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Improving spring–mass parameter estimation in running using
nonlinear regression methods
Geoffrey T. Burns1,*, Richard Gonzalez2 and Ronald F. Zernicke1,3,4

ABSTRACT
Runners are commonly modeled as spring–mass systems, but the
traditional calculations of these models rely on discrete observations
during the gait cycle (e.g. maximal vertical force) and simplifying
assumptions (e.g. leg length), challenging the predicative capacity and
generalizability of observations.We present amethod to model runners
as spring–mass systems using nonlinear regression (NLR) and the full
vertical ground reaction force (vGRF) time series without additional
inputs and fewer traditional parameter assumptions. We derived and
validated a time-dependent vGRF function characterized by four
spring–mass parameters – stiffness, touchdown angle, leg length and
contact time – usinga sinusoidal approximation. Next, we compared the
NLR-estimated spring–mass parameters with traditional calculations in
runners. The mixed-effect NLR method (ME NLR) modeled the
observed vGRF best (RMSE:155 N) compared with a conventional
sinusoid approximation (RMSE: 230 N). Against the conventional
methods, its estimations provided similar stiffness approximations
(−0.2±0.6 kN m−1) with moderately steeper angles (1.2±0.7 deg),
longer legs (+4.2±2.3 cm) and shorter effective contact times
(−12±4 ms). Together, these vGRF-driven system parameters more
closely approximated the observed vertical impulses (observed:
214.8 N s; ME NLR: 209.0 N s; traditional: 223.6 N s). Finally, we
generated spring–mass simulations from traditional and ME NLR
parameter estimates to assess the predicative capacity of each
method to model stable running systems. In 6/7 subjects, ME NLR
parameters generated models that ran with equal or greater stability
than traditional estimates. ME NLRmodeling of the vGRF in running is
therefore a useful tool to assess runners holistically as spring–mass
systems with fewer measurement sources or anthropometric
assumptions. Furthermore, its utility as statistical framework lends
itself to more complex mixed-effects modeling to explore research
questions in running.
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INTRODUCTION
Some biomechanical properties are unobservable, latent variables.
That is, they represent a phenomenon, feature or behavior of the

mechanical system that cannot be measured directly. In spring–mass
analyses of running, the body is commonly reduced to such a
mechanical system to study its elastic behavior, and the reduced
parameters of this model (i.e. a runner’s ‘stiffness’) are represented as
latent quantities. This stiffness parameter and the spring–mass model
draw their theoretical basis from the spring-loaded inverted pendulum
(SLIP) model of running (Blickhan, 1989; McMahon and Cheng,
1990). This model represents the body as a mass on a single linear
leg-spring (Fig. 1). It is the simplest physical system that captures the
salient distinguishing features of a running body: a stance and swing
phase of gait with a collision and propulsion of the mass. It is
conceptually simple and faithfully describes the dynamics of running
with only four deterministic parameters for a given mass (m) and
velocity (v): its leg-spring length (L0), a touchdown angle (αTD), a
contact time (tc) and a spring stiffness (k) (Blickhan, 1989). However,
the mechanical parameters of this simple system are abstractions from
the human runner, and the model itself is characterized by complex
nonlinear dynamics. Thus, one is required to make assumptions and
estimations of model geometry to facilitate model use in experimental
situations (Brughelli and Cronin, 2008).

Spring–mass analyses of running are most commonly employed
to describe the ‘stiffness’ of a runner (Bullimore and Burn, 2007),
and the two most common methods used in the gait literature to
calculate stiffness from the spring–mass model come from
McMahon and Cheng (1990) and Morin et al. (2005). Both
methods differentiate vertical stiffness (kvert) and leg stiffness (kleg)
of the runner to characterize behavior of vertical displacement and
leg length changes during the gait cycle under maximal force. As a
dynamic SLIP model functions with a single linear elastic spring,
the description here will be restricted to that of leg stiffness
calculations. This stiffness is defined as the ratio of the maximal
vertical force (Fmax) to the change in the linear length of the leg
spring (ΔL) (McMahon and Cheng, 1990):

k ¼ Fmax

DL
; ð1Þ

DL ¼ Dyþ L0ð1� sinaTDÞ: ð2Þ
This method relies on measurement of Fmax and tc from a force

plate, and αTD is approximated as (He et al., 1991):

aTD ¼ cos�1 v tc
2L0

: ð3Þ

The spring length, L0, of the model is the distance from the runner’s
center-of-mass (COM) to the foot’s center-of-pressure (COP) at
contact – termed the ‘virtual’ leg of the spring–mass system
(Blickhan et al., 2018). However, in experimental application it is
commonly assumed to be the resting leg length of the runner –
termed the ‘effective’ leg of the system. It is generally approximated
as the distance from the runner’s hip to the foot’s COP, either
directly measured as the height of the greater trochanter to the
ground (Brughelli and Cronin, 2008; He et al., 1991; McMahon andReceived 21 July 2020; Accepted 25 January 2021
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Cheng, 1990) or estimated as a ratio of 0.53 to the standing height of
the runner (Morin et al., 2005; Winter, 1979). The vertical force
recording is also used to calculate Δy, the COM displacement, via
double-integration of the vertical force (Cavagna et al., 1977).
The method of Morin et al. (2005) models the vertical ground
reaction force (vGRF) as a sinusoid with a peak of Fmax and a
half-period of tc:

FyðtÞ ¼ Fmax sin t
tc
p

� �
: ð4Þ

This method then uses measurements of contact time, flight time
and running speed to estimate Fmax and ΔL. Similar to McMahon
and Cheng (1990), this method assumes the leg spring length to

be that of the resting leg length as previously described. Blum
et al. (2009) later adapted this sinusoidal method to use the
observed Fmax and a measured value of αTD to estimate ΔL rather
than using the flight time.

While the methods described above have generally been found to
have good agreement in their estimation of leg stiffness (Blum
et al., 2009; Coleman et al., 2012; Morin et al., 2005), these
approaches approximate the additional parameters of the SLIP
model, which may misrepresent the fundamental elastic dynamics
and spring–mass characteristics of the runner. Assigning the mass of
the runner to the SLIP model is a valid assumption, but the other
parameters do not translate as analogously as they are commonly
assumed. When using either of the above methods, the length of the
SLIP model’s spring is assumed to be the leg length of the runner –
the effective leg. However, to model the runner as a SLIP system,
this distance should be that of the runner’s COM to the point of
contact on the ground – the virtual leg. A human’s COM is difficult
to determine statically (Clauser et al., 1969), complex to determine
dynamically, and not defined by that of the human leg (Kingma
et al., 1995; Maus et al., 2011; Naga, 2005; Saini et al., 1998).
Clauser et al. (1969) measured the COM-to-height ratio as being
0.58, which would yield a 7–10 cm difference in L0 estimation from
the traditional 0.53 leg length approximation. Similarly, Blum et al.
(2009) proposed using a 5% and 10% scaling factor for COM
estimation from leg length measurement from Winter (2009). A
10% difference in L0, based solely on which COM approximation is
adopted, would yield a 7% difference in kleg estimation (Morin et al.,
2005). Moreover, αTD, which is the angle of the COM relative to the
point of contact, is either approximated from Eqn 3 or measured as
the angle of the leg at touchdown, requiring additional kinematic
measurements and assumptions. Given the complexity and
ambiguity of the COM location, these approximations may
misrepresent the underlying spring–mass dynamics. Finally, tc is
commonly assigned as that observed in the runner. While this
seems like a valid assumption on the surface, it may also
inaccurately model the spring–mass behavior. The final
milliseconds of propulsion are often characterized by non-
linear elastic dynamics and thus exhibit a marked deviation from
SLIP kinetics (Cavagna, 2006). By assigning the observed
contact time to a spring–mass model, one would then bias the
model towards a contact time longer than what the underlying
spring–mass mechanisms would exhibit (da Rosa et al., 2019).
Lipfert et al. (2012) demonstrated that by allowing tc to vary
between model and experiment, they were able to predict COM
trajectories of runners more accurately from the estimated model
stiffnesses. Even the assumption of the runner’s average
horizontal velocity introduces systemic error, as the stance
velocity (from which the touchdown angle is traditionally
estimated) can be 2–3% lower than the step cycle’s average
velocity, which ultimately challenges the predictive stability of
the estimates (Bullimore and Burn, 2007; He et al., 1991).

