Chapter 9

Professional Reference Shelf

R9.3. Linearized Stability of a CSTR

In this section we are going to develop a method to estimate the multiple steady states. \dagger Begin with an unsteady mole balance for liquid phase reactions in a CSTR

$$
\begin{equation*}
\tau \frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{C}_{\mathrm{A} 0}-\mathrm{C}_{\mathrm{A}}-\left(-\mathrm{r}_{\mathrm{A}}\right) \tau \tag{R9.3-1}
\end{equation*}
$$

At steady state equation (R9.3-23) becomes

$$
\begin{equation*}
0=\mathrm{C}_{\mathrm{A} 0}-\mathrm{C}_{\mathrm{AS}}-\left(-\mathrm{r}_{\mathrm{AS}}\right) \tau \tag{R9.3-2}
\end{equation*}
$$

Substracting Equation (R9.3-23) and (R9.3-24)

$$
\begin{equation*}
\tau \frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=-\left(\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{AS}}\right)-\left[\left(-\mathrm{r}_{\mathrm{A}}\right)-\left(-\mathrm{r}_{\mathrm{AS}}\right)\right] \tau \tag{R9.3-3}
\end{equation*}
$$

The unsteady energy balance is

$$
\begin{equation*}
\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{F}_{\mathrm{A} 0}[\mathrm{G}(\mathrm{~T})-\mathrm{R}(\mathrm{~T})]}{\sum \mathrm{N}_{\mathrm{i}} \mathrm{C}_{\mathrm{P}_{\mathrm{i}}}} \tag{R9.3-4}
\end{equation*}
$$

We are going to make the following approximation

$$
\begin{equation*}
\sum \mathrm{N}_{\mathrm{i}} \mathrm{C}_{\mathrm{P}_{\mathrm{i}}}=\mathrm{N}_{\mathrm{A}} \mathrm{C}_{\mathrm{P}_{\mathrm{A}}}+\mathrm{N}_{\mathrm{B}} \mathrm{C}_{\mathrm{P}_{\mathrm{B}}}=\mathrm{N}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{P}_{\mathrm{S}}}=\mathrm{VC}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{P}_{\mathrm{S}}} \tag{R9.3-5}
\end{equation*}
$$

Substituting Equation (R9.3-5) into Equation (R9.3-4) and considering the $G(T)$ (Term 1) and R(T) (Term 2) separately

$$
\begin{gather*}
\operatorname{Term~1:~} \frac{\mathrm{F}_{\mathrm{A} 0} \mathrm{G}(\mathrm{~T})}{\mathrm{VC}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{P}_{\mathrm{S}}}}=\frac{\mathrm{F}_{\mathrm{A} 0}\left(-\mathrm{r}_{\mathrm{A}} \mathrm{~V} / \mathrm{F}_{\mathrm{A} 0}\right)\left(-\Delta \mathrm{H}_{\mathrm{Rx}}\right)}{\mathrm{VC}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{P}_{\mathrm{S}}}}=-\mathrm{r}_{\mathrm{A}} \underbrace{\left(\frac{-\Delta \mathrm{H}_{\mathrm{Rx}}}{\mathrm{C}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{P}_{\mathrm{S}}}}\right)}_{\mathrm{J}} \tag{R9.3-6}\\
=-\mathrm{r}_{\mathrm{A}} \mathrm{~J}
\end{gather*}
$$

Term 2: $\frac{\mathrm{F}_{\mathrm{A} 0} \mathrm{R}(\mathrm{T})}{\mathrm{VC}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{P}_{\mathrm{S}}}}=\frac{\mathrm{v}_{0} \mathrm{C}_{\mathrm{A} 0}\left[\mathrm{C}_{\mathrm{P}_{\mathrm{S}}}(1+\kappa)\left(\mathrm{T}-\mathrm{T}_{\mathrm{C}}\right)\right]}{\mathrm{VC}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{P}_{\mathrm{S}}}}=\frac{(1+\kappa)\left(\mathrm{T}-\mathrm{T}_{\mathrm{C}}\right)}{\tau}$
Substituting Equations (R9.3-7) and (R9.3-8) into Equation (R9.3-4) we obtain

$$
\begin{equation*}
\tau \frac{\mathrm{dT}}{\mathrm{dt}}=-\mathrm{r}_{\mathrm{A}} \mathrm{~J} \tau-(1+\kappa)\left(\mathrm{T}-\mathrm{T}_{\mathrm{C}}\right) \tag{R9.3-8}
\end{equation*}
$$

