

1

CD-ROM Appendix E:
Matlab

Susan A. Fugett

Matlab

®

 version 7 or 6.5 is a very powerful tool useful for many kinds of mathe-
matical tasks. For the purposes of this text, however, Matlab 7 or 6.5 will be used
only to solve four types of problems: polynomial curve fitting, system of algebraic
equations, system of ordinary differential equations, and nonlinear regression. This
appendix serves as a quick guide to solving such problems. The solutions were all
prepared using the Student Edition of Matlab 7 or 6.5. Please note that the Matlab
7 or 6.5 software must be purchased independently of the CD-ROM accompanying
this book.

CDE.1 A Quick Tour

When Matlab is opened, the command window of the Matlab Student Edition
appears:

To get started, type one of these commands: helpwin, helpdesk, or demo.

You may then type commands at the prompt.
Throughout this appendix, different fonts are used to represent Matlab

input

 and

output

, and

italics

 are used to explain function arguments.

CDE.1.1 M

ATLAB

’s Method

Matlab can range from acting as a calculator to performing complex matrix opera-
tions and more. All of Matlab’s operations are performed as matrix operations, and
every variable is stored in Matlab’s memory as a matrix even if it is only 1x1 in
size. Therefore, all Matlab input and output will be in matrix form.

2

Appendices

CDE.1.2 Punctuation

Matlab

 is

case sensitive

 and recognizes the difference between capital and low-
ercase letters. Therefore, it is possible to work with the variables “X” and “x”
at the same time.

The

semicolon

 and

period

 play very important roles in performing cal-
culations using

Matlab

. A semicolon placed at the end of a command line will
suppress restatement of that output.

Matlab

 will still perform the command, but
it will not display the answer. For example, type

beta=1+4

,

 and

Matlab

 will
display the answer

beta =5

; if you then type

alpha = 30/2;

,

Matlab

 will not
tell you the answer. To see the value of a variable, simply type the name of the
variable,

alpha

, and

Matlab

 will display its value,

alpha =15

. The command

who

 can also be used to view a list of current variables:

Your variables
are: alpha beta

The period is used

when element-by-element matrix multiplication

 is
performed. To perform standard matrix multiplication of two matrices, say A
and B, type

A*B

. To multiply every element of matrix A by 2, type

A*2

. How-
ever, to multiply every element of “A” with the corresponding element of B,
type

A.*B

. This element-by-element matrix multiplication will be used for the
purposes of this text.

To learn more about Matlab, type

demo

 at the command prompt; to
see a demo about matrix manipulations, type

matmanip

.

CDE.1.3 Help

Matlab has an extensive on-line help program that can be accessed through the

help

 command, the

lookfor

 command, and by the

helpwin

command (or by
choosing help from the menu bar). By typing

help

topic

, for example

help log

,
Matlab will give an explanation of the topic.

LOG Natural logarithm.
LOG(X) is the natural logarithm of the elements of X.

Complex results are produced if X is not positive.

See also LOG2, LOG10, EXP, LOGM.

It is likely that in many instances you will not know the exact name of the
topic for which you need help. (By typing

helpwin

, you will open the help
window, which houses a list of help topics.)

The

lookfor

 command can be used to search through the help topics for
a key word. For example, you could type

lookfor logarithm

 and receive the
following list:

LOGSPACE Logarithmically spaced vector.
LOG Natural logarithm.
LOG10 common (base 10) logarithm.
LOG2 Base 2 logarithm and dissect floating point number.
REALLOG Real logarithm.
BETALN Logarithm of beta function.
GAMMALN Logarithm of gamma function.
LOGM Matrix logarithm.

Sec.

3

LOGSIG Logarithmic sigmoid transfer function.
 LOG Logarithm in a Galois field.
log.m: %@FINTS/LOG Overloaded for FINTS object: natural

logarithm (log base e).
log10.m: %@FINTS/LOG10 Overloaded for FINTS object: common

logarithm (log base 10).
log2.m: %@FINTS/LOG2 Overloaded for FINTS object: Base 2

logarithm and dissect floating point number.
LOG Symbolic matrix element-wise natural logarithm.
BLKLOG Defines a function that returns the natural loga-

rithm of the input.

from which the search can be narrowed. Please note that all built-in Matlab

commands are lowercase, although in help they are displayed in uppercase letters.

