CDROM

Chapter 6

CD-Solved Problems

B. Hydrodealkylation of Mesitylene in a Membrane Reactor

Now reconsider Examples 6-7 and 6-8 in which we will now use a membrane reactor and feed hydrogen uniformly through the sides of the reactor at a rate R_{H} , in moles hydrogen/dm³/h. We want to compare the membrane reactor with the PFR where hydrogen was fed with mesitylene to the entrance.

The reactions and rate laws were

$$M+H \rightarrow X+Me \qquad -r'_{M} = k_{1}C_{M}C_{H}^{1/2} \qquad (E6-W.1)$$

$$X + H \rightarrow Tl + Me$$
 $r'_{2Tl} = k_2 C_X C_H^{1/2}$ (E6-W.2)

The reaction conditions and rate law of parameters are the same as described in Example 6-7. The mole fractions of mesitylene and hydrogen are to be varied, but the first run we shall choose is equal molar in hydrogen and mesitylene. Plot the molar flow rates and selectivity of xylene to toluene as a function of catalyst weight (volume) down the reactor. Compare the selectives and molar flow rates of xylene in a conventional PFR where all the hydrogen had been fed at V = 0 (i.e., W = 0).

Solution

We first apply Equation (4-44) to hydrogen.

Mole balances:

Hydrogen:	$\frac{dF_{\rm H}}{dV} = r_{\rm H} + R_{\rm H}$	(E6-W.3)
Mesitylene:	$\frac{dF_{M}}{dF_{M}} = r_{M}$	(E6-W.4)

Xylene:
$$\frac{dF_X}{W} = r_X$$
 (E6-W.5)

dV

Toluene:
$$\frac{dF_{T\ell}}{dV} = r_{T\ell}$$
 (E6-W.6)

Methane:
$$\frac{dF_{Me}}{dV} = r_{Me}$$
 (E6-W.7)

Reaction rates: Recall that we have multiplied by the bulk density so that we can express the rate in per unit volume (i.e., $r_i = \rho_B r'_i$) and that $V = W/\rho_b$.

A. Rate laws

$$-r_{1M} = k_1 C_M C_H^{1/2}$$
(E6-W.8)

$$r_{2T\ell} = k_2 C_X C_H^{1/2}$$
 (E6-W.9)

$$\mathbf{r}_{\mathrm{M}} = \mathbf{r}_{\mathrm{1M}} \tag{E6-W.10}$$

$$r_{\rm H} = r_{1\rm M} - r_{2\rm T\ell}$$
 (E6-W.11)

$$r_{\rm X} = r_{\rm 1M} - r_{\rm 2T\ell}$$
 (E6-W.12)

$$\mathbf{r}_{\mathrm{T}\ell} = \mathbf{r}_{\mathrm{2T}\ell} \tag{E6-W.13}$$

$$\mathbf{r}_{\mathrm{Me}} = \mathbf{r}_{1\mathrm{M}} + \mathbf{r}_{2\mathrm{T}\ell} \tag{E6-W.14}$$

Transport law: The rate at which hydrogen is fed through the sides of the reactor is uniform. The total volumetric flow rate across the entire membrane, v_{m} ,

$$v_{\rm m} = \mathbf{K} \left[\mathbf{P}_{\rm s} - \mathbf{P}_{\rm t} \right] \mathbf{A}_{\rm t} \tag{E6-W.15}$$

where K is the membrane permeability, P_s and P_t are the shell side and tube side pressures respectively, and A_t the total external surface area of the membrane (π DL). By controlling the pressure drop across the membrane, $\Delta P = (P_S-P_t)$ one can control the flow rate through the membrane.