At steady state

$$
\begin{equation*}
0=-\mathrm{r}_{\mathrm{A}} \mathrm{~J} \tau-(1+\kappa)\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{\mathrm{C}}\right) \tag{R9.3-9}
\end{equation*}
$$

Adding Equations (R9.3-30) and (R9.3-31)

$$
\begin{equation*}
\tau \frac{\mathrm{dT}}{\mathrm{dt}}=\mathrm{J} \tau\left[\left(-\mathrm{r}_{\mathrm{A}}\right)-\left(-\mathrm{r}_{\mathrm{AS}}\right)\right]-(1+\kappa)\left(\mathrm{T}-\mathrm{T}_{\mathrm{S}}\right) \tag{R9.3-10}
\end{equation*}
$$

Expanding $-\mathrm{r}_{\mathrm{A}}$ in a Taylor series about the steady state conditions C_{AS} and T_{S}

$$
\begin{gather*}
\left.-\mathrm{r}_{\mathrm{A}}=-\mathrm{r}_{\mathrm{AS}}+\left.\left(\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{AS}}\right) \frac{\partial\left(-\mathrm{r}_{\mathrm{A}}\right)}{\partial \mathrm{C}_{\mathrm{A}}}\right|_{\mathrm{S}}+\left(\mathrm{T}-\mathrm{T}_{\mathrm{S}}\right) \frac{\partial\left(-\mathrm{r}_{\mathrm{A}}\right)}{\partial \mathrm{T}}\right)_{\mathrm{S}} \tag{R9.3-11}\\
\frac{\partial\left(-\mathrm{r}_{\mathrm{A}}\right)}{\partial \mathrm{T}}=A \mathrm{e}^{-\mathrm{E} / \mathrm{RT}} \mathrm{C}_{\mathrm{A}} \frac{\mathrm{E}}{\mathrm{RT}^{2}}=-\mathrm{r}_{\mathrm{A}} \frac{\mathrm{E}}{\mathrm{RT}^{2}}
\end{gather*}
$$

Substituting and rearranging

$$
\begin{equation*}
\left[\left(-\mathrm{r}_{\mathrm{A}}\right)-\left(-\mathrm{r}_{\mathrm{S}}\right)\right]=\mathrm{k}_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{AS}}\right)+\left(\mathrm{T}-\mathrm{T}_{\mathrm{S}}\right) \frac{\mathrm{E}}{\mathrm{RT}_{\mathrm{S}}^{2}}\left(-\mathrm{r}_{\mathrm{AS}}\right) \tag{R9.3-12}
\end{equation*}
$$

Substituting Equation (R9.3-12) into Equation (R9.3-3)

$$
\begin{equation*}
\tau \frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=-\left(\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{AS}}\right)-\tau \mathrm{k}_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{AS}}\right)-\frac{\mathrm{E}}{\mathrm{RT}_{\mathrm{S}}^{2}}\left(-\mathrm{r}_{\mathrm{AS}}\right)\left(\mathrm{T}-\mathrm{T}_{\mathrm{S}}\right) \tag{R9.3-13}
\end{equation*}
$$

Let

$$
\begin{gathered}
\Theta=t / \tau \\
x=C_{A}-C_{A S} \\
y=T-T_{S} \\
\frac{d x}{d \Theta}=-\underbrace{\left(1+\tau k_{S}\right)}_{A} X-\underbrace{\frac{J E \tau\left(-r_{A S}\right)}{{R T_{S}^{2}}_{2}^{y}} \frac{y}{J}}_{B}
\end{gathered}
$$

Let

$$
\begin{aligned}
& \mathrm{A}=1+\tau \mathrm{k}_{\mathrm{S}} \\
& \mathrm{~B}=\frac{\tau \mathrm{JE}\left(-\mathrm{r}_{\mathrm{AS}}\right)}{\mathrm{RT}_{\mathrm{S}}^{2}} \\
& \mathrm{C}=(1+\kappa)
\end{aligned}
$$

The linearized version of the mole balance is

[^0]\[

$$
\begin{equation*}
\frac{d x}{d \Theta}=-A x-B \frac{y}{J} \tag{R9.3-14}
\end{equation*}
$$

\]

