman, 2004). When atomism was revived in the seventeenth century, atoms “were 
characterized in terms of just a few basic properties, their shape, size and motion.” (Chalmers, 
2005). Twentieth-century quantum theory problematized the very concept of the size of an atom. 
Central to quantum theory is the idea that electrons behave simultaneously like waves and 
particles. Waves continue indefinitely, thus having no clear size. The probabilistic nature of the 
size of an atom and other objects is a novel and essential feature of quantum theory. Thus, size is 
a central element of arguably the most important scientific theoretical construct – the atom. 
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In Scientific Practice 
 
While theory is important in science, empirical investigation is also key, and here, too, size is 
important. Size and shape are directly observable properties of objects. The history of science is, 
to a large degree, the history of the development of tools that allow us to explore and observe 
objects too small, too large, or too distant to see with earlier tools. Kuhn notes that one 
mechanism for the resolution of scientific crises is for the problem to be set aside for future 
generations with the necessary tools to solve it (1996/1962). 
  
In the application of scientific knowledge, scale is a paramount consideration. Objects or 
organisms of different sizes behave differently, even if scaled up faithfully. As Haldane (1928) 
points out, a thousand-yard vertical fall that barely shocks a mouse will kill a rat, break a man, 
and practically liquefy a horse. According to Bazant (2002),  
 

Scaling is the quintessential aspect of every physical theory. If scaling is not 
understood, the theory itself is not understood. So it is not surprising that the 
question of scaling has occupied a central position in many problems of physics 
and engineering…In solid mechanics, the scaling problem of main interest is the 
effect of the size of structure on its strength. This problem is very old…Its 
discussion started in the Renaissance. (p. 1) 

 
In Scientific Disciplines 
 
In specific disciplines of science, the importance of size and scale is clear, too. In astronomy, the 
distances and sizes of celestial objects are so great that they are nearly beyond human 
comprehension. In biology, the maximum size of a cell is limited partially by the rate at which 
diffusion can allow nutrients in and waste products out. In biochemistry, the proofreading 
mechanisms of translation, whereby the genetic code of DNA is used in the synthesis of proteins 
via RNA, depend largely on the size and shape of amino acid side chains. In chemistry, many 
phenomena can described and explained using macro-level variables such as pressure or 
temperature, as well as using atomic-level constructs such as elastic collisions between atoms or 
molecules, or the velocity of these particles.  
 
As new fields of science and technology emerge, science instruction and curriculum materials 
need to change accordingly. One such emerging field is nanoscale science and technology 
(Gilbert, De Jong, Justi, Treagust, & Van Driel, 2002, p. 395). The nanoscale is defined by the 
size of the objects it studies, between one and 100 billionths of a meter in one or more 
dimensions. Objects at this scale behave differently than both the bulk (macro-level) materials 
we are accustomed to, and smaller, atomic-sized objects. The greatly increased surface area-to-
volume ratio of nanoscale objects – a size-dependent quantity – is responsible for many of the 
interesting properties and behaviors of these objects. New forms of microscopy allow scientists 
and engineers to study and manipulate matter at this scale, with important applications for 
materials science, information technology, medicine, and consumer products. Nanotechnology is 
expected to generate one trillion dollars in yearly revenues within a decade (Roco, 2005). The 
US is presently a world leader in this emerging field. A “firm grasp on size and scale [is] a 
prerequisite for any further inquiry into nanoscale science and engineering” (Waldron, Sheppard, 
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Spencer, & Batt, 2005, p. 375). Thus, one motive for researching student conceptions of size and 
scale is to inform the introduction of nanoscience topics to the curriculum, in order to promote 
the economic competitiveness of the US, and in order to help educate future citizens that are 
scientifically literate and able to work and make informed decisions in an increasingly high-tech 
world. 
 
In Scientific Learning 
 
Conceptually, size and scale are fundamental. They constitute a cognitive framework that helps 
us make sense of scientific and everyday phenomena. Scale is an important “common theme” 
that can link student understandings across topics, disciplines, and grade levels (American 
Association for the Advancement of Science [AAAS], 1993, Ch. 11). Common themes are ideas 
that “pervade science, mathematics, and technology and appear over and over again…They are 
ideas that transcend disciplinary boundaries and prove fruitful in explanation, in theory, in 
observation, and in design.” (AAAS, 1989, cited in AAAS, 1993, Ch. 11). These common 
themes, including scale, are ways of thinking rather than content to be taught (AAAS, 1993, Ch. 
11). Common themes can bring coherence and continuity to the American science curriculum, 
helping learners structure their knowledge (AAAS, 1993; Tretter, Jones, Andre, Negishi, & 
Minogue, 2006), consistent with a reform vision of education (as embodied by National 
Research Council [NRC], 1996, 1999; AAAS, 1993). Size is intimately related to scale: large 
variations in the magnitude of scientific variables such as size, distance, weight, and temperature 
are a “starting point for the idea of changes of scale” (AAAS, 1993, Ch. 15). (See Appendix A 
for definitions of size and scale-related concepts created by a team of expert scientists and 
educators.) 
 
The National Science Education Standards (NSES) state that unifying concepts and processes 
“unify science disciplines and provide students with powerful ideas to help them understand the 
natural world.” (NRC, 1996). These unifying concepts include measurement, which is closely 
related to size and scale.  
 
The Principles and Standards for School Mathematics (National Council of Teachers of 
Mathematics [NCTM], 2000/1989) identify measurement as one of six strands describing content 
students should learn in K-12th grade. These standards also emphasize the need for 
interconnections among math topics: “When students can connect mathematical ideas, their 
understanding is deeper and more lasting.” (p. 63). The math standards also point to the need to 
connect mathematics with other fields of knowledge. In a similar vein, the Benchmarks identify 
mathematics as an essential tool of science (AAAS, 1993). 
 
In summary, the main standards documents in science and mathematics point to the need for 
unifying concepts – such as scale and the related concepts of size and measurement – that can 
create connections in curriculum as well as in students’ minds, creating a more robust type of 
knowledge. This idea is congruent with current conceptions of how people learn (e.g., NRC, 
1999).  
 
However, current curriculum and instruction may not be successfully addressing size and scale, 
for science education research has identified many areas of conceptual difficulty for learners that 
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are related to size and scale. In Chemistry, research has documented “levels confusion” 
(Wilensky & Resnick, 1999), where students attribute macro-level changes to atoms or 
molecules. For instance, students may state that during a phase change, atoms melt, or during 
thermal expansion, atoms get bigger. In the context of geography, incomplete understanding of 
scale leads to confusion about localization on a map (Montello & Golledge, 1998). Recent 
research directly concerning students’ and adults knowledge of the size of objects has similarly 
shown that a paucity of accurate knowledge (Tretter, 2004; Tretter, Jones, Andre, et al., 2006; 
Tretter, Jones, & Minogue, 2006; Waldron et al., 2005; Castellini et al., 2007; Waldron, Spencer, 
& Batt, 2006).  
   

Teaching Size and Scale: The Need for a Learning Progression 
  
The US science and math curriculum has been characterized as being  a mile wide but an inch 
thick (Schmidt, McKnight, & Raizen, 1997). What typically results from such a curriculum is not 
robust, connected knowledge but a “splintered vision” (Schmidt et al., 1997). Focusing on size 
and scale, and other “common themes” (AAAS, 1993) or “unifying concepts and processes” 
(NRC, 1996) in science education, can help address the fragmentation of knowledge. By 
explicitly making salient the links between topics and disciplines over years of school 
instruction, curriculum and assessment is more likely to foster connections in the mind of the 
learner.  
 
A coherent, multi-year instructional plan for size and scale will need to take into account the 
prior knowledge and preparedness of students at different points in time. Instruction cannot be 
guided solely by experts’ determination of a content-oriented logical sequence, for experts are 
likely to have forgotten the conceptual challenges and difficulties they encountered as learners 
(NRC, 1999). Empirical research can guide the development of “learning progressions” (Smith, 
Wiser, Anderson, Krajcik, & Coppola, 2004; NRC, 2007), which are “descriptions of the 
successively more sophisticated ways of thinking about a topic that can follow one another as 
children learn about and investigate a topic over a broad span of time (e.g., 6 to 8 years).” (NRC, 
2007, p. 214).  
 
One of the goals of the National Science Foundation-funded National Center for Learning and 
Teaching Nanoscale Science and Engineering (NCLT) is to suggest ways of incorporating 
appropriate nanoscale science concepts into the 7-12th grade curriculum. A learning progression 
for size and scale can guide these efforts. However, there is little research into how people 
understand the concepts of size and scale (Tretter, Jones, Andre, et al., 2006, p. 283). The AAAS 
Benchmarks (1993) include supporting research literature for many topics, but not for the 
common theme of scale or the related concept of size. Recent research into size and scale (e.g., 
Tretter, 2004; Tretter, Jones, Andre, et al,. 2006; Tretter, Jones, & Minogue, 2006; Waldron et 
al., 2005; Castellini et al., 2007; Waldron et al., 2006), begins to address this research gap, but 
more work needs to be done. The current paper describes our efforts to augment the research 
base on size and scale, and proposes a learning progression for size, to be further elaborated by 
future analyses and studies. 
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Literature Review 

Survey-Based Studies 
 
Several recently-published papers present the findings of surveys focused entirely or partially on 
size and scale. The survey format allows for large numbers of participants but precludes 
clarifications about prompts and the extensive, individualized probing that the interview format 
affords.  
 
