Lecture 22

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Today's lecture

- Blowout Velocity
- CSTR Explosion
- Batch Reactor Explosion

Last Lecture CSTRs with Heat Effects

Energy balance for CSTRs

$$\dot{Q} - \dot{W}_{S} + \sum_{i=1}^{n} F_{i0}H_{i0} - \sum_{i=1}^{n} F_{i}H_{i} = \frac{dE_{sys}}{dt}$$
$$\frac{dT}{dt} = \frac{\dot{Q} - \dot{W}_{S} - \sum_{i=1}^{n} F_{i0}C_{Pi}(T - T_{i0}) + [-\Delta H_{Rx}(T)](-r_{A}V)}{\sum_{i=1}^{n} N_{i}C_{Pi}}$$

 $\mathbf{\Lambda}$

Energy balance for CSTRs

$$\frac{dT}{dt} = \frac{F_{A0}}{\sum N_i C_{P_i}} \left[G(T) - R(T) \right]$$
$$G(T) = \left(r_A V \right) \left[\Delta H_{Rx} \right]$$
$$R(T) = C_{P_s} \left(1 + \kappa \right) \left[T - T_C \right]$$

$$\kappa = \frac{UA}{F_{A0}C_{P0}} \qquad T_C = \frac{T_0 + \kappa T_a}{1 + \kappa}$$

Steady State Energy Balance for CSTRs

At Steady State

$$\frac{dT}{dt} = \frac{dN_A}{dt} = 0$$

$$-r_{A}V = F_{A0}X$$

$$G(T) - R(T) = \theta$$

 $(-\Delta H_{Rx})F_{A0}X - F_{A0}\sum \Theta_{i}C_{P_{i}}(T - T_{0}) - UA(T - T_{a}) = 0$

Energy balance for CSTRs

Solving for X

Solving for T

$$T = \frac{F_{A0}X(-\Delta H_{Rx}) + UAT_{a} + F_{A0}\sum\Theta_{i}C_{P_{i}}T_{0}}{UA + F_{A0}\sum\Theta_{i}C_{P_{i}}}$$

Variation of heat removal line with inlet temperature.

$$V = \frac{F_{A0}X}{-r_A(X,T)}$$

 $A \rightarrow B$

1) Mole Balance:

$$V = \frac{F_{A0}X}{-r_A}$$

2) Rate Law:

$$-\mathbf{r}_{A} = \mathbf{k}\mathbf{C}_{A}$$

3) Stoichiometry:
$$C_A = C_{A0} (1 - X)$$

4) Combine:
$$V = \frac{F_{A0}X}{kC_{A0}(1-X)} = \frac{C_{A0}\upsilon_{0}X}{kC_{A0}(1-X)}$$
$$\tau k = \frac{X}{1-X}$$

$$V = \frac{F_{A0}X}{kC_{A0}(1-X)} = \frac{C_{A0}v_0X}{kC_{A0}(1-X)}$$
$$\tau k = \frac{X}{1-X}$$
$$X = \frac{\tau k}{1+\tau k} = \frac{\tau A e^{-E/RT}}{1+A e^{-E/RT}}$$
$$G(T) = X(-\Delta H_{Rx}) = \frac{\tau A e^{-E/RT}}{1+A e^{-E/RT}}(-\Delta H_{Rx})$$

Variation of heat generation curve with space-time.

Temperature ignition-extinction curve

Example B: Liquid Phase CSTR

Same reactions, rate laws, and rate constants as example A

$$A+2B \rightarrow C(1) \qquad -r_{1A} = k_{1A}C_A C_B^2$$

NOTE: The specific reaction rate k_{1A} is defined with respect to species A.

$$3C + 2A \rightarrow D(2) \qquad -r_{2C} = k_{2C}C_C^3C_A^2$$

NOTE: The specific reaction rate k_{2C} is defined with respect to species C.

Example B: Liquid Phase CSTR

The complex liquid phase reactions take place in a 2,500 dm³ CSTR. The feed is equal molar in A and B with F_{A0} =200 mol/min, the volumetric flow rate is 100 dm³/min and the reation volume is 50 dm³.

Find the concentrations of A, B, C and D existing in the reactor along with the existing selectivity.

Plot F_A , F_B , F_C , F_D and $S_{C/D}$ as a function of V

Example B: Liquid Phase CSTR

Liquid CSTR

Mole Balances:

(1)	$f(C_A) = \upsilon_0 C_{A0} - \upsilon_0 C_A + r_A V$
(2)	$f(C_B) = \upsilon_0 C_{B0} - \upsilon_0 C_B + r_B V$
(3)	$f(C_C) = -\upsilon_0 C_C + r_C V$
(4)	$f(C_D) = -\upsilon_0 C_D + r_D V$

Net Rates:

(5) $r_A = r_{1A} + r_{2A}$

Selectivity

If one were to write $S_{C/D} = F_C/F_D$ in the Polymath program, Polymath would not execute because at V=0, $F_C=0$ resulting in an undefined volume (infinity) at V=0. To get around this problem we start the calculation 10^{-4} dm³ from the reactor entrance where F_D will not be zero and use the following IF statement.