Substituting Equation (R9.3-12) into Equation (R9.3-10)

$$
\begin{equation*}
\tau \frac{\mathrm{dT}}{\mathrm{dt}}=\tau \mathrm{J}\left\lfloor\mathrm{k}_{\mathrm{S}}\left(\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{AS}}\right)+\frac{\mathrm{E}\left(-\mathrm{r}_{\mathrm{AS}}\right)}{\mathrm{RT}_{\mathrm{S}}^{2}}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{S}}\right)\right\rfloor-(1+\kappa)\left(\mathrm{T}-\mathrm{T}_{\mathrm{S}}\right) \tag{R9.3-15}
\end{equation*}
$$

The linearized energy balance and mole balances are

$$
\begin{gathered}
\frac{d y}{d \Theta}=J \tau k_{S} x+B y-C y \\
\frac{d y}{d \Theta}=J(A-1) x+(B-C) y
\end{gathered}
$$

The two coupled equation to be solved are

$$
\begin{equation*}
\frac{d x}{d \Theta}=-\mathrm{Ax}-\frac{\mathrm{By}}{\mathrm{~J}} \tag{R9.3-16}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d y}{d \Theta}=-J(1-A) x+(B-C) y \tag{R9.3-17}
\end{equation*}
$$

In matrix notation

$$
\begin{gather*}
\begin{array}{c}
\frac{d x}{d \Theta} \\
\frac{d y}{d \Theta}
\end{array}=\left[\begin{array}{cc}
-A & -\frac{B}{J} \\
-J(1-A) & (B-C)
\end{array}\right][x, y] \tag{R9.3-18}\\
=[M][x, y]
\end{gather*}
$$

The solution is

$$
\begin{align*}
& x=K_{1} e^{\lambda_{1} \Theta}+K_{2} e^{\lambda_{2} \Theta} \tag{R9.3-19}\\
& y=K_{3} e^{\lambda_{1} \Theta}+K_{4} e^{\lambda_{2} \Theta} \tag{R9.3-20}
\end{align*}
$$

Where the roots are found from the matrix \mathbf{M}

$$
\begin{gather*}
\lambda_{1}, \lambda_{2}=\frac{\operatorname{Tr}(\mathbf{M}) \pm \sqrt{\operatorname{Tr}^{2}(\mathbf{M})-4 \operatorname{Det}(\mathbf{M})}}{2} \tag{R9.3-21}\\
\operatorname{Tr}(\mathbf{M})=-\mathrm{A}+\mathrm{B}-\mathrm{C}=\mathrm{B}-(\mathrm{A}+\mathrm{C}) \tag{R9.3-22}\\
\operatorname{Det}(\mathbf{M})=\mathrm{AC}-\mathrm{B} \tag{R9.3-23}
\end{gather*}
$$

CD/CH09Linearized/ProfRef3.doc

The terms that the solution will take from a small perturbation from steady state are given in Table 1

Table R9.3-1 Eigen Values of Coupled ODEs

$\mathrm{Tr}<0$	Det >0	Stable		
			$\left(\operatorname{Tr}^{2} \mathbf{(M)}-4 \operatorname{Det}(\mathbf{M})\right)>0$	N
			$\left(\operatorname{Tr}^{2}(\mathbf{M})-4 \operatorname{Det}(\mathbf{M})\right)<0$	\sim
$\mathrm{Tr}>0$	Det >0	Unstable		
			$\left[\operatorname{Tr}^{2} \mathbf{(M)}-4 \operatorname{Det}(\mathbf{M})\right]>0$	
			$\left[\operatorname{Tr}^{2}(\mathbf{M})-4 \operatorname{Det}(\mathbf{M})\right]<0$	
$\operatorname{Tr}(\mathbf{M})=0$	Det (M)> 0	Pure Oscillation		$\sim \sim$

Example PRS.ER9.3-1 Linearized Stability

Let revisit Example 8-4. Let Examine the intersection of the two curves in Figure E8-8.2

4
CD/CH09Linearized/ProfRef3.doc

Figure E8-8.2

Determine the roots of Equation (R9.3-43) at the intersection of $X_{E B}$ and $X_{M B}$ and determine A the intersection we have

$$
\begin{equation*}
\mathrm{T}_{\mathrm{S}}=613^{\circ} \mathrm{R}, \quad \mathrm{X}_{\mathrm{S}}=0.85, \mathrm{C}_{\mathrm{AS}}=0.02 \tag{ER9.3-1.1}
\end{equation*}
$$