Castellini and colleagues (2007) report on a survey of nearly 500 people of ages seven to 91, 
focused on understanding of nanotechnology but including some items on size and scale. 
Responding about the smallest object they could think of, more than two-thirds of the 2nd-5th 
graders mentioned a small but macroscopic object, that is, an object visible to the naked eye, or a 
nonsensical item. By middle school, fewer than 20% of 6th-8th graders mentioned macroscopic or 
nonsense items, and nearly 60% mentioned the atom. Surprisingly, early high school students 
(9th-10th graders) had poorer responses than the middle schoolers. Early high schoolers had half 
again more macroscopic or nonsense replies than middle school students; only around one-third 
mentioned the atom. Around 12% of early high school students mentioned sub-atomic particles, 
while next to no middle schoolers did. Older high school students had better responses, with 
around 14% macroscopic or nonsense answers, and over 30% mentioned subatomic particles. 
College-educated adults fared best of all groups, with only around 10% macroscopic/nonsense 
answers and over 40% responding with subatomic particles. High school-educated adults 
performed quite poorly: around 10% answered with a microscopic object, with the rest about 
equally divided between the atom and macroscopic/nonsense answers, and no mention of 
subatomic particles. Perhaps the most noteworthy finding are that most pre-middle school 
students have trouble thinking of objects too small to see with the unaided eye; a dip in 
performance from middle school to early high school; and the poor performance of high school-
educated adults, better only than that of elementary students. Additional questions asked the 
respondents to rank by size four objects too small to be seen, and four small, visible objects. 
Only 7% correctly ordered the atom, water molecule, bacterium, and cell, while 45% correctly 
ordered housefly, dust, eyelash, and grain of salt. From our own experience interviewing 
students (see below), where we had to clarify respondents’ doubts about a head of a pin, it seems 
possible that the difficulty in distinguishing some of the items (e.g., bacterium and cell) and the 
ambiguity of others (e.g., “dust”, or the dimension to be considered for the eyelash), may have 
affected student performance on the tasks. The survey shows, however, that people are better at 
ordering macroscopic objects than objects too small to see. 
 
Waldron and colleagues (2006) surveyed 1500 respondents from ages six to 74, also about 
nanotechnology and including some items on size and scale. This survey also asked respondents 
to name the smallest object they could think of. The age ranges and coding categories used for 
analysis differ from those of the Castellini survey (Castellini et al., 2007) , making direct 
comparison difficult, although the overall trends seem similar. The percentage of macroscopic 
responses descends from a high of over 70% for under-eight year olds, to less than 30% for 
adults 18-22 years old. Other adult age groups varied between 25 and 50% of macroscopic 
responses. Respondents were also asked to rank three objects by size: atom, molecule, and germ, 
as well as three units of measure: millimeter, micrometer, and nanometer. Across all ages, 
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respondents were more successful at ordering units of measure than objects, although children 
under 11 had difficulty with both. Success rates are reported only for 11-13 year olds on the 
object-ordering task (15%, which is around chance for three items), and the authors note that 
adults had trouble with the task as well. 
 
Tretter and colleagues (Tretter, Jones, Andre, et al., 2006) explored how people from grades 5 
through doctoral students organize objects into categories by size. Participants from grade 5-9 
were 76% white, with 10-35% qualifying for free or reduced lunch. Participants in the 12th grade 
were elite students, 63% of whom were white. The procedure included a survey instrument as 
well as interviews (discussed in the next section), in which the participants assigned 26 objects to 
predetermined classes, such as ‘between 10 m and 100 m’ or ‘between 1000 and 1 million m’. 
These objects ranged from subatomic particles to galactic distances. That study analyzed the 
results from the survey in two ways, in both cases using aggregate data averaged over all the 
participants of a given educational grade or level. The first procedure paid attention to the size 
categories into which the participants had placed the objects, yielding an ‘absolute’ size. The 
second procedure focused on the order in which students had organized the objects, yielding the 
‘relative’ ranking. Younger groups displayed lower accuracy and greater variance than older, 
more expert groups. The youngest students tended to rank small macroscopic objects as being 
smaller than atoms, viruses, and cells (in concordance with the survey studies mentioned above). 
Relative rankings were more accurate than absolute rankings across all groups. This means that 
participants found it easier to say that the distance from Los Angeles to New York is smaller 
than the distance from Earth to the moon, than to correctly assign these distances to a 
measurement range. This finding is consistent with many research studies showing that relative 
quantities are more accessible to learners than absolute (e.g., Vasilyeva & Huttenlocher, 2004; 
Bryant, 1974, cited in Markovits & Hershkowitz; Trend, 2001; Dahl, Anderson, & Libarkin, 
2005; Graham, Ernhart, Craft & Berman, 1964).  
 
Interview-based Studies 
 
Tretter and colleagues (Tretter, Jones, Andre, et al., 2006) also conducted interviews to 
determine what types of experiences students drew upon in learning about size and scale. Experts 
referred to more formal, specific experiences in work or school, with generic descriptions of 
informal experiences more common as age decreased. These experiences fell along two 
dimensions: visual to kinesthetic, and holistic to sequential. This study also included a card sort 
task in which participants were asked to arrange 31 cards portraying objects again covering a 
huge range of sizes, into groups (as many as they decided were necessary), and later asked to 
explain the reasoning behind their groups. The data were again aggregated. All groups used the 
human body as a reference size, and older, more expert people categorized objects into larger 
numbers of groups; room size and field size were two other landmark objects that distinguished 
size ranges. Younger students tended to group small visible objects together with microscopic 
and nanoscopic objects. The authors suggest that the landmark objects (body, room field, etc.). 
“may serve as useful prototypes for students to use to anchor conceptions of spatial scale across a 
spectrum of sizes.” (p. 210). 
 
The same population as in the study above was interviewed and surveyed to determine accuracy 
of spatial scale conceptions (Tretter, Jones, & Minogue, 2006). The survey asked participants to 



NARST 2007 Delgado. Students’ Conceptions of Size 
 

 8 

name objects of sizes ranging from 1 nanometer to 1 billion meters, and from one-billionth to 
one billion times body length. The sizes differed by factors of 10 near body size, and by factors 
of a thousand at sizes farther from human size. Responses were coded as acceptable if they were 
within an order of magnitude of the correct size; other categories distinguished between answers 
10-100, 100-1000, and over 1000 times too large or small. The study found that all age groups 
had good performance on a central range of sizes near human size, accuracy on large 
objects/distances declined smoothly as size increased, but accuracy dropped precipitously at the 
micron range. Younger students had a smaller range with good accuracy, and experts had better 
accuracy for nm-sized objects than for micron-sized ones. Except for experts, respondents tended 
to provide objects that were much too small when asked for large objects/distances, and objects 
too large when asked for very small items. Elementary students preferred thinking in meters due 
to the perception that body size changes; experts and seniors preferred the metric system due to 
familiarity with the units. Middle and high school students preferred thinking in terms of the 
body. Experts divided the scale of sizes into “worlds” distinguished by benchmark objects such 
as atom or Earth, or by units, or by tools used to visualize at that scale. These worlds were 
largely disconnected from each other and from everyday objects. Experts also used a “unitizing” 
strategy, redefining distances into more convenient units or in terms of benchmark objects. 
 
Areas Unaddressed by the Research Base 
 
The four papers outlined above include a variety of tasks assessing size and scale skills. 
Determining relative size, or ranking objects (or assigning them to ranked categories) by size 
corresponds to what in this paper is called ordering. Stating the smallest object one can think of 
implicitly requires ordering as well. Ordering skills are assessed in the studies by Castellini and 
colleagues (2007) and Waldron and colleagues (2006), where both surveys ask for the smallest 
object and include ranking tasks of three or four objects, which were either all macroscopic or 
submacroscopic (too small to see with the naked eye). The survey by Tretter and colleagues 
(Tretter, Jones, Andre, et al., 2006) has respondents order 26 objects, including macroscopic and 
submacroscopic objects, by placing them into ranked size categories. However, this task allowed 
respondents to place multiple objects into a single category, with no mechanism for tie-breaking. 
Thus, research about learners’ ability to unambiguously order multiple objects including 
macroscopic and submacroscopic objects, would be informative.  
 
Grouping was assessed by Tretter and colleagues (Tretter, Jones, & Minogue, 2006) using 31 
cards depicting objects of a large range of sizes. Using two different tasks with different cards 
for grouping and ordering, and aggregating data, does not allow investigation of an interesting 
question: Do learners of different ages order and group objects in a consistent fashion? In other 
words, once a person has ordered the objects, does she make logical groups that maintain the 
original order, or does she place non-adjacently ranked objects into one group? An experimental 
design investigating grouping and ordering skills with the same objects, in linked tasks, might 
shed light not only on the two skills but on the degree of connection between the two that 
students display. 
 
Absolute size tasks involve assigning a size to an object (using a number and measurement units, 
e.g., 1 nm), or conversely, coming up with objects of a given size. Both studies by Tretter and 
colleagues (Tretter, Jones, Andre, et al., 2006 and Tretter, Jones, & Minogue, 2006) assess 
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absolute size, by placement of given objects into size ranges or asking for objects for given size 
ranges. Investigating what sizes learners assign to objects, rather than a size range, would seem a 
promising research direction. Another interesting research question would be to see if students in 
fact assign larger sizes to objects they had previously ranked larger. 
 
A further way of thinking about size is not addressed by any of the above studies, namely, how 
many times larger or smaller one object is than another. As will be explained below, our study 
assesses respondent knowledge of size and scale through four distinct but linked tasks, each 
assessing one of these conceptions of size. The design allows us to investigate whether 
individual learners’ responses are self-consistent and connected. The connection between 
conceptions of size is precisely the focus of this study.  
 
Previous research did not examine differences in size and scale accuracy or performance by race, 
gender, or ability, only by age or grade range. Harding (1998), Keller (1987/1999), Lemke 
(1990) and others have argued that traditional methods of instruction of science tend to privilege 
middle-class, white, male, mainstream students. Thus, it is important to examine possible 
differences between demographic segments. In examining a racially and ethnically diverse, low- 
to mid-SES sample, our study begins to examine the question of cultural differences in cognition 
about size and scale.  
 
The present study thus builds upon the research base in various ways: by studying a population 
with different demographics, focusing on individual rather than aggregate data, investigating an 
additional way of conceptualizing size and scale, and studying how students link different 
conceptions of size. By examining if, when, and how learners of different grades, gender, 
abilities, and race/ethnicities link and use different conceptions of size, our study begins to trace 
an empirically-derived learning progression for size and scale.  
    

Theoretical Framework: Conceptions of Size 
 
As mentioned above, four ways of thinking about size are studied. Particularly, the connection 
between pairs of conceptions is analyzed. The four conceptions, and their basis in the literature, 
are described below. 
 
