
Chemical Reaction Engineering (CRE) is the 
field that studies the rates and mechanisms of 

chemical reactions and the design of the reactors in 
which they take place. 
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CSTRs with Heat Effects 

Last Lecture 

3 



dt

Êd
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Energy balance for CSTRs 
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At Steady State 

Steady State Energy Balance for CSTRs 
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Solving for X 
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Energy balance for CSTRs 

Solving for T 
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Variation of heat removal line with inlet temperature. 

Increasing T0 

Energy balance for CSTRs 
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Increase κ 

Variation of heat removal line with κ (κ=UA/CP0FA0) 

Energy balance for CSTRs 
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2) Rate Law: 
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4) Combine: 

   

X1

X
k

X1kC

XC

X1kC

XF
V

0A

00A

0A

0A












3) Stoichiometry:  X1CC 0AA 
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Variation of heat generation curve with space-time. 
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Finding Multiple Steady States with T0 varied 
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Finding Multiple Steady States with T0 varied 
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Temperature ignition-extinction curve 
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Mole Balance 

Rate Laws 

Stoichiometry 

Isothermal Design 

Heat Effects 

17 



Mole Balance 

Rate Laws 

Stoichiometry 

Isothermal Design 

Heat Effects 
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Example B: Liquid Phase CSTR 

Same reactions, rate laws, and rate constants as example A 

)1( CB2A 



r1A  k1ACACB

2

NOTE: The specific reaction rate k1A is defined with respect to 

species A. 

NOTE: The specific reaction rate k2C is defined with respect to 

species C. 

)2( DA2C3 



r2C  k2CCC

3CA

2
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Example B: Liquid Phase CSTR 

The complex liquid phase reactions take place in a 2,500 dm3 

CSTR. The feed is equal molar in A and B with FA0=200 

mol/min, the volumetric flow rate is 100 dm3/min and the 

reation volume is 50 dm3. 

 

Find the concentrations of A, B, C and D existing in the reactor 

along with the existing selectivity.  

 

Plot FA, FB, FC, FD and SC/D as a function of V 
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Example B: Liquid Phase CSTR 
Solution 

Liquid CSTR 

 

 

 

 

 

 

 

 

Mole Balances: 



f CA 0CA 0 0CA  rAV(1) 



f CB 0CB 0 0CB  rBV(2) 



f CC  0CC  rCV(3) 



f CD  0CD  rDV(4) 

Net Rates: 



rA  r1A  r2A
(5) 
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Selectivity 

 If one were to write SC/D=FC/FD in the Polymath program, 

Polymath would not execute because at V=0, FC=0 resulting in 

an undefined volume (infinity) at V=0. To get around this 

problem we start the calculation 10-4 dm3 from the reactor 

entrance where FD will not be zero and use the following IF 

statement.  
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Selectivity 

 Stoichiometry: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0AA FC (16) 

0BB FC (17) 

0CC FC (18) 

0DD FC (19) 

mindm100 3

0 (20) 

  minmoldm10k
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  minmoldm15k
43

C2 (22) 

Parameters: 
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Example 1: Safety in Chemical Reactors 

24 



FA0 

FI0 

 

A 

0

0

0  

A
A A A

B
B B B

C
C C C

dN
F F r V

dt

dN
F F r V

dt

dN
F F r V

dt

  

  

  

CB2A

ON0H2NONH 2234





Example 1: Safety in Chemical Reactors 
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If the flow rate shut off, the temperature will rise (possibly to 

point of explosion!) 

   (only A in vat, B,C are gases)  
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Example 1: Safety in Chemical Reactors 
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Rearranging: 

       

i

i

rg

Pi

rg

Pi

Q

a0iii0A

Q

RxA

CN

QQ

CN

TTUAHHFHVr

dt

dT











  

Additional information (approximate but close to the real case): 

 )ttancons( F500 at nitrate ammonium lb/Btu 336H Rx
 

F nitrate ammonium lb/Btu 38.0CP 

F nitrate ofsteam lb/Btu 47.0CP 
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Complete conversion FA = 0 
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Batch Reactors with Heat Effects 
 

Single Reactions  

 

Multiple Reactions  

 

Risk Rupture 
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Keeping MBAs Away From Chemical 

Reactors 

 The process worked for 19 years before they showed up! 

 Why did they come? 

 What did they want? 
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Nitroaniline Synthesis Reaction 

NO2 

NH2 

NO2 

Cl 

+     2NH3 +     NH4Cl 

ONCB        +      Ammonia         Nitroanaline       +       Ammonium 

                    Chloride 
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Nitroaniline Synthesis Process 

Autoclave 

175 oC 

~550 psi 

NH3  

Separation 

Filter 

Press 

NH3 in H2O 

ONCB 

O-Nitroaniline 

Product Stream 

“fast” Orange 

To Crystallizing Tanks 
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Nitroaniline Synthesis Reactor 

Old 

3 kmol ONCB 

43 kmol Ammonia 

100 kmol Water 

V = 3.25 m3 
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Nitroaniline Synthesis Reaction 

NO2 

NH2 

NO2 

Cl 

+     2NH3 +     NH4Cl 

ONCB        +      Ammonia         Nitroanaline       +       Ammonium 

                    Chloride 

Batch Reactor, 24 hour reaction time 

 

Management said: TRIPLE PRODUCTION 
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MBA Style Nitroaniline Synthesis Reactor 

New 

9 kmol ONCB 

33 kmol Ammonia 

100 kmol Water 

V = 5 m3 34 
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Temperature-time trajectory 
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End of Lecture 22 
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