It is strongly recommended that students take time to explore the demo
before attempting to solve problems using Matlab.

CDE.1.4 M-files

Many of the commands in Matlab are really a combination of commands and
manipulations that are stored in an m-file. Users can also write their own m-files
with their own commands and data. The m-files are simply text files that have an
“m” extension (e.g., example1.m). The name of the file can then be called upon
later to execute the commands in the m-file as though they were being entered line
by line by the user at the prompt. The m-file saves time by relieving the user of the
need to type lines of commands over and over and by enabling him or her to
change values of one or more variables easily and repeatedly.

CDE.2 Examples

Examples of each of the four types of problems listed earlier will now be
explained. Please refer to the examples in the book that were solved using
Polymath.

It may be wise to type the command

clear

 before starting any new
problems to clear the values from all variables in Matlab’s memory.

CDE.2.1 Polynomial Curve Fitting: Example 2-3

In this example, a third-order polynomial is fit to conversion-rate data.

Step 1

: First, the data have to be entered as matrices by listing them between
brackets, leaving a space between each entry.

X=[0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85];
ra=[0.0053 0.0052 0.005 0.0045 0.004 0.0033 0.0025
0.0018 0.00125 0.001];

4

Appendices

Step 2

: Next, the function polyfit is used to fit the data to a third-order poly-
nomial.

To learn more about the function polyfit, type

help polyfit

 at the
command prompt.

p=polyfit(X,ra,3)

(matrix of coefficients=polyfit(ind. variable, dep. variable, order of polyno-
mial)

p =0.0092 -0.0153 0.0013 0.0053

The coefficients are arranged in decreasing order of the independent variable
of the polynomial; therefore,

r

a

 = 0.0092

X

3

 – 0.0153

X

2

 + 0.0013

X

 = 0.0053

Please note

 that the typical mathematical convention for ordering coefficients
is

y

 =

a

0

 +

a

1

x

 +

a

2

x

2

 +

...

 +

a

n

x

n

whereas, Matlab returns the solution ordered from

a

n

 to

a

0

.

Step 3

: Next, a variable

f

 is assigned to evaluate the polynomial at the data points
(i.e.,

f

 holds the

r

a

 values calculated from the equation of the polynomial fit.)
Because

X

 is a 1

×

 10 matrix,

f will also be 1 × 10 in size.

f=polyval(p,X); f=polyval(matrix of coefficients, ind. variable)

To learn more about the function polyval, type help polyval at the com-
mand prompt.

Step 4: Finally, a plot is prepared to show how well the polynomial fits the
data.

plot(X,ra,'o',X,f,'-') plot(ind. var., dep. var., ‘symbol’, ind. var., f, ‘sym-
bol’)

where ‘symbol’ denotes how the data are to be plotted. In this case, the data
set is plotted as circles and the fitted polynomial is plotted as a line.

The following commands label and define the scale of the axes.

xlabel('X'); ylabel('ra "o", f "-"');
axis([0 0.85 0 0.006]);
xlabel(‘text’); ylabel(‘text’); axis([xmin xmax ymin ymax])

Please refer to help plot for more information on preparing plots.
The variance, or the sum of the squares of the difference between the actual
data and the values calculated from the polynomial, can also be calculated.

variance=sum((ra-f).^2)
variance =1.6014e-008

The command (ra-f) creates a matrix the same size as ra and f and contains the
element-by-element subtraction of f from ra. Every element of this new matrix is
then squared to create a third matrix. Then, by summing all the elements of this
third matrix, the result is a 1x1 matrix, a scalar, equal to the variance.

Sec. 5

CDE.2.2 Solving a System of Algebraic Equations:
Example 6-8

In Example 6-8, a system of three algebraic equations

is solved for three variables, CH, CM, and CX.