Ordering 
 
Ordering involves creating a sequence of objects by size, from largest to smallest, e.g.,  
A < B < C < D < E < F < G < H < I < J. The NCTM Principles and Standards state that young 
students should be able to “recognize the attributes of length, volume…compare and order 
objects according to these attributes” (NCTM, 2000/1989. Pre-K–2 Expectations - 
Measurement). The Benchmarks for Science Literacy (AAAS, 1993) similarly state that “By the 
end of the 2nd grade, students should be able to use whole numbers and simple, everyday 
fractions in ordering, counting, identifying, measuring, and describing things and experiences”. 
(Habits of Mind, K-2, B). In a similar vein, Wiedtke (1990) states that, for young children, 
“Sorting activities can be used at the intuitive level to define length as a characteristic of an 
object.” (p. 231), and notes that the ability to make comparisons is a prerequisite to 
measurement. Wiedtke suggests that this is developmentally the first size ability to develop: 
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“Many children may see no need to learn these [measurement] ideas. Measurement tasks may no 
be part of their out-of-the-classroom experiences…big suffices whenever comparisons are to be 
made” (1990, p. 230).  
 
 
Grouping  
 
This conception of size involves placing objects of similar size into groups, with successive 
groups containing objects of distinct size ranges: {A, B, C} < {D, E} < {F, G} < {H, I, J}. The 
Principles and Standards state that young children should be able to “sort and classify objects 
according to their attributes” (NCTM, 2000/1989. Pre-K–2 Expectations - Data Analysis & 
Probability). The Benchmarks state that “In the earliest grades, students make observations, 
collect and sort things…” (AAAS, 1993, Nature of Mathematics, K-2, B).  
  
Number of Times Bigger or Smaller 
 
This conception involves the comparison of two objects, making it a relative measure, yet it also 
uses numbers to quantify the degree to which one object is larger than another, e.g., “Object C is 
1000 times smaller than object E.” This size skill is related to measurement: “The measurement 
process is identical, in principle, for measuring any attribute: ‘choose a unit, compare that unit to 
the object, and report the number of units.’” (NCTM, 2000/1989, p. 104). In this case, the unit is 
another object. Similarly, Wiedtke states that “It is helpful to think of something continuous as 
being made up of small, equal-sized discrete parts, or units, that can be put together to 
reconstruct the original quantity.” (1990, p. 229), and suggests activities using body parts and 
non-standard units to help the child develop the notion of a unit. Experts employ this conception 
of size when they “unitize” (Tretter, Jones, & Minogue, 2006) – redefining sizes in terms of 
convenient units or benchmark objects. 
 
Absolute Size 
 
This way of thinking about size involves reporting the size of an object in terms of a 
conventionally defined unit, such as meters or inches, and a number, e.g., “Object B is 2.3 nm in 
length”. Thus, absolute size is a special case of the relative but quantitative size conception 
identified above, number of times bigger or smaller, in which an object is compared to 
conventionally-defined lengths (for instance, a platinum-iridium alloy bar kept in Paris, or 
wavelengths of orange-red light, in a vacuum, produced by burning the element Kr-86, or strips 
of wood ultimately tracing their calibration to one of these standards). Rather than iteratively 
placing the unit end-to-end along the object to be measured, we can read a calibrated instrument 
that simplifies the counting for us (Wiedtke, 1990, p. 230). 
 
Expert Knowledge of Size Involves the Four Conceptions 
 
An expert’s knowledge of the size of an object must include solid understandings in terms of the 
four conceptions described above. For instance, in characterizing the size of a red blood cell, an 
expert scientist would be expected to know not only that its diameter is around 7 µm (absolute 
size), but also be able to contextualize this size measurement. The expert should know that the 
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diameter of a blood cell is about twenty times too small to resolve with the naked eye, about 10 
times larger than the typical unicellular organism, and around 5 orders of magnitude  or 100,000 
times larger than an atom (number of times bigger or smaller). Given other objects, the expert 
should be able to say where the red blood cell fits in terms of size, for instance, ranking it larger 
than an atom, a water molecule, or a mitochondrion, but smaller than a dust mite or pollen 
(ordering). The expert should also be able to form logical groups of similarly-sized objects, in 
the example above atom and water molecule, mitochondrion and red blood cell, and dust mite 
and pollen (grouping). These groups are logical because the relative size differences between 
objects in a given group are much smaller than those between groups. If macroscopic objects are 
included, then another logical way to group by size might be to place all the submacroscopic 
objects into a single group, and the macroscopic objects in another. Additional facets of expert 
knowledge not examined in this paper might include the tools used to study each object (e.g., 
magnifying glass, optical microscope, electron microscope) and the size range as identified by 
the SI unit that most conveniently can be used to express its size (Tretter, Jones, & Minogue, 
2006). 
  
Connections Between Conceptions of Size and Scale 
 
For a “common theme” (AAAS, 1993) such as scale to be used by learners to create more robust, 
connected knowledge, the construct itself must be robust and connected. For this study, we 
created four distinct tasks using the same set of cards depicting macroscopic and submacroscopic 
objects, each task aimed at one conception of size. Our tasks placed few constraints on the 
respondent compared to prior research. For instance, rather than separating macroscopic and 
submacroscopic objects to be ordered, we used both types in a single task that allowed for direct 
ordering (as compared to possible placement of multiple objects in a single size range). Rather 
than providing size ranges into which objects ought to be placed, we asked students to assign a 
size to each object. This approach, structured mainly by the respondent, allows unexpected 
answers to emerge (Ambert, Adler, Adler, & Detzner, 1995). For instance, a child who believes 
that objects can have sizes described by negative numbers, will not be able to resort to these in a 
task with preexisting size ranges (if the ranges don’t include negative sizes), but will be able to 
do so if simply asked to provide a size for an object. By using the same cards for distinct tasks, 
we allow students to be inconsistent between answers, whereas prior research has had a single 
task for absolute size and ordering, and a separate task for grouping. 
 
 Ordering-Grouping.  
 
If properly constructed, two tasks that probe a respondent’s ability to order and group, 
respectively, can be used to measure three things: how well she orders, how well she groups, and 
whether her responses to the two tasks are connected, or logically consistent. To illustrate this 
point, consider a student who orders and groups six objects by size as shown below, where the 
size dimension of interest is clearly pointed out to her: the height of an average adult male 
human (1.8 m); the diameter of a baseball (7 cm); the height of a 4-story building (12 m); the 
length of a typical credit card (8 cm); the length of a typical school bus (10 m); and the height of 
a typical house door (2.4 m).  (The sizes are provided to the reader for the sake of concreteness, 
but not given to the student.)  
 



NARST 2007 Delgado. Students’ Conceptions of Size 
 

 12 

 
(1) baseball < credit card < human < door < bus < building.  
 
 {baseball, credit card} {human, door} {bus, building}. 
 
The ordering is correct. This grouping places objects whose sizes are within around 20% of each 
other into the same group, and objects outside of that size differential in a different group, thus 
relating to the number of times bigger or smaller. This order also places objects with sizes in the 
tens of meters in one group, in the units of meters in another, and in fractions of meters in a third 
group, thus relating to absolute size.  
 
Both ordering and grouping rely on having specific factual knowledge of or experience with the 
objects. However, the connection between ordering and grouping can be assessed in a manner 
that is nearly content-independent. Imagine that a second student orders and groups as follows: 
  
(2) credit card < baseball < human < door < building < bus 
 
 {credit card, baseball} {human, door} {building, bus} 
 
The student’s ordering is wrong because the credit card (8 cm) and baseball (7 cm) are reversed, 
as are the building (12 m) and bus (10 m). The grouping is however still reasonable, placing 
similarly sized objects together, and separate from those of  much larger or smaller size . 
Furthermore, the grouping respects the initial ordering, with one group for the two smallest 
objects, one for the two largest, and one for the two middle objects. 
 
Now consider a third student who for some reason orders and groups like this: 
 
(3) bus < baseball < credit card < door < building < human 
 
 {bus, baseball} {credit card, door, building} {human} 
 
Clearly, both the ordering and grouping are wrong. However, the ordering and grouping are 
consistent, maintaining the order he established. Even though the ordering itself is wrong, the 
grouping and ordering are linked, as the grouping includes the two objects the student ranked 
smallest, the three objects ranked next largest, and the object ranked largest of all in a group of 
its own. Note that the consistency of grouping and ordering is independent of factual knowledge 
about the actual size of the objects. This consideration becomes important when asking 
respondents to work with objects they do not have direct experience with, such as 
submacroscopic objects. 
 
An example of inconsistent ordering and grouping is shown below: 
 
(4) baseball < credit card < human < door < bus < building 
 
 {baseball, credit card} {human, door, building} {bus} 
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Since the student ranked building larger than bus, and door smaller than bus, any group that 
contains door and building should logically include bus. Thus, the grouping does not respect the 
order imposed by the student and the answers are inconsistent.  
 
It is this consistency between linked tasks that this paper investigates, a consistency that 
corresponds to connections between conceptions of size. Even though the order and groups 
established by student 3 are factually wrong, even outlandish, the grouping respects the order the 
student established. For the focus of this paper, this student’s answers are ‘better’ than those of 
student 4, whose grouping is inconsistent with ordering even though the ordering is correct and 
the grouping nearly so. 
 
Similar connections between other sets of two conceptions of size can be evaluated, as explained 
below. 
 
 Ordering – Number of Times Bigger or Smaller 
 
The connection between ordering and the number of times bigger or smaller one object is 
compared to another can also be assessed independently of content knowledge about the actual 
size of objects. Continuing with the scenario above, consider a subset of the items: baseball, 
human, and school bus. The human (height: 1.8 m) is about 25 times bigger than the baseball 
(diameter: 7 cm), for the dimensions of interest. The school bus (length: 10 m) is around 140 
times bigger than the baseball. These numbers can be determined based on an estimate of relative 
size, or from the absolute sizes of the objects. However, the relationship between these two ratios 
of sizes is determined by the ordering of the three objects: the bus is a larger number of times 
bigger compared to the baseball than the human is. A student who correctly ordered the objects 
and who estimates (incorrectly) that the human is 100 times bigger than a baseball, must say that 
the bus is more than 100 times bigger than the baseball, to be consistent with his ordering.  
 