While these differences may seem small in magnitude, they are
experimentally problematic for several reasons. The first reason
pertains to the inter-investigation comparability of observations.
With traditional kinetic measurement methods, variations in the
anatomical accuracy and method of leg length estimation and in the
filtering and thresholding for contact time determination will
manifest in the calculation of the touchdown angle and the
corresponding leg stiffness. When kinematic methods are used for
determination of these parameters, additional assumptions are
introduced, further challenging direct comparison of results
between studies (Brughelli and Cronin, 2008). The second reason
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Fig. 1. The spring-loaded inverted pendulum (SLIP) model of running.
(A) Illustration of themodel and (B) its interpretation in humans. A systemwith a
mass (m) moving at an average forward velocity (v) will have a maximal leg-
spring compression (ΔL) and vertical displacement (Δy) during stance for a
given spring stiffness (k), touchdown angle (αTD), resting spring length (L0) and
contact time (tc).

List of symbols and abbreviations
BIC Bayesian information criterion
COM center of mass
COP center of pressure
E energy of the system
Fmax maximal vertical force
g gravitational acceleration
k spring stiffness
kleg leg stiffness
kvert vertical stiffness
L0 leg-spring length
L00 height of the greater trochanter relative to the ground
L01 height of the greater trochanter as estimated using the

conventional 0.53 ratio of the standing height
m mass
ME mixed effects
NLR nonlinear regression
PS vGRF parameterized sinusoidal estimation of the vGRF
RMSE root mean-squared error
SAEM stochastic approximation expectation maximization
SLIP spring-loaded inverted pendulum
tc contact time
Tstep step time
v velocity
vGRF vertical ground reaction force
VI vertical impulse
ΔL linear length of the leg spring
Δy COM displacement
αTD touchdown angle
β duty factor
θ parameter vector
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pertains to the accuracy of the estimates in representing actual
spring–mass system dynamics, necessary for creating and assessing
predictive modeling of running systems (Ludwig et al., 2012; Maus
et al., 2015). Stable SLIP systems and their physical realizations are
highly sensitive to small parameter variations. Changes in the
model’s spring length by a centimeter or adjustment of the angle by
a degree can demand substantial changes in stiffness or the temporal
characteristics to maintain stability (Seyfarth et al., 2002). This
sensitivity coupled with the approximations described above has
challenged the ability to use model estimates in a predictive
capacity, as the traditional estimates do not yield symmetric, stable
SLIP systems (Bullimore and Burn, 2007). Because k is a
biomechanically latent variable, and the other spring–mass model
characteristics (true L0, true αTD and SLIP tc) are difficult, if not
impossible, to precisely measure in a runner, a method to estimate
these parameters simultaneously from the dynamics of a SLIP
system and informed by a single high-fidelity data source such as the
vGRF may yield more accurate and useful descriptions of the
spring–mass characteristics of a runner.
Because of the complex dynamics of SLIP models, direct model–

experiment comparisons have been limited, and estimation of best-
fit spring–mass parameters from the vGRF has been restricted to
iterative simulations, which themselves failed to estimate
parameters that produced stable running (Lipfert et al., 2012).
Ludwig and colleagues (2012) proposed a method that hybridized
kinetic and kinematic measures to estimate spring–mass parameters
without a defined biomechanical leg using COM trajectories and
best-fit SLIP model simulations. This liberated spring–mass
analyses from the ambiguity of leg length and touchdown angle
estimates and their corresponding assumptions. However, it requires
kinematic analyses with the corresponding motion capture
equipment. A method to estimate these measures with kinetic data
alone would be experimentally more efficient, invite fewer sources
of measurement error, and further facilitate comparison between
studies and across species.
Nonlinear regression (NLR) is a candidate for an efficient,

functional approach to the problem; it is a numerical method that
allows for parameter estimation of a nonlinear function from
observed data (Bates and Watts, 1988). If the vGRF of a SLIP
system is modeled as a time-varying function, NLR is a promising
tool to estimate these SLIP parameters with fewer anatomical or
mechanical assumptions and no additional measurement sources.
Furthermore, as opposed to alternative optimization techniques
for parameter estimation, its functional framework can reveal the
nature of interactions among the parameters, allowing a
description of the variance structure of the estimates and
extending the models to include fixed and random effects on
their estimates. Leveraging this technique with a functional form
of the SLIP vGRF could yield a comprehensive description of the
spring–mass behavior of a runner that is informed by the full
shape of the vGRF time series data rather than single extracted
values.
The purpose of this investigation was fourfold: (1) to derive a

parameterized, time-varying functional form of the SLIP vGRF;
(2) to validate the accuracy of the function in describing the actual
vGRFs of SLIP models with known parameter combinations;
(3) to apply the NLR technique to analyzing the spring–mass
characteristics of human runners and to compare it with the
conventional methods of spring–mass analyses; and (4) to compare
the stability of predicted SLIP running simulations driven by the
experimentally observed spring–mass parameters from both the
NLR-based and traditional estimates.

MATERIALS AND METHODS
A parameterized functional form of the spring–mass vGRF
The time-varying vGRF of a SLIP system has been approximated as
a half-sinusoid with an amplitude of Fmax and a period defined by
the contact time (tc) as per Eqn 4 (Blum et al., 2009; Morin et al.,
2005; Robilliard and Wilson, 2005). By twice-integrating this
sinusoid over tc, we obtain the vertical displacement of the COM,
Δy, defined by Fmax and tc (Cavagna et al., 1977;Morin et al., 2005):

Dy ¼ Fmax

m

tc
p

� �2
� g

8
t2c : ð5Þ

A maximal change in ‘leg’ length (ΔL) of the model at midstance
can then be derived by incorporating Eqn 5 into Eqn 2. This
relationship includes the resting leg length (L0) and the touchdown
angle (αTD):

DL ¼ L0 þ Fmax

m

tc
p

� �2
� g

8
t2c � L0 sinaTD: ð6Þ

The spring constant, or stiffness (k), of the system is defined as the
ratio of Fmax to ΔL as per Eqn 1 (McMahon and Cheng, 1990).
Using this relationship and Eqn 6, Fmax can be expressed as a
quantity defined by k, αTD, L0 and tc:

Fmax ¼ k
L0 � g

8
t2c � L0 sinaTD

1� k

m

tc
p

� �2 : ð7Þ

Finally, to constrain the function to be non-zero from 0≤t≤tc, and
zero-valued where t>tc, a logistic multiplier can be added to
continuously behave as a Heaviside function:

f ðtÞ ¼ 1� 1

1þ e�1010ðt�tcÞ
: ð8Þ

Here, f (t)=1 for t<tc and f (t)=0 for t≳tc. Combining Eqns 4, 7
and 8, a parameterized sinusoidal time-varying function is created
of the SLIP model’s vGRF (PS vGRF), as defined by the four
parameters: k, L0, αTD and tc:

FyðtÞ ¼ k
L0 � g

8
t2c � L0 sinaTD

1� k

m

tc
p

� �2
0
BB@

1
CCA sin t

tc
p

� �

� 1� 1

1þ e�1010ðt�tcÞ

� �
: ð9Þ

This defines each vGRF for the SLIP model as a parameter vector θ,
where:

u ¼
k

aTD

L0
tc

2
64

3
75: ð10Þ

Therefore, a runner’s experimentally observed vGRF curve can be
modeled as:

y ¼ Fyðx; uÞ þ 1; ð11Þ
where y is an n-by-1 vector of n discrete time points, x is an n-by-1
matrix of the n discrete time points, and ε is an n-by-1 vector of the
residual error. NLR can thereby be used to estimate the SLIP
parameter θ that minimizes ε for the observed vGRF. Standard
estimation approaches, such as least squares or maximum
likelihood, can be used for their determination.
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Validation with SLIP simulations
To validate the accuracy of the proposed functional form of the SLIP
model vGRF, the PS vGRF time series were compared with the
vGRF time series of simulated SLIP models. Stable SLIP
simulations were generated using the equations of motion of the
sagittal plane SLIP system (Blickhan, 1989; Seyfarth et al., 2002).
Models were simulated across seven running speeds from 3 to
6 m s−1 in 0.5 m s−1 increments. Models were simulated with
masses of 50, 60, 70 and 80 kg. Leg lengths of 0.9 and 0.95 m were
both used for 50 and 60 kg models, and leg lengths of 1.00 and
1.05 m were used for the 70 and 80 kg models, representative of
human runners. Simulations were carried out inMATLAB using the
ode45 solver (MATLAB 2019a, MathWorks, Natick, MA, USA) to
achieve a parameter set that yielded stability over 25 steps for speeds
of 4.0–6.0 m s−1 and 10 steps for speeds of 3.0 and 3.5 m s−1

(Seyfarth et al., 2002). Single-step vGRF time series were then
generated for each model. A time series of vGRF data points was
generated using the functional form of the SLIP GRF (PS vGRF;
Eqn 9) with the simulated SLIP parameters as direct inputs, and this
time series was compared against the actual SLIP model’s vGRF by
calculating the root mean-squared error (RMSE). Next, the four
parameters for each SLIP simulation were estimated from the
simulation’s vGRF using NLR. The change in each parameter from
the known and simulation values was recorded, and the subsequent
vGRF time series with the NLR-estimated parameters was
generated for each model to compare its RMSE from the SLIP
simulation.