Step 1: To solve these equations using Matlab, the constants are declared to be
symbolic, the values for the constants are entered in the equations and the equa-
tions are entered as eq1, eq2, and eq3 in the following form: (eq1=symbolic equa-
tion).

h = CH = .021 k1 = 55.2

m = CM = .0105 k2 = 30.2

x = CX t = 0.5

syms h m x;
eq1=h-.021+(55.2*m*h^0.5+30.2*x*h^0.5)*0.5;
eq2=m-0.0105+(55.2*m*h^0.5)*0.5;
eq3=(55.2*m*h^0.5-30.2*x*h^0.5)*0.5-x;

 Step 2: Next, to solve this system of equations, type

S=solve(eq1,eq2,eq3);

0 CH CH0
� k1CH

1 2� CM k2CH
1 2� CX�()���

0 CM CM0
� k1CH

1 2� CM���

0 k1CH
1 2� CM k2CH

1 2� CX�()� CX��

CH0

CM0

It is very
important

that the three
variables, CH,

CM, and CX,
be represented

by variables
of only one
character in

length (e.g., h,
m, and x).

6 Appendices

The answers can be displayed by typing the following commands:

S.h
ans = .89435804499169139775064976230242e-2

S.m
ans = .29084696757170701507538493259810e-2

S.x
ans = .31266410984827736759987989710624e-2

Matlab may output an algebraic expression instead of a value. If that happens,
type

eval(S.h)
eval(S.m)
eval(S.x)

and the numeric values should appear. Therefore, CH = 0.00894, CM = 0.00291,
and CX = 0.00313.

CDE.2.3 Solving a System of Ordinary Differential Equations:
Example 4-6

In Example 4-6, a system of two differential equations and one supplementary
equation

was solved using Polymath. Using Matlab to solve this problem requires two steps:
(1) Create an m-file containing the equations, and (2) use the Matlab ode45 com-
mand to integrate numerically the equations stored in the m-file created in step 1.

Part 1: Solving for X and y

Step 1: To begin, choose New from the File menu and select M-file. A new
text editor window will appear; the commands of the m-file are to be written
there.

Step 2: Write the m-file. The m-file for this example may be divided into four
parts.

Part 1: The first part contains only comments and information for the user
or future users. Each comment line begins with a percent sign because Mat-
lab ignores the rest of a line following %.

Part 2: The second part is the function command, which must be the first
line in the m-file that is not a comment line. This command assigns a new
function to the name of the m-file. The new function is composed of any
combination of existing commands and functions from Matlab. The infor-
mation and commands that define the new function must be saved in a file
whose name is the same as that of the new function.

d X()
d W()
------------- rate

fa0
---------; d y ()

d W

()

 ------------- = alpha 1 eps X

�� ()
2

y

 -----------------------------; �� f 1 eps X��
y

-------------------------�

Sec.

7

Part 3:

The third part of the m-file contains all other information and auxil-
iary equations used to solve the differential equations. It may also include
the

global

 command that allows the value for variables to be passed into or
out of the m-file.

Part 4:

The final part of the m-file contains the differential equations to be
solved. Matlab requires that the variables of the ODEs be the elements of a
single column vector. Therefore, a vector

x

 is defined such that, for

N

 vari-
ables,

x

 = [var1; var2; var3; ...; varN] or

x

(1) = var1,

x

(2) = var2,

x

(N) =
varN. In the case of Example 4-6, var1=X and var2=y.

Step 3

: Save the m-file under the name LEP_4_6.m. This file must be saved in a
directory in Matlab's path. The path is the list of places Matlab looks to find the
files it needs.

To see the current path, to add a directory temporarily to the
path, or to change the path permanently, use the

pathtool

 command.

Step 4

: To see the m-file, type

type LEP_4_6

This command tells Matlab to type the m-file named LEP_4_6.