We recall from Equation (4-43) that "a" is the membrane surface area per unit volume of reactor

$$A_t = aV_t \tag{E6-8.16}$$

If we were to base the rates on catalyst weight then we would use ρ_b the bulk density and express the total area as

$$A_t = \frac{a}{\rho_b} W_t$$

If the concentration of hydrogen in the shell side C_{HS} is kept constant at the entering concentration C_{H0} , along with the pressures P_s and P, then the total molar rate of hydrogen through the sides, F_{H0} is

$$F_{H0} = \underbrace{C_{H0} v_m a}_{R_H} V_t$$
(E6-W.17)

$$\mathbf{F}_{\mathrm{H0}} = \mathbf{R}_{\mathrm{H}} \mathbf{V}_{\mathrm{t}} \tag{E6-W.18}$$

where R_H is the molar flow of hydrogen through the sides per unit volume. The amount of hydrogen that would have entered at V = 0 is

$$R_{\rm H} = \frac{F_{\rm H0}}{V_{\rm t}} = \frac{F_{\rm M0}\Theta_{\rm H}}{V_{\rm t}} = \frac{y_{\rm H0}F_{\rm T0}}{V_{\rm t}}$$
(E6-W.19)

where F_{T0} is the total molar flow rate entering and y_{H0} is the entering mole fraction of hydrogen. The total molar flow of hydrogen that has entered through the sides up the reactor to a volume V is

$$\mathbf{F}_{\mathrm{H}} = \mathbf{R}_{\mathrm{H}} \mathbf{V} \tag{E6-W.20}$$

Stoichiometry: For constant temperature and pressure the concentrations are

$$C_{\rm M} = C_{\rm T0} \left(\frac{F_{\rm M}}{F_{\rm T}} \right) \tag{E6-W.21}$$

$$C_{\rm H} = C_{\rm T0} \left(\frac{F_{\rm H}}{F_{\rm T}} \right) \tag{E6-W.22}$$

$$C_{\rm X} = C_{\rm T0} \left(\frac{F_{\rm X}}{F_{\rm T}} \right) \tag{E6-W.23}$$

$$\mathbf{C}_{\mathrm{T}\ell} = \mathbf{C}_{\mathrm{T}0} \left(\frac{\mathbf{F}_{\mathrm{T}\ell}}{\mathbf{F}_{\mathrm{T}}} \right)$$
(E6-W.24)

with $F_T = F_M + F_H + F_X + F_{Me} + F_{T_\ell}$.

Recall the information from Example 6-7

$$k_1 = 55.2 \ (ft^3/lb \ mol)^{1/2}/h, \ V_t = 238 \ ft^3, \ C_{T0} = 0.032 \frac{lb \ mol}{ft^3}$$

 $k_2 = 30.2 \ (ft^3/lb \ mol)^{1/2}/h, \ v_0 = 476 \ ft^3/hr, \ F_{T0} = 15.2 \frac{lb \ mol}{h}$

For an equal molar feed, we have $F_{M0} = F_{H0} = 7.51$ lb mol/h. However, at the entrance to the reactor, we have V = 0

$$F_{M0} = 7.5 \frac{\text{lb mol}}{\text{h}}$$

$$F_{H0} = 0$$

$$R_{H} = \frac{F_{H0}}{V_{t}} = 7.5 \frac{\text{lb mol/h}}{238 \text{ ft}^{3}} = 0.0316 \text{ lb mol/h/ft}^{3}$$

The Polymath program and selected concentration rate profiles are shown in Table E6-W.1. If we compare the conversion and selectivity with Example 6-6, $(y_{M0} = 1/3)$, we note that the membrane reactor gives an exit molar flow rate for xylene of $F_X = 2.1$ mol/h and a selectivity of $S_{X/T} = 0.89$ while the conventional reactor gives an exit flow rate of $F_X = 1.72$ mol/h and a selectivity of only $S_{X/T} = 0.58$.