Experimental data collection
To apply the NLR technique to human runners and examine it
against traditional measurements, vGRF recordings were used
from a public dataset of running biomechanics (Fukuchi et al.,
2017). A detailed description of the methods is available from
Fukuchi and colleagues (2017), but for the purpose of this study,
select files were used from a subset of seven subjects running on
an instrumented treadmill at 4.50 m s−1. The vGRF was recorded
continuously for 30 s at 300 Hz (FIT, Bertec, Columbus, OH,
USA). All vGRF time series recordings were extracted from the
database and processed in MATLAB using custom-written
algorithms to isolate single step cycles with detection
thresholds set at 50 N. The subject’s height, weight and foot
strike pattern were matched to their coded metadata file.
Additionally, each subject’s standing leg length was measured
as the average height of the left and right legs’ anatomical
markers corresponding to the greater trochanter as recorded
during a standing static calibration relative to the ground. Because
the purpose of this investigation was to be demonstrative in
nature, analyses and summary statistics for each subject are
presented individually.

Traditional estimation of spring–mass parameters
For each runner, L0 was recorded using the two common effective
leg approximations: as the height of the greater trochanter (L00)
relative to the ground and as estimated using the conventional 0.53
ratio of the standing height (L01) (Morin et al., 2005; Winter, 2009).
The αTD for each step was estimated as per Eqn 3 (αTD1). The
traditional stiffness estimation (k0) was calculated using the kinetic
method described by McMahon and Cheng (1990) with the leg
compression modeled via the method of He and colleagues (1991).
The conventional sinusoidal vGRFs and stiffness estimates (method
1, k1) were generated using the sinusoidal method proposed by
Morin and colleagues (2005).

NLR estimation of spring–mass parameters
For each step cycle collected, NLR was used to estimate θ from the
vGRF recordings that minimized ε. First, a constrained model was
used, where only k was estimated, and L0, αTD and tc were
constrained to traditional measurements (method 2). Second, an
unconstrained NLR was performed to estimate all four parameters
for each step simultaneously, treating each step as an independent
observation (method 3). Finally, a mixed-effects (ME) NLR model
was estimated for each subject, treating the subject’s steps as a
random effect (method 4). The results of these estimations were
compared with the conventional measurements and stiffness
estimations. The Nonlinear Regression tools in MATLAB were
used for the NLR analysis (MATLAB 2019a). See Appendix A for
details of the implementation; sample code and a demonstration of
the methods are available from GitHub (https://git.io/JIwzS).

To compare the quality of each method’s approximated vGRF
time series, all models were compared with the experimentally
observed vGRF on several metrics, including the respective vertical
impulses, RMSE of each model’s vGRF against the observed
curves, and Bayesian information criterion (BIC) of each model.
This final measure provided a comparative quality assessment of a
model, where a decrease in the value indicates a better fit, as the
metric weights by the number of parameters to penalize overfitting.

Stability of parameter estimations in simulated SLIP models
To assess the quality of the spring–mass parameter estimates, SLIP
models for each of the seven subjects were generated to run at
4.5 m s−1 using the four parameter values from both the traditional
estimates and the ME NLR estimates. They were compared for
stability on the basis of howmany steps eachmodel could run before
becoming unstable and ‘falling’ (Lipfert et al., 2012; Seyfarth et al.,
2002). The SLIP simulations were generated using the equations of
motion of the sagittal plane SLIP system (Blickhan, 1989; Seyfarth
et al., 2002), where the model was assigned the stiffness, touchdown
angle and leg length from each estimation method. The system was
assigned a horizontal flight velocity of 4.59 m s−1, which produced
average step cycle velocities within 1% of 4.5 m s−1. The apex
height above the touchdown height was assigned using a calculation
assuming simple ballistic motion during flight. The flight time was
calculated using the difference of the observed step time (Tstep) and
the observed (traditional) or estimated (NLR) contact time:

yapex ¼ g

8
ðTstep � tcÞ2 þ L0 sinaTD: ð12Þ

The simulated spring–mass system for each subject then passively
‘ran’ until its point mass crossed the ground line, indicating a fall.
The simulations were terminated if the model reached 1000 steps,
which was defined as a stable model.

RESULTS
Simulation and validation
For each of the mass–length combinations, 5 simulations with
distinct parameters were generated at each of the 7 speeds, providing
280 unique SLIP models. The parameter set for each model was
used to directly generate a vGRF time series, and NLR was used to
estimate parameters from each SLIP model and generate a NLR-
adjusted vGRF time series. The PS vGRF function (Eqn 9) provided
an accurate estimation of actual SLIP vGRFs at moderate and faster
speeds on its own, and the use of NLR provided small adjustments
of parameters that yielded more accurate estimation of actual SLIP
vGRFs across all speeds. The RMSE of each method is summarized
in Table 1, as well as the magnitude and percentage change of the
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NLR-adjusted parameters. The PS vGRF of Eqn 9 was an excellent
estimation of the spring–mass vGRF at moderate and faster speeds
(4.0 m s−1 and faster). NLR adjustment of the model parameters
improved the fit of Eqn 9 to be excellent across all speeds, and the
adjustment of these parameters was small in magnitude (0.01–
0.41%). Fig. 2 provides sample vGRFs of three SLIP models at
three speeds with the direct-input and NLR-adjusted PS vGRF
functional estimations of the actual vGRF overlaid.

NLR estimation of spring–mass parameters in runners
Subject characteristics and measured SLIP parameters are provided
in Table 2. The two methods using measured and assumed
parameters (L0, αTD and tc) to estimate stiffness – a conventional
sinusoidal approximation (method 1) and the single-parameter
constrained NLR model (method 2) – yielded the poorest fits to the
observed data in the vGRFs generated from the parameters (RMSE:
230.2 and 221.2 N, respectively). The full NLR method estimating
all four parameters and treating each step as an independent
observation (method 3) improved the fit (RMSE: 170.6 N), and the
full NLR method treating each step as a random effect yielded the
best fit (RMSE: 155.3 N). Correspondingly, the vertical impulses
(VI) followed the same pattern, with the traditional approximation
overestimating the VI (223.6 N s) compared with the observation
(214.8 N s), and the ME NLR models more closely matching it
(209.0 N s). The summary of parameter estimates and model fit for
each method and each subject are summarized in Table 3.
The stiffness estimates from the full ME NLR model

yielded values consistent with traditional kinetic approximations

(−0.2±0.6 kN m−1, mean±s.d.). The estimated leg lengths of the
model (i.e. virtual spring–mass leg) tended to be longer than the
measured leg length and conventional estimate (i.e. effective legs)
by 4.2±2.3 and 4.1±2.3 cm, respectively. The touchdown angles
were slightly steeper than the conventional estimates by 1.2±
0.7 deg. The effective contact times of this model were 12±4 ms
shorter than observed. The stiffness estimates from the full
independent NLR model were consistent with the other methods
(−0.2±0.6 kN m−1 against the conventional method). The leg
lengths estimated via this approach were similar to the measured
lengths (−0.7±0.4 cm), and the touchdown angles were similar to
conventional approximations as well (0.4±0.1 deg). The effective
contact times of this model were similarly 12±4 ms shorter than
observed. The subject-specific differences among parameters are
summarized in Table 4. A sample sequence of steps with vGRFs of
methods 1, 3 and 4 fitted to the observed GRF is shown in Fig. 3.