Step 5

: Now to solve the problem, the initial conditions need to be entered
from the command window. A matrix called “ic” is defined to hold the initial
conditions of x(1) and x(2), respectively, and “wspan” is used to define the
range of the independent variable.

 ic=[0;1]; wspan = [0 60];

Step 6

: The global command is also repeated from the command window.

global eps kprime

Step 7

: Finally, we will use the ode45 built-in function. This function numer-
ically integrates the set of differential equations saved in an m-file.

[w,x]=ode45('LEP_4_6',wspan,ic);

[ind. var., dep. var.] = ode45(‘m-file’, range of ind. variable, initial conditions
of dep. variables)

Lines beginning with % are comments
and are ignored by Matlab. The com-
ment lines are used to explain the vari-
ables in the m-file.

% Part 1
% LEP _4_6
% m-file to solve example 4-6
%

This line assigns the function xdot to
the m-file LEP_4_6 (in this case

w

 is
the independent variable, and

x

 is the
dependent variable).

% x(1)=x
% x(2)=y
% xdot(1)=dX/dW, xdot(2)=dy/dW

%Part 2
function xdotLEP_4_6 (w,x)

This line tells Matlab to allow the value
for the variables “eps” and “kprime” to
be passed outside the m-file.

global eps kprime

8

Appendices

For more information, type

help ode45

 at the command prompt.

Part 2: Evaluating Variables not Contained in the Solution Matrix

Step 1

: We want to solve for

f

, which is not contained in the solution matrix,

x

, but is a function of part of the solution matrix. To see the size of the matrix

x

, we type

size(x)

. This returns the following:

ans = 57 2

.
Therefore,

x

 is a 57 by 2 matrix of the form:

Step 2

: Next we need to write the equation for f in terms of the x matrix.

Using Matlab notation, x(1:z,1:y) represents
rows 1 through z and columns 1 through y of
the matrix x. Similarly, x(1:57,1) represents
all the rows in the first column of the x matrix,
which in our case is X. Similarly x(1:57,2) defines the second column, y.

The notation x(: , 1) also defines all the rows in the first column of the
x matrix. This is usually more convenient than sizing the matrix, but at times,
only part of the solution matrix may be needed. For example, you may want to
plot only part of the solution.

So, we can write the formula (f=(1+eps*X/y)
in the following way:

f=(1+eps.*x(:,1))./x(:,2);

And we can write the formula for rate as fol-
lows:

rate=kprime.*((1-x(:,1))./(1+eps.*x(:,1))) .*x(:,2);

These lines provide important informa-
tion necessary to solve the problem.

% Part 3
kprime=0.0266;
eps=-0.15;
alpha=0.0166,
rate=kprime*((1-x(1))/(1+eps*x(1)))
*x(2);
fa0=1

%Part 4
xdot(1, :)=rate/fa0;
xdot(2,
:)=-alpha*(1+eps*x(1))/(2*x(2));

These lines are the equations for ODEs to be
solved. Matlab requires that the variables of
the ODE’s be assigned to one column vector.
Therefore, a vector x is defined such that x(1)
= X and x(2) = y. Also, xdot is the derivative of
x.

x

x1 1() x2 2()
x1 2() x2 2()
x1 3() x2 3()

x1 57() x2 57()

�

 M M

x(row 1:row n, column 1:column n)
X = x(1:57,1:1) = x(1:57,1)
y = x(1:57,2:2) = x(1:57,2)

Multiplication and division signs are
preceded by a period to denote ele-
ment-by-element operations as
described in the Quick Tour. (The
operation is performed on every ele-
ment in the matrix.)

Sec. 9

Note: This is why we used the global command. We needed the values for
“eps” and “kprime” to solve for rate and f.

Step 3: A plot can then be made displaying the results of the computation. To
plot “X”, “y,” and “f” as a function of “w”:

plot(w,x,w,f); plot(ind. var., dep. var., ind. var., dep. var.);
title('Example 4.6');xlabel('w (lb)');ylabel('X,y,f')

Since the solution matrix x contains two sets of data (two columns) and f con-
tains one column, the plot should display three lines.