(5) baseball < human < bus 
    100 
   >100 
    
This consistency is independent of the actual accuracy of ordering or number of times bigger or 
smaller. Student 6 (below) has ordered the objects incorrectly and estimated unreasonable 
numbers of times bigger, yet has consistent ordering and number of times bigger: 
 
(6)        bus < baseball <  human 
    2 
   3 
    
 
 Ordering-Absolute Size 
 
Similarly, the absolute size of objects should reflect the order in which the objects were ranked. 
Student 7 below will have to assign a size larger than 50 cm for his answers to be consistent with 
the order.  
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(7) 1 cm       50 cm   >50 cm 
 baseball < human < bus 
 
The consistency of ordering and absolute size can be evaluated independently of the accuracy of 
ordering or of the sizes. Student 8 below has consistent ordering and absolute sizes despite errors 
in both ordering and sizes, because she has assigned larger sizes to objects ranked larger: 
 
(8)  1 cm  200 m       3 km 
 bus < baseball <  human 
  
 Number of Times Bigger or Smaller - Absolute Size 
 
The fourth type of content-independent connection is between number of times bigger or smaller 
and absolute size. Both of these conceptions of size stem from the definition of measurement, 
differing only in terms of the unit used (another object, or a conventional measurement unit). 
Thus, the two are logically linked – given one size and the number of times bigger or smaller, the 
second size can be calculated unambiguously, a matter of ratios and proportions. Student 9’s 
responses below are factually inaccurate, but consistent, as the sizes given for two objects (e.g., 
baseball 10 cm, human 1000 cm) reflect a hundred-fold size difference, consistent with the 
number of times bigger response. 
    
(9)  10 cm    1000 cm   5000 cm 
 baseball < human < bus 
    100 
   500 
 
  
In contrast, Student 10’s responses below are not consistent, since 140 cm is not 50 times bigger 
than 7 cm, and 7 m is not 500 times bigger than 7 cm. Thus, even though these assigned sizes are 
more accurate than Student 9’s above, the responses are disconnected. 
 
(10) 7 cm     140 cm    7 m 
 baseball < human < bus 
    50 
   500 
  
 
 Figure 1 below shows the possible connections among pairs of conceptions of size. The 
connection between grouping and absolute size is not investigated in this paper (indicated by the 
arrow labeled V), as it depends on specific content knowledge about the size of the objects; 
neither is the connection between grouping and number of times bigger or smaller (the arrow 
labeled VI). 
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Figure 1. Connections between conceptions of size. 
 
Development of Students’ Conceptions of Size 
 
The developmental trajectory that students might follow in establishing a robust conception of 
size is only partly addressed by the literature, leaving much to investigate empirically, 
particularly regarding the connection between conceptions of size.  
 
Regarding individual conceptions of size, the NCTM Principles and Standards  (2000/1989) 
suggest that ordering might be the first size skill children develop: 
 

 
Recognizing that objects have attributes that are measurable is the first step in the 
study of measurement. Children in prekindergarten through grade 2 begin by 
comparing and ordering objects using language such as longer and shorter. 
Length should be the focus in this grade band… (p. 45). 

 
Classification into groups by a continuous variable requires some (possibly implicit) 
consideration of relative size differences, or absolute sizes, and should thus be more difficult 
than ordering. Number of times bigger or smaller is determined using the same procedure as 
absolute size, except that one object is compared to another. How many times bigger one object 
is than another thus requires quantitative thinking but does not resort to units of measurement. 
Thus, number of times bigger or smaller may be an important link from the earlier, more 
qualitative ways of conceptualizing size (grouping and ordering) to absolute size. In keeping 
with this idea, the NCTM document urges the use of invented units before introducing 
conventional units. Measuring one object in terms of another, as invented units do, is employing 
the times bigger or smaller conception of size.  

ORDERING GROUPING 

TIMES 
BIGGER/ 
SMALLER 

ABSOLUTE 
SIZE 

I 

III 
II 

IV 

V 
VI 
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As for connections between conceptions of size, it is not clear which set of conceptions 
(exemplified by the arrows in figure 1) should develop first. Perhaps ordering and grouping, 
being the earlier skills, are connected first. Number of times bigger or smaller, and absolute size, 
being more advanced skills, may be the most difficult to connect. The connection between these 
two conceptions of size is a matter of ratios and proportions, a notoriously difficult topic in the 
middle school math curriculum. 
 

Research Questions 
 
This paper seeks to answer the following research questions: 
 
How well, when, and in what order do students through experts link the four conceptions 
of size? What differences do students of different races, genders, science classes, and 
abilities show in their connections between conceptions of size? 
 
 

Methods 
Participants 
 
In this study, we individually interviewed and conducted card tasks with students in a diverse 
public middle school and a diverse public high school in a small, working class city near a mid-
western college town. We interviewed and recorded 42 male and female middle and high school 
students of a mix of races/ethnicities and abilities, as shown in Tables 1, 2 and 3 below. We also 
interviewed six undergraduates at a selective, public, midwestern research university. 
 
Table 1 
Participants by Grade Level 
 
Grade 7th 9th 10th 11th Undergrad Total 

N 8 11 7 16 6 48 
 
The ethnicity/race of the participants roughly mirror the demographic mix of the schools, 
including roughly 50% African Americans, with the balance European Americans, Middle 
Eastern Americans, Hispanic Americans, and some recent immigrants from around the world. 
 
Interviews that were more than slightly incomplete due to time constraints, or in which the 
interview protocol was not followed, were not included in the analysis. We used stratified 
purposeful sampling (Patton, 2002) in order to obtain results that both generalize to some degree, 
and shed light on differences by gender, race/ethnicity, and academic ability level (as determined 
in holistic fashion by their current science teacher). We did not interview any 8th or 12th graders 
due to logistical constraints. 
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Table 2 
Academic Ability and Race/Ethnicity by Grade, Pre-College Respondents 
 

Student Grade Ability White non-Hispanic Non-White, Hispanic, 
Other 

Total N by Ability 

7th low 1 3 4 
 mid 1  1 
 high 3  3 

7th total N by 
race/ethnicity 

 5 3 8 

     
9th low 2 4 6 
 mid 1 1 2 
 high  2 2 

9th otal N by 
race/ethnicity 

 3 7 10 

     
10th low  1 1 

 mid 3 1 4 
 high 1 1 2 

10th total N by 
race/ethnicity 

 4 3 7 

     
11th low  1 1 

 mid 5 4 9 
 high 4 2 6 

11th total N by 
race/ethnicity 

 9 7 16 

 
The pre-university sample studied came from schools with populations ranging from 57% to 
64% African Americans or Hispanics. At the middle school, 67% qualify for free or reduced 
lunch, as do 41% at the high school.  
 
We also interviewed 6 first- or second-year undergraduates at a major, midwestern research 
university, two of whom are majoring in a science discipline. Two experts were also interviewed; 
one has a PhD in theoretical physics and is a professor in Science Education among other areas, 
and the other has a PhD in chemistry and is a professor in the Chemistry Department, both at the 
same university as the undergraduates. The experts are not included in this analysis, but provided 
insight as to ideal performance on the tasks. Each participant was interviewed and audiotaped 
once. Some interviews consisted solely of size and scale, while others started with structure and 
properties of matter; the size and scale segment of the interviews generally lasted 15 minutes. In 
a few cases, a section on the motivational potential of different science topics and phenomena 
followed the size and scale interview. We interviewed fewer undergraduates than pre-college 
students, and even fewer experts, because we expect less variation in the knowledge of experts 
(Tretter, Jones, & Minogue, 2006). 
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Table 3  
Academic Ability and Gender by Grade, Pre-College Respondents 
 

Student Grade  male Female Total by ability 
7th low 1 3 4 

 mid 1  1 
 high 1 2 3 

7th total N by gender  3 5 8 
     

9th low 3 3 6 
 mid 2  2 
 high 2 1 3 

9th total N by gender  7 4 11 
     

10th low  1 1 
 mid 1 3 4 
 high  2 2 

 10th total N by gender  1 6 7 
     

11th low  1 1 
 mid 6 3 9 
 high 1 5 6 

11th total N by gender  7 9 16 
 
Instruments and Interviewers 
 
We developed an interview protocol that was tested and refined iteratively over various cycles. 
All four interviewers read and discussed general guidelines for conducting interviews from the 
science education literature, and practiced the interview protocol on research associates and each 
other. Pilot testing on 3 middle school and 3 high school students led to revisions before starting 
data collection. Our interview protocol asks open-ended questions with precise wording, 
following Patton’s (2002) standardized, open-ended format. The final protocol used for data 
collection is included as Appendix B. Several of the interview questions are not analyzed for this 
paper, but will be used for future analyses. 
 
In order to test respondents on ordering, we asked them to arrange by size ten cards, depicting 
objects ranging in size from an atom to the Earth, and also including molecule, virus, 
mitochondrion, red blood cell, head of a pin, human, and mountain. We offered respondents a 
choice of two sets of ten cards with identical objects: one set with cartoon-like depictions, and 
one with more realistic photos/images (See Appendix C for the more commonly-chosen set of 
cards). The cards are all the same size and are labeled with the name of each object. Pilot testing 
revealed that students were often not certain what type of pin the cards referred to, so a straight 
pin was shown to them (this pin is roughly 2.5 cm long, with a head about 1 mm in diameter). 
After the respondent ordered the cards, the interviewer stated the order of the objects out loud, in 
order to have a record on the audio recording, or wrote down the order.  
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The second task tested grouping, and used the same ten cards. Participant were asked to group 
the cards by size, creating as many groups as made sense to them. There was no constraint on the 
number of objects per group. Students were prompted for their reasoning, and asked to label the 
groups they created. The parallel design of the ordering and grouping tasks allows us to test for 
consistency in the thinking of the respondents. 
 
The third task assesses the number of times bigger or smaller size conception. It utilizes five of 
the cards from the previous card sort, ideally atom, cell, pin head, human, and Earth. If these five 
cards were not correctly ordered relative to each other in the card sort, alternate cards which 
were ordered correctly were used, as long as two objects were ranked smaller than a pin head and 
two objects larger (this constraint is due to the next task, described below). If the respondent’s 
ordering did not meet this constraint, then this times bigger task was not undertaken. The 
respondents were asked to say how many times bigger or smaller each object is, compared to the 
pin head. For clarity, a physical pin was shown to the respondent, and the width or diameter of 
the head pointed out. Additionally, the dimension of interest was pointed out by the interviewer 
(diameters, except in the case of the human, were the height of an average adult was used). The 
interviewer recorded the answers on an answer sheet, so the student would be able to recall their 
answers for the next question (see Appendix D).  
 