Within five of the seven subjects, the ME NLR model indicated
that step-to-step adjustments in leg length and touchdown angle
were highly covaried (0.99), and in several subjects, adjustments in
stiffness were moderately covaried with estimated leg lengths
(0.03–0.84). Changes in contact time tended to be uncorrelated with
adjustments in any other parameters. Correlation matrices for the
four parameters for each subject are compiled in Table S1. All steps
for a single subject with their individual models from the random-
effects parameter estimates are shown in Fig. 4.

In addition to the improved fit of the vGRF curves, the
spring–mass parameters from the fixed effects of the ME NLR
method yielded more stable SLIP models that ‘ran’ further before

Table 1. Simulation summary across speeds

v (m s−1)

Sinusoid approx. error NLR parameter adjustment (absolute) NLR parameter adjustment (percentage)

RMSE (N) RMSE NLR (N) Δk (N m−1) ΔαTD (deg) ΔL0 (m) Δtc (s) Δk (%) ΔαTD (%) ΔL0 (%) Δtc (%)

3.0 242.9 15.8 36.02 −0.037 0.00401 0.00071 0.23 −0.05 0.41 0.34
3.5 112.8 11.1 22.61 −0.029 0.00294 0.00039 0.13 −0.04 0.30 0.21
4.0 34.0 8.2 17.33 −0.020 0.00190 0.00025 0.10 −0.03 0.19 0.14
4.5 18.6 6.3 12.93 −0.015 0.00132 0.00018 0.08 −0.02 0.13 0.11
5.0 13.3 5.5 11.07 −0.013 0.00106 0.00014 0.07 −0.02 0.11 0.09
5.5 10.4 4.7 8.18 −0.009 0.00074 0.00009 0.05 −0.01 0.08 0.06
6.0 7.2 3.5 7.71 −0.007 0.00060 0.00005 0.04 −0.01 0.06 0.04

v, velocity; RMSE, root mean-squared error; k, spring stiffness; αTD, touchdown angle; L0, leg-spring length; tc, contact time; NLR, nonlinear regression.
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Fig. 2. Sample vertical ground reaction forces (vGRFs) of SLIP models and functional estimates of their vGRFs. Shown are vGRFs of a 60, 70 and 80 kg
SLIP model (green lines) with leg lengths of 0.95, 1.00 and 1.05 m, respectively, at 3.5, 4.5 and 5.5 m s−1 (line thickness corresponds to speed). The
parameterized sinusoidal estimation of the vGRF (PS vGRF) is shown with direct input of the four SLIP parameters (magenta) and with the nonlinear regression
(NLR)-adjusted parameters (blue). Note the poor fit of the direct functional estimation at the lower speed (thin magenta line versus thin blue and green lines) and
the good fit of the NLR-adjusted parameter estimation (i.e. overlap of blue and green lines across all speeds).
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failing in the majority of subjects as compared with simulations
generated using traditional estimates. For four of the seven
subjects, their NLR models outperformed the traditional models,
and in one of the seven subjects, the traditional model
outperformed the NLR model. In two of the subjects, both
methods produced stable dynamics. The vGRF for each of subject
A’s simulated SLIP models can be seen in Fig. 5. The results for
each subject are provided in Table 5.

DISCUSSION
We have presented a novel method to use NLR approaches to
estimate the spring–mass parameters of a runner using only the
observed vGRF time series as the input. First, we derived and

validated a parameterized, time-dependent functional form of the
spring-loaded inverted pendulum’s vGRF using the sinusoidal
approximation. Then, we applied this to a group of runners and
demonstrated the similarities and differences to a conventional
estimation of spring–mass behavior. The NLR technique provided
stiffness estimations that were consistent with traditional methods,
but it more accurately modeled the runner’s vGRF, more closely
approximated the observed vertical impulse of the runner, and
ultimately yielded spring–mass parameter sets that produced more
stable simulated running. This was due to further adjustments in leg
length, touchdown angle and contact time – values modeled with
uncertainty via NLR but typically constrained in conventional
estimates of stiffness.

Table 2. Measured parameters for each subject

Subject

Mean±s.d.Parameter A B C D E F G

m (kg) 65.4 68.2 70.9 77.2 78.3 63.2 64.8 69.7±6.1
h (m) 1.770 1.745 1.750 1.819 1.778 1.732 1.690 1.755±0.04
FS RF RF RF RF NR NR NR –

L00 (m) 0.964 0.938 0.906 0.964 0.945 0.901 0.889 0.929±0.03
L01 (m) 0.938 0.925 0.928 0.964 0.942 0.918 0.896 0.930±0.02
Fmax (N) 1935 1701 1867 2353 2055 1603 1712 1889±256
tc (s) 0.194 0.195 0.188 0.195 0.195 0.173 0.186 0.189±0.008
αTD (deg) 63.1 62.1 62.2 63.0 62.4 64.4 62.0 62.7±0.8

Contact time (tc) and touchdown angle (αTD) are presented as averages over the 80 steps. L00 indicates leg length as the height of the greater trochanter, and L01
indicates leg length as estimated from height. Foot strike (FS) type is indicated as rearfoot (RF) or non-rearfoot (NR). m, mass; h, height.

Table 3. Summary of subject-specific SLIP parameters estimated by conventional and NLR methods (80 steps)

Subject

Method Parameter A B C D E F G Mean±s.d.

Traditional k0 (N m−1) 12,241 11,572 13,089 15,001 13,638 13,547 11,886 12,996±1195

Method 1 Conventional Sinusoid k1 (N m−1) 11,218 10,718 11,688 13,287 12,731 12,721 11,146 11,930±980
αTD1 (deg) 63.1 62.1 62.2 63.0 62.4 64.4 62.0 62.7±0.8
L00 (m) 0.964 0.938 0.906 0.964 0.945 0.901 0.889 0.929±0.031
tc (s) 0.194 0.195 0.188 0.195 0.195 0.173 0.186 0.189±0.008
BIC 62,736 64,856 60,668 69,021 67,002 58,574 59,573 63,204±3921
RMSE (N) 180.3 218.3 179.2 344.9 275.8 243.1 169.5 230.2±63.7
VI (N s) 230.9 208.1 205.0 280.9 254.4 182.8 203.3 223.6±34.0

Method 2 NLR Constrained (1 parameter) k2 (N m−1) 11,067 10,526 11,630 13,132 12,480 12,390 10,967 11,742±953
αTD1 (deg) 63.1 62.1 62.2 63.0 62.4 64.4 62.0 62.7±0.8
L00 (m) 0.964 0.938 0.906 0.964 0.945 0.901 0.889 0.929±0.031
tc1 (s) 0.194 0.195 0.188 0.195 0.195 0.173 0.186 0.189±0.008
BIC 62,238 64,496 60,588 68,872 66,600 58,089 58,869 62,822±4021
RMSE (N) 170.9 210.0 177.7 339.5 264.2 229.4 156.6 221.2±64.1
VI (N s) 222.2 199.0 202.6 271.4 241.7 171.0 195.4 214.8±33.3

Method 3 NLR Unconstrained
(4 parameters) Independent steps

k3 (N m−1) 11,887 11,382 12,708 14,734 13,487 13,336 11,719 12,750±1191
αTD3 (deg) 63.7 62.5 62.9 63.4 62.6 64.7 62.3 63.1±0.8
L03 (m) 0.951 0.931 0.896 0.958 0.942 0.897 0.885 0.923±0.030
tc3 (s) 0.186 0.182 0.176 0.176 0.180 0.161 0.176 0.177±0.008
BIC 61,648 63,621 65,814 64,590 64,590 57,586 56,468 62,045±3669
RMSE (N) 141.4 168.7 215.7 187.9 187.9 187.8 104.9 170.6±36.8
VI (N s) 218.5 193.8 197.6 261.7 234.5 166.3 191.1 209.0±31.7