TABLE E6-W.1 POLYMATH RESULTS

ODE Report (RKF45)		POLYMATH Results					
Diffe	rential equations as entered by the user	No Title 12	2-29-2003, Rev5.1.225				
[1] [2]	d(Fm)/d(V) = rm d(Fh)/d(V) = rh+Rh	Calculated values of the DEQ variables					
[3] [4]	d(Fx)/d(V) = rx d(Fme)/d(V) = rme	<u>Variable</u>	<u>initial value</u>	<u>minimal value</u>	<u>maximal value</u>	<u>final value</u> 238	
[5]	d(Ft)/d(V) = rt	Fm	7.5	2.454237	7.5	2.454237	
Expli [1]	cit equations as entered by the user k1 = 55.2	Fh Fx	0	0	3.5685038	3.5685038	
[2]	k2 = 30.2 FT = Fm+Fh+Fx+Fme+Ft	Fme Ft	0 0	0	6.5230221 1.4772591	6.5230221 1.4772591	
[4]	$Cto = 0.032$ $Cb = Cto^{*}(Eb/ET)$	k1 k2	55.2 30.2	55.2 30.2	55.2 30.2	55.2 30.2	
[6]	$Cx = Cto^*(Fx/FT)$ $Cm = Cto^*(Fx/FT)$	FT Cto	7.5 0.032	7.5 0.032	15 0.032	15 0.032	
[8]	$r_{1m} = -k_{1}^{*} Cm^{*} Ch^{0.5}$	Ch Cx	0 0	0 0	0.0020842 0.0079443	0.0020842 0.0076128	
[9]	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	Cm r1m	0.032 0	0.0052357 -0.028932	0.032 0	0.0052357 -0.0131943	
[11	$rn = r_1 m_{-r_2 t}$ $r t = r_2 t$	r2t rm	0	0 -0.028932	0.010496 0	0.010496 -0.0131943	
[13 [14	$\begin{array}{l} Gt = Gto^{-}(Ft/FT) \\ \hline Fbo = 7.5 \end{array}$	rh	0	-0.030016	0 010496	-0.0236903	
[15 [16	 Vt = 238 Rh = Fbo/Vt 	Ct	0	0 . 7 5	0.0031515	0.0031515	
/[17 /[18	<pre>rx = -r1m-r2t rme = -r1m+r2t</pre>	Vt	238	238	238	238	
[19 [20	Cme = Cto*(Fme/FT) Sxt = Fx/(Ft+.000000000001)	rx	0.0315126	0.0315126	0.0315126	0.0026983	
[21 [22] vo = 476] Tau = V/vo	rme Cme	0	0	0.030016 0.0139158 2712 0525	0.0236903	
Inder varia	pendent variable able name : V	vo Tau	476 0	476 0	476 0.5	476 0.5	
initia final	al value : 0 value : 238						

One can carry out other values of V_T and y_{H0} and this task is given as Problem 6-25. The concentration profile and the selectivity profiles are shown in

Figure E6-W.1. Be sure to compare these profiles with those given in Example 6-7.

Figure E6-W.1 (a) Molar flow rate profiles; (b) Selectivity S_{X/T} profiles.

From the profiles we note there is a maximum in the selectivity. Consequently, it is of interest to explore the selectivity and yield as a function of reactor length and entering feed composition. Figure E6-W.2 shows selectivity as a function of volume for two feed compositions, $y_{H0} = \frac{1}{3}$ ($F_{H0} = \frac{1}{2}F_{M0}$) and $y_{H0} = \frac{1}{2}$, ($F_{H0} = F_{M0}$). One notes a significantly higher selectivity at lower reactor volumes and lower hydrogen concentrations. Also shown on the plot are the results for a conventional PFR for the same conditions

Figure E6-W.2 Selectivity and xylene molar flow rate profile. (a) $y_{H0} = \frac{2}{3}$; (b) $y_{H0} = \frac{1}{2}$

We see that, under some conditions, the membrane reactor is better than the conventional PFR but that, under other conditions, it is not. For example, for an entering mole fraction of hydrogen of $y_{H0} = 0.67$, the selectivity $S_{X/T}$ and the

xylene molar flow rate F_X in the MR are marginally better than the PFR. While for $y_{H0} = 0.5$, the selectivity of the MR is better than the PFR, but for the xylene molar flow rate is somewhat better for the PFR than the MR. Problem 6-25 explores this point to map out a region where each is best.