First let's calculate A

$$
\begin{gathered}
\mathrm{A}=1+\tau \mathrm{k}_{\mathrm{S}} \\
\tau=13 \mathrm{~h}
\end{gathered}
$$

From the problem statement in Example 8-4

$$
\begin{gather*}
\mathrm{k}=16.96 \times 10^{12} \exp [-32,400 / \mathrm{RT}] \tag{ER9.3-1.2}\\
\text { At } \mathrm{T}=613^{\circ} \mathrm{R} \\
\mathrm{k}_{\mathrm{S}}=47.5 \mathrm{~h}^{-1} \\
\mathrm{~A}=6.17
\end{gather*}
$$

Next, let's calculate B

$$
\begin{equation*}
\mathrm{B}=\tau \mathrm{J}\left(\frac{\mathrm{E}}{\mathrm{RT}_{\mathrm{S}}^{2}}\right)\left(-\mathrm{r}_{\mathrm{AS}}\right) \tag{ER9.3-1.3}
\end{equation*}
$$

to calculate B we need J.

$$
\begin{gather*}
\mathrm{J}=\frac{\left(-\Delta \mathrm{H}_{\mathrm{Rx}}\right)}{\mathrm{C}_{\mathrm{A} 0} \sum \Theta_{\mathrm{i}} \mathrm{C}_{\mathrm{P}_{\mathrm{i}}}}=\frac{+36,400 \mathrm{BTU} / \mathrm{lbmol}}{\left(0.13 \frac{\left.\mathrm{lbmol}^{\mathrm{ft}^{3}}\right)\left(\frac{403 \mathrm{BTU}}{\mathrm{lbmol}^{\circ} \mathrm{R}}\right)}{}\right)}=694.2 \mathrm{ft}^{3} / \mathrm{lbmol} \text { (ER9.3-1.4) } \\
-\mathrm{r}_{\mathrm{AS}}=\mathrm{k}_{\mathrm{s}} \mathrm{C}_{\mathrm{AS}}=(47.5)(0.02)=\frac{0.94 \mathrm{lbmol}}{\mathrm{~h} \mathrm{ft}}{ }^{3} \tag{ER9.3-1.5}\\
\mathrm{~B}=\tau \mathrm{J}\left(\frac{\mathrm{E}}{\mathrm{RT}_{\mathrm{S}}^{2}}\right)\left(-\mathrm{r}_{\mathrm{AS}}\right) \tag{ER9.3-1.3}\\
\mathrm{B}=(0.13)(694.2)(0.94) \frac{32,400}{(1.987)(613)^{2}} \\
\mathrm{~B}=3.6
\end{gather*}
$$

Next calculate C

$$
\begin{equation*}
C=(1+\kappa)=1 \tag{ER9.3-1.6}
\end{equation*}
$$

Now we can find the roots λ_{1} and λ_{2}

CD/CH09Linearized/ProfRef3.doc

$$
\begin{gather*}
\operatorname{Tr}(\mathbf{M})=\mathrm{B}-(\mathrm{A}+\mathrm{C})=3.6-(6.17+1)=3.58 \tag{ER9.3-1.7}\\
\operatorname{Det}(\mathbf{M})=(\mathrm{A})(\mathrm{C})-\mathrm{B}=(6.17)(\mathrm{I})-3.6 \tag{ER9.3-1.8}\\
=2.7 \\
{\left[\operatorname{Tr}^{2}(\mathbf{M})-4 \operatorname{Det}(\mathbf{M})\right]=\left[(3.58)^{2}-4(2.7)\right]=[12.8-10.8]=2} \\
\lambda_{1}, \lambda_{2}=\frac{\operatorname{Tr}(\mathbf{M}) \pm \sqrt{\operatorname{Tr}^{2}(\mathbf{M})-4 \operatorname{Det}(\mathbf{M})}}{2}=\frac{-3.58 \sqrt{2}}{2}=-1.79 \pm 0.7
\end{gather*}
$$

The system is stable with no oscillations.

[^0]: ${ }^{\dagger}$ This development follows that of R. Aris, Elementary Chemical Reacitons Analysis, Englewood Cliffs NJ: Prentice Hall, 1969.

 CD/CH09Linearized/ProfRef3.doc