Method 4 NLR Unconstrained
(4 parameters) Random effect steps

k4 (N m−1) 11,622 11,981 13,171 14,606 13,912 12,433 12,111 12,834±1103
αTD4 (deg) 63.8 63.9 63.9 63.8 64.1 64.6 63.7 64.0±0.3
L04 (m) 0.991 0.960 0.921 1.008 1.005 0.982 0.931 0.971±0.035
tc4 (s) 0.186 0.182 0.176 0.176 0.180 0.161 0.176 0.177±0.008
BIC 59,629 61,434 55,960 63,835 62,539 55,588 54,524 59,073±3721
RMSE (N) 136.9 164.4 112.1 208.9 182.3 181.2 101.4 155.3±39.7
VI (N s) 218.4 193.7 197.5 261.6 234.4 166.2 191.0 209.0±31.7

Observed VI (N s) 220.4 200.8 198.7 272.4 242.2 173.9 195.4 214.8±33.2

k, spring stiffness; αTD, touchdown angle; L00, leg length as the height of the greater trochanter; tc, contact time; BIC, Bayesian information criterion; RMSE, root
mean-squared error; VI, vertical impulse.
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Validity of parameterized sinusoidal GRF function
The first contribution of this work was the derivation and validation of
the parameterized sinusoidal vGRF function (PS vGRF). The vGRF
of a runner has commonly been modeled as a sinusoid (Cross, 1999)
and adapted for spring–mass analyses (Blum et al., 2009;Morin et al.,
2005; Robilliard and Wilson, 2005), yet the function has never been
systematically validated against the SLIPmodel whose behavior it was
approximating. Robilliard and Wilson (2005) compared their
sinusoidal approximation of the vGRF with a numerical SLIP
simulation, but their analysis was restricted to a single model across
several angles, and the model itself was assigned parameters
simulating a horse. To our knowledge, no systematic validation of
the sinusoid as a SLIP approximation has been carried out across
speeds and geometries or in models representing human runners.
The PS vGRF approximation alone proved to be a valid

representation of the SLIP vGRF at moderate and faster speeds
(4.0 m s−1 and faster), and with minor adjustments of the
parameters via NLR, at slower speeds. Direct input of the model
parameters yielded poor approximations of the SLIP vGRF at
these lower speeds. That was likely due to several features of the
system. First, the SLIP model was inherently unstable at these
lower speeds, with parameter configurations that were increasingly
more constrained and even infeasible (Seyfarth et al., 2002;

Seyfarth et al., 2003). Second, and likely most notably, the
derivation of the PS vGRF’s amplitude relied on the double-
integration of the underlying sinusoid to approximate the vertical
oscillation (Eqn 5). So, if its similarity to the SLIP model
decreased at lower speeds by a fractional amount, that error would
have propagated according to a power law through the integrations
and yielded much greater discrepancies in the positional
approximation and the corresponding sinusoidal amplitude
approximation here.

By using NLR to estimate the spring–mass parameters from the
‘observed’ SLIP numerical simulation rather than directly inputting
the simulation’s parameters into the PS vGRF, however, we
obtained parameters that were very close (all <0.5% different) to the
simulation’s actual values with fits that were excellent across all
speeds. That was likely due to the aforementioned error propagation
from the double integration, with the small parameter adjustments
‘correcting’ any underlying deviations or rounding errors. Given
that the magnitudes of the adjustments were negligible and within
the common reporting sensitivity of the values, the simulation
comparisons suggested that the sinusoidal approximation alone was
valid at moderate and faster speeds, and that NLR estimation of
SLIP parameters with the PS vGRF was a valid technique to
estimate spring–mass parameters across all speeds.

Table 4. Changes in parameters between models across subjects

Subject

Mean±s.d.Parameter A B C D E F G

ΔStiffness (N m−1)
k1–k0 −1023 −854 −1401 −1713 −908 −826 −739 −1066±358
k2–k0 −1174 −1046 −1459 −1868 −1158 −1157 −919 −1254±316
k3–k0 −354 −191 −381 −267 −151 −211 −167 −246±91
k4–k0 −619 409 82 −395 274 −1114 225 −163±562
k4–k3 −265 599 463 −128 425 −903 392 83±542

ΔTouchdown angle (deg)
αTD3–αTD1 0.6 0.4 0.6 0.4 0.2 0.3 0.4 0.4±0.1
αTD4–αTD1 0.7 1.8 1.7 0.8 1.7 0.2 1.7 1.2±0.7
αTD4–αTD3 0.1 1.4 1.1 0.5 1.5 −0.1 1.3 0.8±0.7

ΔLeg length (m)
L01–L00 −0.026 −0.013 0.022 0.000 −0.002 0.017 0.006 0.001±0.017
L03–L00 −0.013 −0.008 −0.010 −0.006 −0.003 −0.004 −0.004 −0.007±0.004
L04–L00 0.027 0.022 0.015 0.044 0.061 0.082 0.041 0.042±0.023
L04–L01 0.053 0.035 −0.007 0.043 0.063 0.064 0.035 0.041±0.024
L04–L03 0.040 0.030 0.025 0.050 0.064 0.085 0.046 0.048±0.021

ΔContact time (s)
tc3–tc1 −0.008 −0.012 −0.011 −0.019 −0.015 −0.012 −0.010 −0.012±0.004
tc4–tc1 −0.008 −0.013 −0.011 −0.019 −0.015 −0.012 −0.010 −0.012±0.004
tc4–tc3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000±0.000

0
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Time (s)
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11.2

500

1000
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Fig. 3. Sample steps from a subject with vGRFs modeled using the SLIP parameters from methods 1, 3 and 4. Ind., independent; ME, mixed effects.
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NLR-estimated spring–mass parameters yield more
accurate GRFs
While conventional analyses are informed by discrete kinetic data
points or spatiotemporal values (e.g. maximal force and/or
contact time) and are constrained by geometric approximations
of the runner’s anthropometry (e.g. leg length and/or touchdown
angle), this method allows the spring–mass parameter
approximation to be informed by full vGRF time series and
allows for uncertainly in the otherwise assumed parameters. Here,
these estimates resulted in vGRFs that more closely modeled
those produced by the runners, with the average error (RMSE) of
the ME NLR method being 155 N versus 230 N in the traditional
sinusoidal method. The BIC of the NLR models, a measure of fit
that penalizes the addition of parameters and overfitting,
paralleled the RMSE patterns, as it decreased with each model
as compared with the conventional sinusoid and was lowest in the
ME NLR models (average BIC of 59,073 versus 63,204 for the
ME NLR versus convention). That further resulted in VI values
that more closely matched the observation: the observed and ME
NLR-estimated average VI here was 214.8 N s and 209.0 N s,
respectively, while the traditional estimate was 223.6 N s. The
conventional methods that constrain the spring–mass estimates,
especially to the explicitly observed tc, thus yielded a parameter
set that over-estimated the runner’s total vertical force–time
relationship.

Both Morin et al. (2005) and Blum et al. (2009) observed this
limitation of the sinusoidal approximation in their respective
explorations, observing VI biases of 5.3% and 10.5%, respectively.
Morin et al. (2005) used a duty factor relationship to further estimate
the peak vGRF (rather than explicitly constraining it), which resulted
in 6.9% lower peak force, and thus the lower bias. Blum et al. (2009)
mitigated the discrepancy by applying a correction factor to the
sinusoid’s amplitude, defined as the ratio of the observed and
modeled VI, and found it to be similar to the duty factor correction.
However, both of these methods simply attenuate the peak force and
not the underlying temporal dynamics of the spring–mass behavior.
They are thus biased by any small but significant deviations from the
modeled behavior, such as the distinct nonlinear elasticity in the final
moments of propulsion, where the magnitude of the vGRF forces is
small, but the foot is still in contact with the ground (Cavagna, 2006;
Cavagna et al., 2008). This is conceptually similar to using the
‘effective’ tc – the time for which the runner exceeds body weight
during stance – which has been shown to be more sensitive in
discriminating spring–mass parameters between runners of varying
ability (da Rosa et al., 2019).