The final task involved the same five cards, but asked the participant to assign absolute 
measurements to four of the cards. The size (diameter) of a head of a pin was provided (1 mm). 
The rationale behind using a small macroscopic object as the central reference point is that its 
size is bound to be familiar to respondents through their use of rulers (Wiedtke, 1990, pp. 237-
238). The answer recording sheet was given to the respondent to record answers on; thus, the 
respondent had access to her previous answers concerning how many times bigger the objects 
were compared to the pin head. The five-card tasks test both for performance on  times bigger 
and absolute conceptions of size, and for the degree of connection between the two. The students 
were asked whether and how the numbers in the times bigger or smaller task informed their 
answers to the absolute size task. This question explicitly addresses the degree of conceptual 
connection between times bigger or smaller and absolute conceptions of size, and is designed to 
identify students who have the conceptual knowledge that the two sets of numbers are logically 
linked, but may lack the procedural knowledge to calculate absolute sizes from the number of 
times bigger one object is than another. 
 
Coding 
 
The principal coder (the first author) wrote summaries of each interview, including the ordering 
and grouping data extracted from the recordings, along with paraphrased evidence for coding, as 
well as verbatim transcription of interesting or representative segments. Number of times bigger 
or smaller, and absolute size data were recorded on the answer sheet during the interview (see 
Appendix D). Some of these transcriptions are excerpted in the results section below, and a 
sample summary page included as Appendix E. A second coder scored 10 % of the data directly 
from the answer sheet and recordings. Interrater reliability greater than 90% was achieved after 
training and discussion plus one round of practice coding, as well as clarifications and minor 
revisions to the coding rubric (attached as Appendix F). 
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The coding rubric that we developed was informed both by our theoretical framework positing 
four conceptions of size, and by our emergent understanding as we conducted and listened to our 
interviews. The connections labeled I-III in Figure 1 above (I: order-group, II: order-times bigger 
or smaller, III: order-absolute size) were coded in the same fashion: 0 for the respondent’s 
inability to complete one or both of the tasks (and thus no basis for judging the connection 
between the two), 1 for inconsistent responses, and 2 for consistent responses. Examples are 
provided below. 
  
 Coding for Order-Group Consistency 
 
The ordering and grouping tasks both used all ten cards. Figure 2 below provides an example of 
connected responses by a 7th grade student. Even though the order of virus and mitochondrion 
are reversed, the groups respect the order the student generated, so the answer was coded a 2  
for consistent responses. The student responses are transcribed below the artifact for clarity. 
 
 
 
 
  
 The remaining four 
 
 
 

Order: Earth, mountain, human, ant, pinhead, cell, virus, mitochondrion, molecule atom. 
Groups: {Earth}{mountain}{human}{ant, pinhead}{cell, virus, mitochondrion, molecule, atom} 

 
Figure 2. Example of consistent order-group responses, coded 2 (consistent). 

 
Figure 3 below provides an example of disconnected ordering and grouping. Note how some 
groups include objects which were not adjacently ranked, but the intermediate objects are not 
placed in that group (e.g., pinhead is ranked larger than mitochondrion and smaller than ant, but 
is absent from the pin + ant group). 
 
 
 
 
 
 
 

Order: atom, virus, cell, molecule, mitochondrion, pinhead, ant, human, mountain, earth 
Groups: {atom, virus}{pin, cell}{mitochondrion, ant}{human, molecule}{earth, mountains} 

 
Figure 3. Example of inconsistent order-group responses, coded 1 (inconsistent). 

 
The unorthodox and inconsistent response by #1001 was probed; the following transcription 
sheds some light on this respondent’s thinking: 

#1007, 7th grade. 
Ordering and 
grouping 
consistent.  
Coded: 2. 

#1001, 7th grade. 
Ordering and grouping 
inconsistent.  
Coded: 1. 
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Interviewer (I): You grouped human and molecule together. Tell me about them. 
Why are, why do they go together? (pause 20 sec) 
I: What are you thinking? (pause 10 s) You have a group that’s the two smallest 
and a group that’s the two biggest, and here you have human and molecule. Can 
you tell me more about them? (pause 6 s)  
Respondent (R): I think that it’s possible that they can be not the same exact size 
but (pause 8 sec)  
I: So you can have groups having objects that are not the same size but…(4s)  
R: Kind of similar  
I: Kind of similar. And they can still go together?  
R: Mm hmm. (#1001, 7th grade) 

 
 Coding for Order-Number of Times Bigger or Smaller Consistency 
 
The task for number of times bigger or smaller used a subset of five cards from the ordering and 
grouping tasks. These five were atom, cell, pinhead, human, and Earth, unless the student 
reversed the order of two or more objects. In this case, correctly ordered alternate cards were 
used, as long as two objects were ranked smaller than a pin head and two objects larger. If the 
respondent did not rank two items as smaller (or larger) than the head of the pin, then this task 
was coded a 0 for inability to order in such a way that this task could be carried out. Figure 4 
below shows two examples of student responses. The respondent on the left used the same 
number of times smaller than a pinhead for both atom and cell, despite ranking the atom smaller 
than the cell, constituting an inconsistent response. The respondent on the right had the atom a 
larger number of times smaller than the pinhead as compared to the cell. Even though her factors 
are far from accurate, they are consistent with the size order of the objects, as are the numbers for 
human and earth. The response is coded a 2 (consistent).  
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Examples of inconsistent (left) and consistent (right) responses for number of times 

bigger or smaller and ordering. 
 

#1008, 7th grade. Ordering and number of 
times  bigger or smaller inconsistent. Coded: 1 

#1007, 7th grade. Ordering and  number of 
times bigger or smaller consistent. Coded: 2. 
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The following excerpt shows that some students had trouble with the concept of times smaller or 
bigger. In this case, the student seems to confuse the concept of “times smaller” with a “size 
smaller”. 
 

I: How many times smaller is the atom than the pinhead? 
R: One size smaller. 
I: One? 
R: You want to know why? No? 
I: Yes. No, I don’t, I understand. Don’t you think…yeah, OK, one time is what, 
same size or what? 
R: Like, like, between, you see the size of this, maybe go down another size, 
might come smaller than that. 
I: So kind of just one, next. 
(#0094, 11th grade) 

 
Other students simply refused to guess how many times bigger or smaller objects were compared 
to the pinhead. These responses were coded 0. 
 
 Coding for Order-Absolute Size Consistency 
 
The two responses shown below in figures 5 and 6 provide examples of codes 1 and 2 for this 
category. Student #1007 (figure 5) has sizes that go from smallest to largest for the 
corresponding small to large objects, and was coded a 2, even though the actual sizes are far 
from correct.  
  
 
 
 
 
 

Figure 5. Example of consistent response for order and absolute size. 
 

On the other hand, Student #0093 (figure 6) wrote sizes (in mm) for the submacroscopic objects 
that were larger than the pinhead, which she had previously ranked larger than atom or virus. 
(The substitution of virus for cell shows that she had previously ranked cell smaller than an 
atom.) 

  
 
 
 
 
 
 

Figure 6. Example of inconsistent response for order and absolute size. 
 

#1007, 7th grade. 
Consistent sizes and 
order. Coded: 2 

#0093, 11th grade. 
Inconsistent sizes 
and order.  
Coded: 1 
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Several students had trouble expressing sizes smaller than 1mm, as the following transcript 
excerpts show: 
  

R: What about if I put 0.5 mm? 
I: OK. Fine. How about atom? 
R: It’s about the same.  
I: So you think virus and atom is the same. OK. 
R: It’s about the same. Maybe a little smaller but I don’t know what to put for 
smaller… Would it be like 3 or something? No, that’d be bigger. (#1004, 7th 
grade) 
 
 
R: I don’t know the rest [sizes for cell, atom]. I can’t even guess. 
I: OK. Umm, do you think you could use these numbers here along with the 
measurement of the pin head to think about some of these sizes? (90 s pause) 
I: You said for instance that the cell was 5 or 6 times smaller than the pin head. 
R: (sighs). Yeah. I don’t know how to put that, though. (#0033, 9th grade) 

 
 Coding for Number of Times Bigger or Smaller-Absolute Size Consistency 
 
The coding scheme for the fourth connection of interest, that between number of times bigger or 
smaller-absolute size, is different from the other coding schemes. We created two coding 
subcategories, one (IVA in the coding scheme, Appendix F) for the perceived relationship 
between the two sets of numbers (which involves only conceptual understanding), and one (IVB) 
for numerical consistency between the number of times bigger/smaller and the absolute sizes 
assigned (which additionally involves procedural mathematical skill). Each of these 
subcategories consisted of four possible levels, as further explained below. 
 
The two subcategories included a code 0 for those who could not assign times bigger or smaller, 
or absolute sizes, and a code 1, for students who did not see a relationship, as in the previous 
coding schemes. Code 2 was used for partially correct answers, and 3 for more fully correct 
responses. For coding scheme IVA, code 2 was used for those responses that demonstrated a 
weak link between the two sets of numbers, responses that said that one set of numbers gave an 
indication of the other set, or that they were “kind of” related. Code 3 was reserved for responses 
that clearly stated that the two were strongly related. Examples follow the description of the final 
coding subcategory. 
 
For coding scheme IVB, responses which were consistent between absolute sizes and number of 
times bigger or smaller for 0 or 1 object (out of four) were coded a 1; those consistent for 2 or 3, 
a code of 2; and those consistent for all objects, a 3. The code of 2 was generated to capture 
students who generally recognized the relationship between the two conceptions of size, but who 
were distracted by knowing the height of an adult human in English units and didn’t relate it to 
the given SI size of the pin head. 
 
The example in figure 7 below shows a 10th grader’s response. The transcript excerpt shows that 
the student does not believe the times bigger or smaller numbers and the absolute sizes are 
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related, at a conceptual level. Thus, his response was coded a 1 for IVA, conceptual connection. 
The numbers for times bigger or smaller are not connected. For instance, the cell is said to be 
500 times smaller than the pinhead but the size assigned to the cell is 10,000 times smaller than 
the 1 mm pinhead, and similarly with the other numbers. This response was coded a 1 for IVB, 
procedural connection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Example of disconnected responses for conceptual and procedural connections 
between number of times bigger or smaller and absolute size. 