(15)
$$\tilde{S}_{C/D} = if \quad (V > 0.001) \quad then \quad \left(\frac{F_C}{F_D}\right) \quad else \quad (0)$$

Selectivity <u>Stoichiometry:</u>

(16) $C_{A} = F_{A} / \upsilon_{0}$ (17) $C_{B} = F_{B} / \upsilon_{0}$ (18) $C_{C} = F_{C} / \upsilon_{0}$ (19) $C_{D} = F_{D} / \upsilon_{0}$

Parameters:

- (20) $v_0 = 100 \,\mathrm{dm^3/min}$
- (21) $k_{1A} = 10 (dm^3/mol)^2/min$

23 (22) $k_{2C} = 15 (dm^3/mol)^4/min$

Example 1: Safety in Chemical Reactors

Example 1: Safety in Chemical Reactors

 $NH_4NO_3 \rightarrow 2H_2O + N_2O$ $A \rightarrow 2B + C$

$$\frac{dN_A}{dt} = F_{A0} - F_A + r_A V$$
$$\frac{dN_B}{dt} = F_{B0} - F_B + r_B V$$
$$\frac{dN_C}{dt} = F_{C0} - F_C + r_C V$$

dt

Example 1: Safety in Chemical Reactors

$$\frac{dT}{dt} = \frac{Q_g - Q_r}{\sum N_i C_{Pi}} \quad \text{(only A in vat, B,C are gases)} = \frac{Q_g - Q_r}{N_A C_{PA}}$$

$$Q_{g} = (r_{A}V)(\Delta H_{rxA})$$
$$Q_{r} = F_{A0} [C_{PA}(T - T_{0}) + \theta_{B}(H_{B} - H_{B0})] + UA(T - T_{a})$$

If the flow rate shut off, the temperature will rise (possibly to point of explosion!)

Additional information (approximate but close to the real case): $\Delta H^{o}_{Rx} = -336 \text{ Btu/lb} \text{ ammonium nitrate at } 500^{\circ} \text{ F} (\text{cons tant})$ $C_{P} = 0.38 \text{ Btu/lb} \text{ ammonium nitrate} \cdot \text{F}$ $C_{P} = 0.47 \text{ Btu/lb} \text{ of steam nitrate} \cdot \text{F}$ $-r_{A}V = kC_{A}V = k\frac{M}{V}V = kM (lb/h)$

$$\dot{Q} + F_{A0}C_{P_{A}}(T - T_{0}) + F_{A0}\Theta_{B}[H_{B}(g) - H_{B0}] - r_{A}V\Delta H_{Rx} - F_{A}\Delta H_{Avap} = N_{A}C_{P_{A}}\frac{dT}{dt}$$

$$\underbrace{(r_A V)(\Delta H_{Rx})}_{Q} - \left[\underbrace{F_{A0}(C_{P_A}(T - T_0) + \Theta_B(H_B(g) - H_{B0}))}_{Q_B(H_B(g) - H_{B0})} + F_A \Delta H_{Vap} + \underbrace{UA(T - T_a)}_{Q_{r2}}\right] = N_A C_{P_A} \frac{dT}{dt}$$

Complete conversion $F_A = 0$

$$Q_{g} - [Q_{r1} + Q_{r2}] = N_{A}C_{P_{A}} \frac{dT}{dt}$$

 $\frac{\mathrm{dT}}{\mathrm{dt}} = \frac{\mathrm{Q}_{\mathrm{g}} - \mathrm{Q}_{\mathrm{r}}}{\sum \mathrm{N}_{\mathrm{i}} \mathrm{C}_{\mathrm{P}_{\mathrm{i}}}}$

 $Q_{r1} = UA(T - T_a)$

Batch Reactors with Heat Effects

Single Reactions $Q_g = (r_A V)(\Delta H_{Rx})$ Multiple Reactions $Q_g = \sum r_{ij} \Delta H_{Rxij} V$ Risk Rupture $Q_{r2} = n \dot{M}_{vap} \Delta H_{vap}$

Keeping MBAs Away From Chemical Reactors

- The process worked for 19 years before they showed up!
- Why did they come?
- What did they want?

Nitroaniline Synthesis Reactor

Batch Reactor, 24 hour reaction time

Management said: TRIPLE PRODUCTION

MBA Style Nitroaniline Synthesis Reactor

Temperature-time trajectory

Temperature-time trajectory

$$\frac{dT}{dt} = \frac{UA(T_0 - T) + (r_A V)(DH_{r_X})}{N_{A0}C_{pA} + N_{B0}C_{pB} + N_W C_{pW}}$$
$$\frac{dT}{dt} = \frac{Q_g - Q_r}{NC_p}$$

End of Lecture 22