NLR-estimated spring–mass parameters differ from
conventional measurements
The ME NLR modeling provided stiffness values consistent with
those of the traditional estimate, but it revealed differing geometries
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Fig. 4. Eighty steps from a rearfoot striking subject
and a non-rearfoot striking subject with modeled
vGRFs as estimated from the ME NLR model.
(A) Rearfoot strike (subject A); (B) non-rearfoot strike
(subject E). The NLR-modeled vGRF of the overall
subject parameters (black line) is shown with
individual step parameters from the random effects
(gray lines) and individual observed vGRF (colored
lines).
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Fig. 5. Example steps-to-fall SLIPmodel running simulation for subject Awith spring–mass parameters determined via traditional kinetic andME NLR
methods. (A) The model simulated with traditional spring–mass estimates falls after 10 steps, while (B) the model simulated with NLR-derived spring–mass
parameters falls after 59 steps.
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and temporal relationships among the parameters. The hypothesis
for longer leg lengths than those approximated by traditional leg
length- or height-based measurements was supported. The average
difference within the subjects between the traditional leg-length
assumption and the ME NLR-estimated length was 4.2 cm. This
suggested that the effective COM of the runners was better modeled
as more distal to the ground than typically assumed. The static COM
for a human standing is higher than that of the leg height, with
Clauser et al. (1969) measuring it as 0.58 of the standing height.
Interestingly, Blum et al. (2009) used a correction factor of 1.10 of
the measured greater trochanter height (determined from subjects
lying on a force plate), which would have corresponded to a ‘virtual’
spring-leg length 9.4 cm higher than that of the biological leg. Our
approximations similarly predicted longer legs, and the estimation
fell roughly halfway between the measured leg length and the static
COM. The NLR method thus allows for subject-specific estimation
of a best-fit effective COM location without the segmental
assumptions, balance plates or kinematic markers otherwise
required (Lafond et al., 2004; Winter, 2009).
In addition to the longer spring legs, the NLR estimation suggested

that the runners tended to run with touchdown angles that were
1.2 deg steeper than the conventional estimate. Given the sensitivity
of spring–mass systems to this angle, inaccurate approximation of this
value would mischaracterize the system and could characterize an
otherwise infeasible combination of spring–mass parameters
(Seyfarth et al., 2002). The traditional method of approximating the
touchdown angle (Eqn 3) necessarily underestimates a SLIP system’s
actual touchdown angle (see Appendix B), but it is also dependent on
the assumed leg length and contact time, further confounding its
accuracy. Finally, as described above, the ‘effective’ spring–mass
contact times of the runners were lower than the observed values by
an average of 12 ms. This would also imply a corresponding
reduction in the modeled flight time and an increase in the duty factor
of the runner’s spring–mass system for a given step time. This
temporal difference in the contact phase was likely due to the
aforementioned nonlinearity in the moments prior to toe-off. Here,
the magnitude of the vGRF was small relative to the rest of the time
series, but the foot nevertheless remained in contact with the ground
and thus extended the contact time. Clark et al. (2017) used a cosine
bell-curve to capture that nonlinear elasticity fully, but the shape was
not informed by the spring–mass parameters per se. Also, the selected
event thresholds and filtering parameters of raw vGRF data influence
the precise estimations of heel contact and toe off, and thus can
significantly alter contact time estimations (Tirosh and Sparrow,
2003). The NLR method presented here resolved that sensitivity by
using the entire vGRF curve to estimate the contact time of a spring–
mass system that best described the systemic dynamics of the runner,
rather than assigning a fixed value to that system.

NLR modeling yields parameters that produce more stable
running models
Traditional spring–mass calculations fail to produce parameters that
elicit stable SLIP running models with symmetric bounces (Bullimore
and Burn, 2007). This has been resolved by iterating on one or more of
the calculated parameters to produce a stable, symmetric simulation,
such as k (McMahon and Cheng, 1990), αTD (Bullimore and Burn,
2007) or L0 (Lipfert et al., 2012). Bullimore and Burn (2007) identified
three reasons for this model–experiment mismatch: experimental error
in measured values, mechanical differences between subjects (human
or otherwise) and themodel, and the use of the overall mean velocity as
opposed to the stance-phase velocity. Rather than making mechanical
assumptions to superimpose themodel on the subject, these issuesmay
be resolved by imposing the subject on themodel – that is, determining
the spring–mass parameters that produce a model that behaves like the
subject does. Ludwig and colleagues (2012) demonstrated a means to
do this by fitting SLIP simulations to experimentally observed COM
trajectories, and their method managed to produce symmetric systems
over single step cycles. However, their method required both kinetic
and kinematic measurements from subjects as well as iterative model
simulations.

Our method attempted to resolve those three issues identified by
Bullimore and Burn (2007) using only kinetic force recordings and
within a statistical framework for computational and analytical
efficiency. The use of a single, high-fidelity measurement source –
vGRF – improved on their first point, and the modeling of uncertainty
on the mechanical parameters of the system resolved the second. The
derivation of the PS vGRF (Eqn 9) and the corresponding length–
angle approximation (Appendix B), which approximates the flight and
stance velocities, resolved the third point, as the PS vGRF equation
itself was not determined by the stance velocity. Correspondingly, the
NLR method produced SLIP models that demonstrated symmetric
bounces and were generally as stable or more stable than models with
traditional parameters. The SLIP models with NLR-estimated
parameters for four of the seven subjects ran further, and two more
of the seven achieved stability with both methods. As discussed
previously, the parameter adjustments to realize these stability
improvements were often not large in magnitude, and they were
supportive of biomechanical hypotheses (e.g. slightly longer model
legs). Seyfarth and colleagues (2002) demonstrated that small changes
in these parameters can affect model stability, which further suggested
that these mechanical parameters could be more safely modeled with
uncertainty.

It was surprising that several of the models exhibited
stability with the traditional method, with one outperforming the
NLR-based estimates. Lipfert et al. (2012) performed a similar exercise
by iteratively fitting force–length curves to experimental observations
to find a best-fit L0. However, their parameters failed to produce stable
SLIP models, which they resolved by allowing the models to vary the
touchdown angles from the observed estimate. We would hypothesize
that our traditional models achieving stability did so for two reasons.
First, we generated our simulations with horizontal flight velocities
higher than the average velocity so that the simulation’s step cycle
velocity matched the experimental velocity, improving simulation–
experimentmatching. Second,we used a higher actual average running
velocity itself. The parameter space for stable spring–mass running
increases exponentially with speed (Seyfarth et al., 2002). The subjects
used in the current study were running at 4.5 m s−1, whereas the
aforementioned investigation used a maximal speed of 4 m s−1. It
remains to be explored whether the stability of the estimates persists at
lower speeds and whether the degree to which they outperform
increases or decreases as the running speeds vary.

Table 5. Stability of parameter estimates as assessed by consecutive
steps until falling in a SLIP running simulation using the traditional
kinetic and mixed-effects (ME) NLR methods

No. of steps to falling

Subject Traditional ME NLR

A 10 59
B >1000 >1000
C 19 >1000
D 8 9
E 20 51
F 139 16
G >1000 >1000
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NLR modeling facilitates efficient model–experiment
comparisons of spring–mass systems in running
Another advantage of our approach is that it facilitates comparison
of a runner with a spring–mass system. Because of the complexity
of the system’s dynamics, there is no closed-form analytical
solution that describes its mechanics. Previous attempts to compare
runners with the system have been limited, restricted to iterating
simulation of SLIP behavior (Geyer et al., 2005; Lipfert et al.,
2012). That approach is computationally intensive, preventing more
complex or comprehensive analyses of many steps within a runner
or a cohort. The current study demonstrated that the PS vGRF
function provided a robust approximation of the SLIP vGRF.
Therefore, comparison of experimental observation with best-fit
curves can provide a metric of how closely a runner behaves like the
spring–mass system. For example, subject C had dynamics that
more closely resembled a simple SLIP model than did subject B
(RMSE: 112 N versus 164 N).