 
In contrast, the student in the example below (figure 8) had more connected responses. The 
response was coded 2 for IVB, because the atom’s size and number of times smaller are 
inconsistent. We surmise that the student intended to relate the two numbers but employed a 
faulty procedure to obtain the reciprocal of 5,000,000. However, the other three numbers are 
consistent, and the student stated that the two sets of numbers were strongly related. This student 
in fact corrected the number of times bigger a human is than a pin after assigning sizes, in order 
to make the two sets of numbers consistent. 
 

 
I: Did you use these numbers here 
to think about those numbers 
there?  
R: No.  
I: Do you think they’re related?  
R: Yes…NO…Because this is 
their actual size and this is them 
comparing them to other objects. 
(Code: 1) 
#0080, 10th grade 
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Figure 8. Example of more connected responses for conceptual and procedural connections 
between number of times bigger or smaller and absolute size. 

  
 Data Analysis 
 
The coded data were examined in relation to the two research questions in separate procedures. 
The question of how well learners link the conceptions of size was addressed through calculating 
and examining the percentage of respondents who obtained the top score for each coding 
scheme. To determine the order in which learners tend to make connections, a tentative learning 
progression was generated by hypothesizing that students learn first the connection that is most 
commonly made, and the last connection learned is the one which least students make. The data 
were then inspected to see how many students actually followed this proposed progression.  
 
In order to determine what difference science course, academic ability, gender, and race/ethnicity 
made in establishing connections between conceptions of size, a multiple regression analysis was 
carried out. The outcome variable used is a measure of student connectedness of size and scale, 
equal to the number of top codes each student received on their responses, and thus ranging from 
0 to 5. Science course was coded 7 for 7th grade science, 9 for integrated physical and Earth 
science (which students typically take in 9th grade), 10 for biology, 11 for chemistry, and 12 for 
physics. College students were coded 13 regardless of their actual science course background. 
Academic ability was determined in holistic fashion by the science teacher, on a scale of 1 to 4 
with half points. All college students were given the highest ability score, given their admission 
to a selective university. Race/ethnicity was coded 0 for White (non-Hispanic), and 1 for any 
other race or ethnicity. 
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Results and Analysis 
  
In our sample, very few respondents had fully connected conceptions of size, particularly among 
pre-college students. The types of connection were not equally common, as Table 4 below 
shows. 
 
Table 4  
Percentage of Respondents Earning the top Code on Each Category 
 
I: Order-
group 

II: Order-Times 
bigger/smaller 

III: Order-absolute 
size 

IVA: Times bigger 
or smaller-absolute 
size connection 
(conceptual) 

IVB: Times bigger 
or smaller-
absolute size 
consistency 
(procedural) 

83% (N=48) 75% (N=48) 64% (N=47) 36% (N= 42) 13% (N=47) 
  
Order-group consistency was the most common (83%), but still not universal, as 17% of students 
made groups with non-contiguously ranked objects (see figure 3 above for an example). Next 
most frequent was consistency of ordering and the number of times bigger or smaller (75%). 
One-quarter of the respondents had inconsistent answers. In some cases, this was due to the 
respondent refusing to even hazard a guess. In other cases, inconsistent answers were due to 
assigning the same factor to two objects, e.g., both cell and atom were considered to be 1000 
times smaller than a pin head, despite having previously established an order in which the atom 
was smaller (see figure 4 above). Order-absolute size consistency was next most common (64%). 
Over one-third of respondents were unable to assign sizes that increased along with the ranked 
position of the objects (see figures 5 and 6 above).  
 
The times bigger or smaller-absolute size connection was least common (see figures 7 and 8 
above). Nearly two-thirds of the students interviewed did not perceive a logical, necessary 
connection between the sizes of two objects and the number of times bigger one object is than 
another. Only 13% of  students were able to generate sizes consistent with the number of times 
bigger or smaller they had previously assigned. Four of the six are undergraduates, reducing the 
percentage of pre-college students to under 5%. 
 
The differing percentages of students answering in consistent and connected fashion suggested a 
learning progression. All but two of the 48 students can be placed on the trajectory presented 
below in Figure 9 below. This diagram shows that students first make the connection between 
ordering and grouping or the connection between ordering and number of times bigger or smaller 
(figure 4), in either order, although seven of nine students who had made only one connection 
made the ordering-grouping connection.  
 
The next connection to be made is order-absolute size. Of the 30 students who had connected 
order-absolute size, all had connected order-group conceptions and all but 1 had connected order 
and number of times bigger or smaller. This suggests that making the connections between 
ordering and times bigger, and between ordering and grouping, might be necessary conditions 
for the ordering-absolute size connection. This cannot be affirmed with confidence before 
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longitudinal case studies establish the mechanism whereby one type of connection is necessary 
for another, more advanced one. On the other hand, of the 33 students who had established both 
of the early connections (order-times bigger, order-group), 4 had not made the connection 
between ordering and absolute size. Thus, having those two early connections is not sufficient to 
establish the order-size connection.   
 
Similarly, of the 15 students who had made the conceptual connection between the absolute size 
of two objects, and the number of times bigger one is than the other, all had made the two early 
connections and all but one had made the order-size connection. However, of the 29 students 
who had established the three first connections, only 15 had made the conceptual connection 
between size and times bigger or smaller. This suggests that the three connections displayed to 
the left of the size-times bigger or smaller conceptual connection are necessary but not sufficient 
conditions for, or at least developmentally earlier than, the size-times conceptual connection. 
 
Finally, of the six students who had procedural connection between size and times bigger or 
smaller, all had established the other four connections, though of the 15 who had made the first 
four connections, only 6 made the size-times bigger or smaller connection. 
 
 
 
 
 
 
 
 
 
 

Figure 9. Learning progression for size 
 
This learning progression needs further elaboration, as it does not as yet contemplate the role of 
content knowledge in building a robust conception of size. In addition, undergraduates at a 
selective university are mainly at the extreme right of this progression. There are many more, 
complex and useful size and scale skills that are not examined in this study. For instance, the 
Benchmarks (AAAS, 1993) for scale for 9th-12th grades suggest that students should know that 
“Because different properties are not affected to the same degree by changes in scale, large 
changes in scale typically change the way that things work in physical, biological, or social 
systems.” (Common Themes, D – Scale, 9-12). Clearly, the skills required to understand such 
disproportionate changes are more advanced and difficult than the ones assessed here. Equally 
clearly, students who do not have a connected and robust construct of size will not likely be able 
to grasp this benchmark. 
 
Our second research question has to do with factors that might be related to a student’s 
developmental stage regarding his or her conceptions of size. We ran a multiple regression using 
the number of top codes as outcome variable, and grade, science class, gender, race, and ability, 
for all students in the study (N=48), using pairwise deletion. Despite the low number of cases, 
the overall model is statistically significant and explains nearly 50% of the variance. Gender, 
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race, and grade were not significant; student academic ability relative to peers in the class, and 
the science class the student was taking at the time of the interview are statistically significant. 
This shows that science instruction impacts size and scale skills; and that gender and race are not 
significant predictors when controlling for science course and academic ability. The possible 
relationship between ability as determined holistically by the teacher, and race and gender, is not 
further explored due to the non-random and thus non-representative sampling strategy used to 
select participants for this study. The finding that ability relative to peers in the classroom is 
significant shows that science instruction alone does not account for differences in size and scale 
skills. The question of when students establish the connections is not addressed, since grade is 
not a significant predictor of size skills in the sample studied. 
 
A second multiple regression (not shown) with only ability and science course as predictors is 
statistically significant, with a similar adjusted R2. In both regressions, science course is a 
stronger influence, as demonstrated by the magnitude of the standardized coefficients.  
 
Table 5  
Summary of Multiple Linear Regression Analysis for Variables Predicting Connection Score.  
 

Variable B SE B Β 
Grade -.509 .347 -.587 
Race -.226 .384 -.073 

Science course .845 .320 1.041* 
Ability  .553 .208 .325* 
 Gender -.333 .354 -.107 

Note: adjusted R2 = .467  
*p<.05 
 
Implications and Future Directions 
 
The surprising lack of congruence between ordering and grouping in a few younger students, and 
the widespread lack of coordination between times bigger and absolute size tasks, point to the 
possibility that a robust understanding of size and scale comes from the gradual linking of 
several strands, each representing qualitatively different ways of conceptualizing size. To be 
successful, nanoscale curricular activities for K-12 will need to attend to building fundamental 
concepts of size. 
 
Understanding the relationship between the sizes of two objects and how many times bigger one 
is than another is very difficult for the middle and high school students we interviewed. 
Successful students and experts recall or estimate an absolute size for both objects, then divide to 
get number of times smaller or bigger. Clearly, this requires understanding that the two sets of 
numbers are related. Thus, it is necessary to introduce or reinforce classroom activities that 
highlight the logical connection between relative and absolute size. The conceptual connection 
between times bigger or smaller and absolute size is a prerequisite for the procedural connection 
and is itself difficult for the middle and high school students interviewed. Such instructional 
activities would presumably improve students’ conceptual understanding of ratios and 
proportions, a traditionally difficult but important middle school mathematics topic. For some 
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students, however, earlier connections between conceptions of size need to be made before such 
activities would be useful. Increasing the quantity and quality of elementary and middle school 
instructional activities, aimed at making the connections explicit through hands-on exploration, 
should help build a solid foundation for middle and high school science and math classes that 
deal with size and scale. 
 
The role of content knowledge – knowing that a mitochondrion is part of a cell and therefore 
smaller than a cell; that atoms are too small to see with an optical microscope; that atoms 
compose molecules and thus must be smaller – in establishing the necessary connections, has yet 
to be explored. We plan next to analyze our data set to characterize how students order, how they 
group, what sizes they assign to submacroscopic and macroscopic objects, what they know about 
objects too small to see and the measurement units with which to express their size. Then we will 
incorporate these findings into our preliminary learning progression for size skills.  
 
Our data set, along with similar interviews collected in rural and suburban middle-class, 
predominantly White middle and high schools yet to be analyzed, will afford further analyses of 
the differences, if any, by gender and race that may inform classroom practice regarding size and 
scale. 
 
In conclusion, this study generated a preliminary learning progression for size, based on the 
connections between content-independent size skills. Further analysis will allow us to determine 
ways in which content knowledge and individual skills such as ordering and grouping interact 
with the progression suggested in this paper. A more complete learning progression will be a 
useful guide in developing instruction, curriculum, assessment, and policy for the important 
themes of size and scale.  
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Appendix A: Draft SRI/NCLT Workshop Definitions of Size and Scale. 
 