To plot the rate, type
plot(w,rate);title('Example 4.6;xlabel('w
(lb)');ylabel('rate');

Example 4-6

Example 4-6

10 Appendices

CDE.2.4 Solving a System of Ordinary Differential Equations:
Example CDR4-1

To review what you learned about Example 4-6, please examine Example
CDR4-1.
type CDR4-1

% "CDR4-1"
% m-file to solve CDR4-1
%
% x(1)=X
% x(2)=y
% xdot(1)=dX/dz, xdot(2)=dy/dz

function xdot=ex4_8(z,x)

Fa0=440;
P0=2000;
Ca0=0.32;
R=30;
phi=0.4;
kprime=0.02;
L=27;
rhocat=2.6;
m=44;
Ca=Ca0*(1-x(1))*x(2)/(1+x(1));
Ac=pi*(R^2-(z-L)^2);
V=pi*(z*R^2-1/3*(z-L)^3-1/3*L^3);

G=m/Ac;
ra=-kprime*Ca*rhocat*(1-phi);
beta=(98.87*G+25630*G^2)*0.01;
W=rhocat*(1-phi)*V;

xdot(1,:)=-ra*Ac/Fa0;
xdot(2,:)=-beta/P0/x(2)*(1+x(1));

Now, from the command window enter

ic=[0;1]; zspan = [0 54];
[z,x]=ode45('ex4_8',zspan,ic);
plot(z,x);title('Example4.8');xlabel('z(dm)')
;ylabel('X,y'); axis([0 54 0 1.2])

Sec. 11

CDE.2.5 Nonlinear Regression: Example 10-4

In this example, rate-pressure data are fit to four rate equations to evaluate the
rate constants. These fits are then compared to determine the best rate equation
for the data.

To accomplish this, an m-file is required to compute the least-squares
regression for the data. Only part (a) of Example 10-4 will be demonstrated
here. The rate equation for part (a) is

Example CDR4-1

ra
kPEPH

1 K APEA KEPE� �
---�

12 Appendices

Step 1: Write the m-file.
The structure of this m-file is very similar to the m-file for Example 4-6.

Please refer to Example 4-6 for comparison and further explanation.

Step 2: To perform the least-squares regression for the data, the fmins com-
mand is used to find the values of the constants that minimize the value of f.
Type help fminsearch for more information.

xo=[1 1 1];
x=fminsearch('LEP_10_4',xo)
dep. variable = fminsearch(‘m-file’,[matrix of initial guesses])

The solution is

x =3.3479 2.2111 0.0428

Therefore, k = 3.35; KE = 2.21; and KA = 0.043.

Step 3: To see how closely the solution fits the data, look at the sum of the
squares to see the final value of f for the solution in Step 2. Assign to the vari-
able “residual” the final value of f:

residual=LEP_10_4(x)
residual =0.0296

The sum of the squares (σ2) is 0.0296.

The function f is assigned to the m-file

% “LEP_10_4a”
% m-file to perform least-squares regression Exam-
ple 10-4 rate a
% x(1)=k; x(2)=Ke; x(3)=Ka

function f=LEP_10_4a(x)

global ra pe pea ph2 n

f=0

for i=l:n
 f=f+(ra(i)-(x(1)*pe(i)*ph2(i))/(1+x(3)*pea(i)+x
(2)*pe(i)))^2;
end

ra=[1.04 3.13 5.21 3.82 4.19 2.391 3.867 2.199 .75]
pe=[1 1 1 3 5 .5 .5 .5 .5]
pea-[1 1 1 1 1 1 .5 3 5]
ph2=[1 3 5 3 3 3 5 3 1];

n=9;

This "for" loop calculates the square of the difference between the
actual rate and the proposed rate equation. The result of the loop is
the sum of the squares we are trying to minimize and is saved in the
variable f. This equation will be different for each rate law.

f raactual
racalculated

�()2

1

n

��

f must have an
initial value.
Therefore, it

is given a
value of 0
before the

“for” loop to
initiate the

sum at zero.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