MENLRmodeling reveals correlation patterns in step-to-step
spring–mass parameter adjustments
In applying the NLR technique to estimate the spring–mass
parameters, the ME modeling improved the fit of the model
beyond independently modeling each step. That benefit of the ME
models likely stemmed from three characteristics of the modeling.
First, the random effect term on each parameter came from a
conditional distribution that maximized the observed likelihood
function of the parameters, rather than an independent, discrete
value (Bates and Watts, 1988; Feodor Nielsen, 2000). Thus, the
solution was more robust to the complex interactions of the
parameters and less sensitive to the starting estimates. Second, it
gave the model fewer overall parameters and more degrees of
freedom, as evidenced by the reduction in the BIC across models,
with the ME NLRmodel having the lowest BIC and fewest defining
parameters. Third, the sensitivity of the independent models to the
starting estimates may be compounded by any errors in the solution
process across the 80 steps. To minimize solver bias, we used each
step’s conventional parameters as starting estimates for its model
(each step’s k0, αTD1, L00 and tc1), but that cannot rule out any bias or
local optima from the gradient-based solution. The stochastic
approximation expectation maximization (SAEM) algorithm used
in the ME estimation uses global optimization tools and thus may
have been more robust to this issue.
The ME NLR model provided further utility in revealing a

variance–covariance structure among parameters. This allows for
hypothesis testing among the parameters when fixed-effect terms
are introduced.Moreover, it reveals the covariance of the parameters
in the model estimates. Here, the leg length and touchdown angle
were highly covaried in some of the runners, suggesting that these
terms may have been better modeled together as a single geometric
term (see Appendix B for suggested methodology) or with one as a
fixed parameter. Furthermore, both stiffness and contact time had
little covariance with the other parameters in most of the subjects,
suggesting that those parameters maintained independence within
the system.
The ability to characterize step-to-step parameter adjustments and

their underlying variance structure presents new opportunities to
study the variability patterns within an individual’s gait. Current
methods of characterizing gait variability assess temporal
relationships of single parameters (e.g. stride length: Jordan et al.,
2006; or COM excursion: Schutte et al., 2015) or compare the
phasic relationships of specific joint segments (e.g. thigh–shank and
shank–foot: Hafer et al., 2016). Here, we used the NLR method to

assess systemic behavior with the spring–mass template across the
entirety of a vGRF sequence. This provides both a means to quantify
the variability in the parameters and a tractable physical realization
of those adjustments. These within-subject system-level
adjustments were brought into relief with the NLR analysis here,
and its statistical framework provides a means to further explore
their dynamics with the application of more advanced ME models.

Limitations
While the NLR method for spring–mass analyses provided the
aforementioned advantages, it had several limitations in scope and
application. First, it carried several assumptions of traditional spring–
mass analyses in that it was restricted to level-ground, stable-speed
running. Second, the analysis was restricted to the vGRF of the SLIP
system, as the sinusoidal approximation necessary for the functional
analysis does not apply to the horizontal force progressions of the
SLIP system. While the sinusoidal approximation of the vGRF was
found to be a valid assumption across speeds and geometries, a
sinusoidal approximation of the horizontal GRF would likely not
map as analogously because of the greater relative pendular variation
in the horizontal dynamics. In a single subject across a wide range of
touchdown angles, Robilliard and Wilson (2005) demonstrated that a
sinusoidal approximation of the horizontal GRF deviated from a
SLIP simulation by 10–20% in the peak values in angles that would
be expected from human runners. Third, when considering all four
parameters, the PS vGRF does not necessarily have a unique solution
with respect to spring length and touchdown angle. That can be
resolved by analyzing multiple steps with a ME approach (method 4)
or by using a three-parameter PS vGRF with the length–angle
determination presented in Appendix B (EqnA3). However, that only
provides a measure of variance for the single ‘geometric’ parameter
(Eqn A2) and not the length and angle independently. If analyzing
single steps, one can also use the three-parameter PS vGRF and adopt
one of the traditional approximation methods for the leg length or
angle described above while still using NLR to determine best-fit
stiffness and effective contact time values. Fourth, when analyzing
independent steps, the method can be sensitive to starting parameters.
We standardized this by using the conventional measure for each step
as the starting estimate and the runner’s average of those for all steps
in the ME model (see Appendix A). This sensitivity was also further
resolved as more steps are included in the analyses, incentivizing the
researcher to analyze multiple steps per subject. Fifth, the subjects
analyzed in this demonstration were relatively homogeneous in their
physical characteristics, and they were observed at a single speed.
Whilewe did include runners of distinct footstrike types, we sought to
control greater variation in our observed conditions to bring
characteristics of the methodology into relief. This may limit the
generalizability of the absolute parameter comparisons (e.g. similar
stiffness or longer legs), but it establishes an effective framework to
explore these and other hypotheses in future investigations.

Finally, the method was more computationally intensive than the
traditional approaches. The appeal of the traditional sinusoidal
method lies in its simplicity and its field-based inputs (i.e. contact
time and flight time). While NLR provides a parameter set with a
more accurate vGRF representation, it requires a force platform or
instrumented treadmill and more demanding computation. Of note,
the methods described here can be extended to model the effects of
autocorrelated error often associated with force plate measurements
(e.g. drift, resonance, or filtering artifacts) using approaches such as
a weighted residual or directly modeling the relevant covariances
(Vonesh, 1992). Furthermore, Appendix C provides a derivation of
a functional approximation of the vertical displacement time series
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similarly characterized by the runner’s spring–mass parameters.
While this has yet to be explored in an experimental setting, this may
present an opportunity to extend the NLRmethods described here to
field-based vertical displacement recordings via accelerometry and
inertial measurement systems.

Conclusion
We have presented a viable method to functionally generate a vGRF
time series for a runner that is characterized by four spring–mass input
variables and models the vGRF of a running SLIP system. The PS
vGRF matched the vGRF of simulated SLIP models, which provided
the first systematic validation of the sinusoidal vGRF as a model of the
SLIP vGRF and supported its application in running. We then
described the means to use that function with NLR to estimate a
runner’s stiffness, as well as his or her virtual leg length, touchdown
angle and contact time, using only the observed vGRF time series; that
is, using the holistic shape of the runner’s vertical force curve to inform
the spring–mass model estimates. This liberates stiffness estimates
from assumed geometric and temporal constraints, facilitating more
efficient and better-fitting spring–mass approximations. When used
across many steps with a mixed model, the NLR technique yielded
stiffness estimations that were consistent with traditional estimates. The
virtual leg length approximations were longer than the traditional leg
length measurements, and the effective contact times were shorter than
the observed values. Together, these NLR-estimated spring–mass
characteristics yielded vGRFs that more closely simulated the observed
vGRFs. In addition to its fidelity as an analytical technique, this
method has broad application in modeling more complex research
questions with both fixed and random effects, such as including
multiple runners in a multilevel ME NLR regression that would allow
testing of various runner covariates and cohort parameter differences.

APPENDIX A
Details related to NLR implementation
All analyses were conducted in MATLAB using the Nonlinear
Regression tools within the Statistics andMachine Learning toolbox
(MATLAB 2019a). Sample code and a demonstration of the
methods are available from GitHub (https://git.io/JIwzS).

Starting values
Custom initial parameter values for the NLR models were assigned
to each subject as a parameter set that minimized the sum of
squared errors against all steps together via nonlinear least-squares
optimization seeded with values corresponding to the mean value of
the subject’s conventional parameters: k0, αTD1, L00 and tc. Bounds
were set at lower and upper limits of 5 kN m−1, 63 deg, 80 cm and
0.12 s, and 30 kN m−1, 74.5 deg, 120 cm and 0.40 s for the four
parameters, respectively. These were applied to allow a liberal range
of possible values that could be expected from a human runner at
this speed (Seyfarth et al., 2002), while also restricting the solver
from exploring unreasonable or infeasible parameters.

Parameter constraints
For the parameter estimation step, the PS vGRF was constrained
using additive logistic functions. Two logistic functions for each of
the four parameters were added to the PS vGRF function, reflecting
the aforementioned lower (LB) and upper (UB) bounds:

y ¼ Fyðx;uÞ þ 1010

1þ e�1010ðu1�u1LBÞ
þ 1010

1þ e�1010ðu1UB�u1Þ

þ . . .þ 1: ðA1Þ

This provided a continuous expression that effectively constrained
the solution space by penalizing the objective function when parameter
values moved outside the specified bounds. Preliminary sensitivity
analyses showed that the solutions were robust to modifications of the
numerator constant on individual terms (e.g. 1010 versus 1030). Note
that these logistic terms are distinct from the multiplier used in Eqn 9 to
ensure that the modeled force was zero for t>tc.