Definition of Size and Scale  
The task force on size and scale at the Big Ideas in Nanoscience meeting organized by SRI and 
the National Center for Learning and Teaching Nanoscale Science and Engineering (NCLT) June 
14-16, 2006, developed the following definitions: 
 

• Size refers primarily to physical magnitude, including the distance between 2 objects. 
Learners initially tend to consider one dimension of objects, e.g. length. Later, learners may 
consider area and volume as well. Size involves comparing an object to other object(s), which 
may include agree-upon benchmark objects. The term "size"ù may refer to the magnitude of 
variables not related to physical magnitude, such as time, forces, etc.; however, only size as 
physical magnitude is considered in this document. There are various ways of conceptualizing 
size at the nanoscale, including ordering objects by size (relative conceptualization), organizing 
objects of similar size into groups of different size ranges (size category conceptualization), 
comparing objects in terms of how many times bigger or smaller one object is than another 
(quantitative relative conceptualization), and as an absolute size assigning a number and a 
measurement unit (NOTE: this particular conceptualization of size actually falls under the 
"scale" discussion below). 

• Scale involves comparing an object to a defined reference standard (e.g. a meter). Note that 
for our definition of scale, the reference standard is not an object such as an atom or a human 
body; the reference standard refers to a more abstract reference point represented by a number 
and a measurement unit. This differs from size in that the comparisons are made to abstract 
measurement units which constitue a well-defined scale rather than to objects. The word scale 
can also refer to regions of size which help us understand and organize the world into component 
parts (e.g., the microscale or nanoscale). These scales represent different "worlds"ù, where 
different forces are dominant and different models are applicable, and where different tools are 
used to sense different characteristics. 

• Size vs. Scale Size is usually a necessary component of scale, but scale is not necessarily a 
component of size. Absolute size, which includes a measurement unit, does involve scale. Size 
compares objects, possibly without reference to a numerical measure of the object; scale 
compares an object to a reference standard (number plus unit), thus anchoring its location along 
the continuum of size. A scale "world" refers to objects within a range of sizes in the reference 
standard. Scale MUST be quantitative; size may be qualitative or quantitative. However, the 
"quantitative" nature of size is subtly different from that of scale. For size, the quantitative nature 
refers to "relative quantitative" (such as 100 times smaller than a cell) whereas for scale the 
quantitative nature refers to a more abstract conception of a number paired with a measurement 
unit. Thus "size quantitative" is still anchored by reference to an object whereas "scale 
quantitative" is anchored to an abstract number/unit that exists on a continuum essentially 
independent of physical reality (e.g. a number line). 

• Scaling means predicting phenomena of a system at one size based on the phenomena at 
another size. "Phenomena" here includes properties, behaviors, and dominant effects existing in 
the given system. Scaling is not always continuous, even within a scale "world". Even within 
regions in which a model applies, properties that depend on volume scale differently than other 
properties that depend on surface area or length. (NCLT/SRI, 2006) 
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 More recent NCLT workshops have pointed out some problems and omissions with the 
above definitions, so these may be subject to elaboration and reformulation. However, it is worth 
noting that the experts in this work group agreed upon the four conceptions of size employed in 
the present study.  
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Appendix B: Interview Protocol 
 

SIZE AND SCALE INTERVIEW 
 

Bold:  Directions or Introduction.  Normal:  Questions  Prompts  
Hello. My name is ____ and I’m here from the University of Michigan’s School of Education. I 
want to ask you some questions about the size of things. This interview will be completely 
confidential, and will not affect your class grade in any way. Your teacher will not hear what you 
say. Your answers will help us design better science education materials for high school. 'I want 
to ask you some questions about the size of things. Think of some very small things you 
know of. (Pause a few seconds.)  
What is the very smallest thing you can think of?  

IF RESPONSE IS MACRO 
Can you think of something too small to see 
with the naked eye? 

IF AMBIGUOUS (“nucleus/particle”) 
What do you mean by that? Could you be more 
clear?  
What else do you know of that is too small to 
see with naked eye? 
 

What type of measurement units would you use to express the size of that object? (If necessary, 
prompt by saying that the width of the table could be expressed in centimeters) 
Which is bigger, a bacteria or a water molecule? 
Why do you think that? 
OK. Take a look at these two sets of cards. (lay out cards in two separate sets). I’d like you to 
put them in order by the size of the objects, from largest to smallest. You can pick either 
one of the sets of cards – they both have the same objects. (Demonstrate the size of the head 
of a pin at this point).  
 
(Record order in which the cards were placed. Code: Earth=E, mountain=MTN, human=H, 
ant=ANT, pin head=P, red blood cell=C, mitochondria=O for organelle, virus=V, 
molecule=MOL, atom=AT. Abbreviations: OK= all correct. MACRO=pin to Earth correct.)  
Could you please tell me why you ordered these cards (the micro and nano cards) the way you 
did? (Select the micro- and nano- cards in pairs.)  
Why did you choose this set of cards? 
Could you please place the cards into groups of objects of similar size? Make as many groups as 
you think makes sense. (Wait for task). Can you tell me how you decided to group these cards 
together? (Repeat for tape recorder how many groups and what cards in each). What do they 
have in common? What would you call this group? (Repeat for each group) 
 
 
Interviewer selects five cards from task 3. These will be atom, cell, pin head, human, and 
Earth if they are ordered correctly. If atom and cell are out of order, select one of those, 
and choose another card in the correct order. 
OK. Here are five of the cards you ordered. I want you to think about the length of these 
objects. For the pin head, think how wide it is (Trace width with finger). For the person, the 
height. (Trace). For the Earth, atom, and cell, the diameter. (Trace). (record all answers on 
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worksheet) 
How many times larger is the human than the pin head? 
How many times larger is Earth than the pin head? 
How many times smaller is the (red blood cell) than the pin head?  
How many times smaller is the (atom) than the pin head? 
OK, a pin head is about 1 mm wide. That’s a little less than 1/16th of an inch 
 Would you write down the size of the other objects? (Pass the student pen and worksheet, and 
offer scratch paper. Remind student to specify units, if necessary. Ask them to use metric system.)  
Did you use these numbers here (indicate the relative sizes recorded on sheet) to think about the 
sizes of the objects? (if yes, ask how; if no, ask if student if s/he thinks the two sets of numbers 
are related) 
If you can think of other ways to express the sizes using different units or different ways of 
writing the numbers would you please write them below too? 
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Appendix C: Size and Scale Cards Used in Interview 
 
 
 
Note: starred cards are used in the times bigger or smaller and absolute size tasks. 

* * * * * 
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Appendix D: Recording Sheet for Size and Scale Questions 4 and 5 
 
 

 
 
 
 
ATOM CELL         PIN HEAD  HUMAN  EARTH 
  
 
 
 
 
 
 
 
ATOM  CELL  PIN HEAD  HUMAN  EARTH 
 
_______  _____  ___1 mm__  ________  _______ 
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Appendix E: Sample Summary of Interview 
 

0099 S&S Summary  
6/2/06 – CD 
S&S starts at 18:00 
Smallest: electron. 
Unit: nm. “Nanomicrometer” 
Bacteria is bigger because you can see bacteria in water. But there might be bacteria smaller than 
a molecule of water. Molecule of water is made of two atoms of hydrogen and one of oxygen. 
There might be bacteria smaller than that. 
Photos because recognized Bush. 
Atom/mitochondria/virus/molecule/cell/pinhead/ant/human/mountain/earth 
(24:00) Blue, green groups: visible to naked eye. Thought about placing them all together, but 
pin, ant, small so in their own group. Red group: building blocks. Yellow group: made up of red 
group, but not visible to naked eye. 
Red blood cells are made of molecules, viruses are made of atoms, mitochondria is in the nucleus 
of a cell (or atom?). Viruses have mitochondria. Cells are made up of atoms. 
 
(25:00) I: How many times bigger is human than head of a pin? 
R: Oh, seeing as that’s like a millimeter, and so, like 6 feet tall, is how many meters?, is two 
meters, so a millimeter is a thousandth – is it OK if I write something? 
I: Sure – could you do it on the, here [back of the paper]. 
R: Hopefully a good estimate. So, 6 feet equals two meters, so if that’s one millimeter (asked to 
speak into recorder). (26:00) So I’m saying 6 feet equals about two meters, and so then, how 
many millimeters are in a meter. There’s a hundred centimeters, er, thirty centimeters in a foot, 
so thirty times ten, so there’s 300 mm in a foot, I think. So then 300 times 6. So then 1800 
millimeters in six feet…OK, so assuming all this math is right at [early] in the morning, I say it’s 
like 1800 times. [Asked about Earth to pin] Oh my God (laughs) How many miles is the 
diameter of the Earth? [NOTE: see how immediately goes to absolute size to calculate ratio, here 
and above] Are you allowed to tell me how many miles the diameter of the Earth is? I: No. R: 
OK. Well, what I would do was, I’d think of how many mm in a foot, then I’d just find out how 
many miles in the diameter, find it out. I’m a math person. You just want an estimate… 
I: Do you have any idea what the diameter of the earth might be?   
R: We always have the conversion factors in our textbook and we just open it to do all our math 
problems, so I kind of mindless calculating. (28:00) So let’s see, from here to Boston is around 
3000 miles [NOTE: actual distance is about ¼ that]. Let’s say it’s like 10,000 miles (NOTE: 
7926 mi is actual value), but I have no idea…so it’s got to be like millions of times… 
I: If you had a calculator, could you do it? 
R: The diameter of the earth? Oh yeah, like the diameter of the Earth? Yeah. 
I: Well, I can be your calculator if you need a little bit of help! You’ve got 10,000 miles. What 
do you know about miles? 
R: There’s 5280, or 60? 5260, 80…(NOTE: correct number is 5280) 
I: So how many feet is 10,000 miles then? What operation would you do? 
R: OK, so this is how many feet per mile, so then times 10,000. 
I: OK, and then how would you get to, you’ve got feet now.  
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R: OK, feet, and you want it in mm…you multiply by 300. Assuming that’s right, but I don’t 
know about that. 
I: (mumbles numbers) About 15 billion then.  
(Meanwhile, R is calculating with pencil and paper. She uses units at several steps, including 
mm/ft in a conversion factor) 
 
I helps her notice that there is one zero missing.(31:10) 
 
I: Use numbers here to think of numbers here? 
R: Yes. Because it’s the conversion factor. I mean, it’s the same thing… 
I: So this number is dictated by the number here? 
R: Yes. Correspondingly. Like compared to this, it’s basically writing the same thing. 
I: If a person (who did it wrong said they’re different?) 
R: Once you give it a number, it corresponds, it comes out to be the same thing… 
I: Do you think there was a time, when you were smaller, in middle school or elementary, when 
you didn’t know numbers like this had to be connected to numbers like that, or do you think you 
ALWAYS knew how to do this? 
R: Well, probably, every skill is leaned, but I can’t remember a specific time like learning it.  
I: It seems obvious now. 
R: Yeah.  
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Appendix F: Coding Rubric 
 
 

DRAFT Coherence of Size and Scale Ideas coding rubric – Cesar Delgado, U. Michigan 
Revised Jan. 18, 2007 after 1st round of IRR. 
Revised Jan. 19 to have roman numerals match developmental stage (switched II and III, IV A 
and IVB). 
Revised Jan. 21 with various small clarifications from recoding 7th and 9th graders. 
 