ME model estimation
For the full ME NLR parameter estimation, the SAEM algorithm
was used to estimate a random-effects model for each subject,
treating an individual’s steps as random effects (Feodor Nielsen,
2000). Each subject’s model was seeded with an initial random-
effects covariance matrix with the diagonal equal to 2 times the
observed variance in the conventional parameters across steps, with
the variance in L00 as estimated by the variance in αTD0 relative to
the mean tc. Five burn-in iterations were used, and five chains were
simulated. For each of the three phases of the SAEM algorithm, 300,
200 and 100 iterations were performed, respectively.

APPENDIX B
A singular length–angle approximation
The parameterized sinusoidal vGRF presented in Eqn 9 is not
unique for a given leg length and touchdown angle combination for
an isolated step. The two terms have an identity A such that:

A ¼ L0 � L0 sinaTD: ðA2Þ
To enable use of NLR to estimate spring–mass parameters for
isolated steps, this term can be incorporated into Eqn 9 as a three-
parameter model:

FyðtÞ ¼ k
A� g

8
tc

1� k

m

tc
p

� �2
0
BB@

1
CCA sin t

tc
p

� �

� 1� 1

1þ e�1010ðt�tcÞ

� �
: ðA3Þ

Using NLR, this method can provide an estimate for A. With that
estimation, properties of the spring-loaded inverted pendulum’s
dynamics with a horizontal velocity approximation can be used to
isolate L0 or αTD and solve for their values with A.

Specifically, the energy of the system can be considered at its
apex in flight, where y0 is the vertical position at landing and takeoff,
yf is the peak vertical excursion during flight, and vxi is the
horizontal velocity during flight and at the initial point of stance:

E ¼ 1

2
mv2xi þ mgðy0 þ yf Þ: ðA4Þ

The energy of the system can also be considered at midstance where
the COM is at its lowest point. Here,Δy is the vertical oscillation during
stance defined by Eqn 5,ΔL is the change in leg length during stance as
defined by Eqn 6, and vxf is the horizontal velocity at midstance:

E ¼ 1

2
mv2xf þ mgðy0 � DyÞ þ 1

2
kDL2: ðA5Þ

Without use of additional measurement equipment (i.e. markers or
accelerometers), the exact values of the horizontal velocity
throughout the gait cycle are unknown. The common
approximation of the relationship of the leg length to the
touchdown angle as described in Eqn 3 is inappropriate, as it will
underestimate the values given that the average velocity during stance
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will be necessarily less than the average velocity of the full gait cycle.
If the change in horizontal velocity is approximated during stance as a
linear decrease from vxi to vxf, the velocity values can be related with
the duty factor, β:

v � vxi þ vxf
2

bþ vxið1� bÞ; ðA6Þ
vxi þ vxf

2
� 2L0 cosaTD

tc
: ðA7Þ

In considering a case where the runner’s average horizontal
velocity is known (e.g. treadmill setting or timing gate
measurement), vxi and vxf can thus be approximated and
expressed as:

vxi �
v� 2L0 cosaTD

tc
b

ð1� bÞ ; ðA8Þ

vxf � 4L0 cosaTD

tc
�

v� 2L0 cosaTD

tc
b

ð1� bÞ : ðA9Þ

These two expressions can be incorporated into the system energy
expressions (Eqns A4 and A5), such that:

v2xi � v2xf ¼ �2gðyf þ DyÞ þ k

m
DL2: ðA10Þ

To express the above relationship with known quantities, we can use
the following identities:

b ¼ pmg

2Fmax
; ðA11Þ

b ¼ tc
tc þ tf

; ðA12Þ

tf ¼ tc
2Fmax

pmg
� 1

� �
; ðA13Þ

Fmax ¼ k
A� g

8
t2c

1� k

m

tc
p

� �2 ; ðA14Þ

yf ¼ 1

2
vy0

tf
2
; ðA15Þ

vy0 ¼ g
tf
2
; ðA16Þ

yf ¼ g

8
t2f ; ðA17Þ

yf ¼ g

8
t2c

2Fmax

pmg
� 1

� �2

: ðA18Þ

Combining these terms, Eqn A10 can be re-written as:

v� 2L0 cosaTD

tc
b

ð1� bÞ

0
BB@

1
CCA

2

�
v� 2L0 cosaTD

tc
b

ð1� bÞ � 4L0 cosaTD

tc

0
BB@

1
CCA

2

¼� 2g
g

8
t2c

2Fmax

pmg
� 1

� �2

þ Fmax

m

tc
p

� �2
� g

8
tc

 !

� k

m
A� Fmax

m

tc
p

� �2
� g

8
tc

� �2

: ðA19Þ

With A known, Eqns A2 and A19 can therefore be solved for
unique identities of L0 and αTD. Eqn A19 can be expressed with

known quantities: g,m, v, k, A and tc, and solved numerically for L0.
With L0, Eqn A2 can be used to then solve for αTD.

As a caution, it should be noted that Eqns A4–A7 rely on data
derived from accelerations and are themselves approximations of
velocities. Therefore, any errors or deviations from absolute
dynamics are propagated when integrating to displacement values
for the system. So, the approximations for vxi and vxf derived from
solving Eqn A19 tend to perform well across speeds and parameters
sets, but the exact solutions for L0 and αTD may fall outside of
reasonable values in some conditions (e.g. at slower speeds:
<3.5 m s−1), where the spring–mass dynamics are less stable. In
those instances, it may be prudent to simply fix either αTD or L0 with
a conventional assumption (e.g. Eqn 3 or a height approximation),
and fit a three-parameter model for use with independent, single
steps.

A MATLAB function to implement this approximation is
available with the code from GitHub (https://git.io/JIwzS).

APPENDIX C
Application of NLR to COM trajectories
The methods described in the current study are for the use of
NLR applied to vGRF recordings. This constrains the technique
to experimental conditions where force recordings are possible
(e.g. running over a force plate or on an instrumented treadmill).
To facilitate exploration of these techniques in field-based
settings, it may be possible to use the runner’s COM
displacement time series as captured by accelerometers or
inertial measurement units.

To apply this method, the derivation of the PS vGRF function
presented in Eqn 9 can be extended to approximate a functional
form for the vertical displacement of the runner similar to the
sinusoidal form described by Robilliard and Wilson (2005) and
characterized by the four spring–mass parameters, similar to
Eqn 9. To arrive at this function, the vertical acceleration can be
twice integrated, given by a mass-specific PS vGRF function
minus gravitational acceleration (Cavagna, 1975; Robilliard and
Wilson, 2005). The first integration constant requires the initial
velocity, which can be approximated by combining Eqns 7, A13
and A16:

vy0 ¼ tc
pm

� �
k
L0 � g

8
t2c � L0 sinaTD

1� k

m

tc
p

� �2
0
BB@

1
CCA� gtc

2
: ðA20Þ

With the initial position (y0) taken as L0sinαTD, a functional form
of the vertical displacement during stance as defined by the four
spring–mass parameters can be written as:

ystanceðtÞ ¼ k

m

tc
p

� �2L0 � g

8
t2c � L0 sinaTD

1� k

m

tc
p

� �2 sin t
tc
p

� �

� g

2
tðt � tcÞ þ L0 sinaTD: ðA21Þ

To facilitate use of NLR, the logistic function from Eqn 8 can be
modified and used, or a state-shift can be employed to describe
the switch to simple ballistic motion after toe-off:

yflightðtÞ ¼ vy0 � g

2
t2: ðA22Þ
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Combining these, a continuous description of the runner’s
vertical displacement can be characterized through stance and
flight:

yðtÞ ¼
 
k

m

tc
p

� �2 L0 � g

8
t2c � L0 sinaTD

1� k

m

tc
p

� �2 sin t
tc
p

� �
� g

2
tðt � tcÞ

þ L0 sinaTD

!
� 1� 1

1þ e�1010ðt�tcÞ

� �

þ tc
pm

� �
k
L0 � g

8
t2c � L0 sinaTD

1� k

m

tc
p

� �2
0
BB@

1
CCA� g

2
ðtc � t2Þ

0
BB@

1
CCA

� 1� 1

1þ e�1010ðtc�tÞ

� �
: ðA23Þ

This functional form of the vertical displacement time series can
be applied to kinematic or accelerometry-derived recordings of
runners and may enable application of NLR methods. This
would allow for estimation of spring–mass parameters using
the computational methods described herein without the
requirement of force recordings. While this is a presentation of
the theoretical functional form required for NLR, the utility of its
application with field-based equipment and measurement
systems has yet to be explored.
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