This coding checks for robustness of size and scale ideas by gauging whether respondents 
correctly link four conceptualizations of size: 
A) Ordering (or qualitative relative, or seriation) – ordering objects by size 
B) Grouping (or categorical, or classification) – putting objects of similar size into groups 
C) Times bigger (or ratio of sizes, or quantitative relative) – how many times bigger one object is 
than another 
D) Absolute size – the actual size of an object, including a number and units of length 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I) Ordering-Grouping Consistency 
Respondent orders 10 objects by size, then groups them. Groups should contain adjacently-
ranked objects. 
Codes: 
0: Can’t group, or makes 10 groups of 1, or 1 group of 10 
1: Groups incorrectly, given the order they established e.g. {A, B, D}, {C, E} 
2: Groups correctly, given the order they established. 
9: Did not finish this task – missing data 
 
Examples:  
1) atom/virus/cell/molecule/mitochondria/pin/ant/human/mountain/earth (1001) 
Cards were ordered as shown above. Groups shown by colors. Red and purple groups are 
consistent with order, but the rest are not. Pin should be in the green group given that the objects 
bigger and smaller than it are in the green group. Code: 1. 
2) cell/atom/molecule/virus/mitochondria/pin/ant/human/mountain/earth (1004) 

ORDERING 
(Qualitative 
Relative) 

GROUPING 
(Categorical) 

X BIGGER 
(Quantitative 
Relative) 

SIZE 
(Absolute 
size) 

I 

I
I II 

IV 

V 
VI III 
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Groups are consistent with the order. Even though order has some mistakes, the grouping is 
consistent, so code: 2. 
 
 
II) Order-Times Bigger/Smaller Consistency 
The number of times larger or smaller objects are than the head of a pin is assigned by 
respondent; this number should be greater for objects ranked largest and smallest than for 
intermediate objects. 
Codes: 
0: Did not assign times larger/smaller numbers 
1: Times larger/smaller of any pair of objects is inconsistent with the order (a factor > assigned 
to an intermediate object than to largest or smallest object). 
2: Times larger/smaller of all objects are consistent with the order 
9: Did not finish this task – missing data 
1) ATOM CELL  PIN HEAD  HUMAN  EARTH(1001) 
    3000 100     1000   5 000 000 
Respondent has a larger number of times smaller for atom (3000) than cell (100), and larger 
number of times bigger for earth (5 million) than for human (1000), so it is consistent. Code 2 
 
2) ATOM CELL  PIN HEAD  HUMAN  EARTH(none) 
thousands millions    billions  more than billions 
(Fictitious) respondent said that a cell is millions of times smaller than a pin, and atom is 
thousands of times smaller than a pin, yet ordered atom as smaller than a cell. Thus, is 
inconsistent. Code 1. (For codes of 1, the case where student states the same factor for atom and 
cell despite ranking atom smaller than cell) 
NOTE: If pinhead is ranked smallest or second smallest object (see #1014), then this task and III, 
IV A, IV B can’t be evaluated; code as 0.  
 
III) Size-Order Consistency1 
The size of objects previously ordered is assigned by respondent. Sizes assigned to larger or 
smaller objects should likewise be smaller or larger. 
Codes: 
0: Did not assign sizes (includes unitless numbers if they were prompted to provide units but 
didn’t/couldn’t, and negative numbers). 
1: Sizes of any pair of objects are inconsistent with the order (a size > assigned to an object 
ranked smaller in the ordering task) 
2: Sizes of all pairs of objects are consistent with the order 
9: Did not finish this task – missing data 
 
Examples:  
1) ATOM  CELL  PIN HEAD HUMAN EARTH 
   1 mm  1.2 mm 1 mm  5’8  700 cm  (1001) 
Respondent assigned sizes that were larger or equal to pin head to atom and cell, despite having 
ordered atoms and cells as smaller than pin head. Code: 1 (even though atom-cell, atom-human, 
                                                
1 The coherence of ordering and ratio cannot be determined because students were asked “how many times bigger 
(or smaller)” one object is than another; thus, students did not have the opportunity to be inconsistent here. 
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atom-earth, pinhead-human, pin head-earth, and human-earth have sizes that reflect the size 
ranking) 
 
2) ATOM  CELL  PIN HEAD HUMAN EARTH 
   0.00001 mm  0.5 mm 1 mm  149,000 mm 1 billion mm (1005) 
Respondent assigned sizes that went from smallest to biggest in the same order as s/he had 
ordered them. Despite having most of the actual sizes wrong, the sizes are consistent with the 
order, thus Code: 2 
 
IV A) Times bigger-Absolute Size Connection 
Students have said how many times bigger (or smaller) object A is than a pinhead. Given the size 
of the pinhead (1 mm diameter), do they realize that they can use the times bigger number to 
calculate the size of object A? Students might realize that the two types of size are logically and 
necessarily connected, but be unable to represent the sizes implied by their times bigger data 
(e.g., not know how to write a number 100x smaller than 1 mm). This category and category IV 
B distinguish between conceptual and procedural knowledge. Students’ ideas usually surface 
when asked how the times bigger numbers influenced their answers to absolute size. 
NOTE: occasionally the interview departs from the interview protocol and extensively guides, 
prods, scaffolds the student until he or she finally recognizes that the numbers ought to be 
connected. Code the student response at the point he or she is at corresponding to the interview 
protocol plus a small amount of probing or clarification. 
  
Codes: 
0: Respondent was unable to assign times bigger or absolute sizes, despite having enough time 
(students unable to finish due to time should be coded “9” for missing data) 
1: Respondent states that there is no relationship between times bigger and size 
2: Respondent states that there is a weak link between times bigger and size (“it gives some 
indication of the size”) OR that there is a link – but does not attempt to write down numbers 
reflecting that linkage. 
3: Respondent states that the two are (strongly) related (includes students who use absolute sizes 
to go to times bigger but do not explicitly address the relationship). 
9: Did not finish this task – missing data 
 
Examples: 
1) I: Did you use the numbers up here to think about the numbers down here? (1001) 
R: Uh uhh (no). 
I: No. How do you think these numbers up here are related to these numbers down here, if 
they’re related at all? What do you think? 
R: A cell is kind of.. (7 s) 
I: Like for instance, you said that a cell was 100 times smaller than a pin head. How would that 
number, 100, would that number, would that affect what you write down here, or is it like not 
very related? 
R: Not very related. 
Code: 1 
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2) I: “So when you write these numbers, did you look at these ones?” (1006) 
R: Not really. 
I: “Do you think these number and these numbers is relate? 
R: Is what? 
I: Kind of related each other 
R: Yes. 
I: But when you write down these one you didn’t think about these numbers? 
R: I didn’t think about them, but they would relate to each other. 
Code: 2 – if student had said, “Oh, wait, so then I need to change my answers” then it would be a 
3 (and might change IV B if they do it successfully).  
 
3) I: “Did you use the numbers here to think about the numbers down here?” (1009) 
R: “Uhh uhh [no].” 
I: how related? 
R: “If the atom is 500 times smaller than the pin, then I would know that the atom down here 
would be smaller than the pin. That’s 1 mm so it’d have to be smaller than 1 mm, by a lot.” 
I: “So if it’s 500 times smaller, then it’d be 1/16 of a mm?” 
R: “Uh huh.[yes]” 
Code: 2 – times smaller gives a rough indication: “by a lot”. 
 
IV B) Times bigger-Absolute Size Consistency 
Given how many times bigger one object is than another, and the size of one, finding the size of 
the second object is “simply” a matter of proportions or scaling. The ratio of absolute sizes is the 
same number as how many times bigger one object is than another. 
Codes: 
0: Was unable to assign times bigger or absolute sizes, despite having enough time (students 
unable to finish due to time should be coded “9” for missing data) 
1: Times bigger and ratio of absolute sizes are consistent for 1 or no objects. 
2: Times bigger and ratio of absolute sizes are consistent for 2-3 objects2 
3: Times bigger and ratio of absolute sizes are consistent for all objects 
9: Did not finish this task – missing data 
Note: If student uses more than one representation for actual sizes (e.g., both metric and English 
units), then score according to the single system with best performance (e.g., only metric, or only 
English, whichever one includes more accurately connected numbers). Do NOT consider the 
accurate numbers from more than one system at a time, as this would unfairly favor those who 
provide many representations.  
 
 
 
 
 
 
 
 
                                                
2 This category aims to capture respondents who basically know that the two conceptualizations are linked but may 
be distracted by using English units for the size of a human. 
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Examples: 
  3000     5 000 000   (1001) 
 
    100     1000 
1) ATOM  CELL  PIN HEAD HUMAN EARTH 
   1 mm  1.2 mm 1 mm  5’8  700 cm 
 
Code: 1, as not consistent for any object. 
 
 
 
  50     100 million  (1007) 
 
    10     100 000 
2) ATOM  CELL  PIN HEAD HUMAN EARTH 
   1/50 mm  1/10 mm 1 mm  100 000mm 100 000 000 mm 
 
Code: 3, as sizes and how many times bigger are consistent for every object (even though the 
actual sizes are all wrong).  


