Abbreviated Derivation

Reaction Coordinate

$$
\mathrm{A}+\mathrm{BC} 円[\mathrm{~A} \square \mathrm{~B} \square \mathrm{C}]^{\#} \square \square \mathrm{~A} \square \mathrm{~B}+\mathrm{C}
$$

The rate of reaction is the frequency of the complex crossing the barrier

$$
\begin{equation*}
\square \mathrm{r}_{\mathrm{A}}=\mathrm{r}_{\mathrm{AB}}=\square_{\mathrm{I}} \mathrm{C}_{\mathrm{ABC}}^{\#} \tag{1}
\end{equation*}
$$

where the frequency \square_{I} can be thought of as a loose vibration. We are going to assume that the activated complex is in virtual equilibrium with the reactants

$$
\begin{equation*}
\mathrm{K}_{\mathrm{C}}^{\#}=\frac{\mathrm{C}_{\mathrm{ABC}}^{\#}}{\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\square \mathrm{r}_{\mathrm{A}}=\square_{\mathrm{I}} \mathrm{~K}_{\mathrm{C}}^{\#} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}} \tag{3}
\end{equation*}
$$

From thermodynamics we know

$$
\begin{equation*}
\Pi \mathrm{G}=\Pi \mathrm{RT} \ln \mathrm{~K} \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{K}=\mathrm{e}^{\mathrm{IDG} / \mathrm{RT}} \tag{5}
\end{equation*}
$$

where K is the dimensionless true equilibrium constant and related to the concentration equilibrium constant K_{C} by

$$
\begin{equation*}
\mathrm{K}=\mathrm{K}_{\mathrm{D}} \mathrm{~K}_{\mathrm{C}} \mathrm{~V}_{\mathrm{m}}^{\square}=\mathrm{K}_{\mathrm{C}} \mathrm{~V}_{\mathrm{m}}^{\square}=\mathrm{e}^{\square \mathrm{G} / \mathrm{RT}} \tag{6}
\end{equation*}
$$

Then for the equilibrium between the reactants and the transition state

$$
\mathrm{K}_{\mathrm{C}}^{\#}=\mathrm{V}_{\mathrm{m}}^{\square \mathrm{e}^{\mathrm{D}} \mathrm{G}^{\#} / \mathrm{RT}}
$$

Part I Relate $\mathbf{K}_{\mathbf{C}}^{\#}$ to Partition Functions

We are now going use statistical mechanics to derive the equation for $\mathrm{K}_{\mathrm{C}}^{\#}$. We start by recalling that the number of ways, W , of arranging N particles among m energy states is

$$
\mathrm{W}=\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\ldots \mathrm{n}_{\mathrm{m}}!}
$$

where n_{i} is the number of particles in the $\mathrm{i}^{\text {th }}$ state.
For a fixed total number of molecules $\mathbf{N}=\square \mathbf{n}_{\mathbf{i}}$ and a fixed total energy $E=\square \mathbf{n}_{\mathrm{i}} \square_{\mathrm{C}}$ the most probable distribution, the one that overwhelms all the others, is found by setting $\mathrm{dW}=0$. The result is

$$
\begin{equation*}
\frac{n_{i}}{\mathrm{~N}}=\frac{\mathrm{e}^{\mathrm{\square}} \mathrm{~L}_{\mathrm{i}}}{\mathrm{q}} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& \qquad q=\square e^{\square \square_{i}}, \square=\frac{1}{k_{B} T} \tag{8}\\
& \frac{n_{i}}{N}=\text { fraction of molecules that occupy energy state } \square \tag{9}\\
& q=\text { molecular partition function }
\end{align*}
$$

The molecular partition function, q, gives a measure of how the molecules are distributed (partitioned) among the energy states. It gives an indication of the average number of states that are accessible at a particular temperature for non interacting molecules.

Fundamental postulate relating \square and W

$$
\begin{equation*}
\tilde{\mathrm{S}}=\mathrm{k} \ln \mathrm{~W}=\mathrm{k}\left[\ln \mathrm{~N}!\square \ln \mathrm{n}_{\mathrm{i}}!\right] \tag{10}
\end{equation*}
$$

Sterling's approximation

$$
\begin{equation*}
\ln \mathrm{X}!=\mathrm{X} \ln \mathrm{X} \sqcap \mathrm{X} \tag{11}
\end{equation*}
$$

Using Sterling's approximation, Equation (10) becomes

$$
\begin{equation*}
\tilde{\mathrm{S}}=\square \mathrm{k} \square \ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}} \tag{12}
\end{equation*}
$$

Substituting for $\xlongequal[\square]{\square n_{i}}[$ using Equation (8)

$$
\tilde{S}=k \overbrace{\left[n_{i} \bar{L}_{i}\right.}^{\mathrm{U} U_{o}}+\mathrm{k} \overbrace{\mathrm{n}_{\mathrm{i}}}^{\mathrm{N}} \operatorname{lnq}
$$

The sum $\overline{n_{i}} \overline{\mathrm{I}}_{\mathrm{i}}$ is the internal energy relative to the ground state, i.e. ($\mathrm{U}-\mathrm{U}_{\mathrm{o}}$)

$$
\begin{equation*}
\tilde{S}=\frac{U \square U_{o}}{T}+k N \ln q \tag{13}
\end{equation*}
$$

This result is for non interacting particles. For interacting particles, the result is

$$
\begin{equation*}
\tilde{S}=\frac{U \square U_{o}}{T}+k \ln \frac{q^{N}}{N!} \tag{14}
\end{equation*}
$$

From thermodynamic we know the relationship between

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}} \sqcap \mathrm{~T} \tilde{S}+\mathrm{PV}=\mathrm{U} \Pi \mathrm{~T} \tilde{S}+\mathrm{nRT} \tag{15}
\end{equation*}
$$

Combining Equations (14) and (15)

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}}_{\mathrm{o}} \square \mathrm{nRT} \ln \frac{\mathrm{q}}{\mathrm{~N}} \tag{16}
\end{equation*}
$$

We now define molar partition function, q_{m}

$$
\begin{gather*}
\frac{\mathrm{q}}{\mathrm{~N}}=\frac{\mathrm{q}}{\mathrm{n} \square \mathrm{~N}_{\mathrm{Avo}}}=\frac{\mathrm{q}_{\mathrm{m}}}{\mathrm{~N}_{\mathrm{Avo}}} \\
\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}} \tag{17}
\end{gather*}
$$

Dividing Equation (16) by the number of moles n

$$
\begin{equation*}
\mathrm{G}=\mathrm{U}_{\mathrm{o}} \square \mathrm{RT} \ln \frac{\mathrm{q}_{\mathrm{m}}}{\mathrm{~N}_{\mathrm{Avo}}} \tag{18}
\end{equation*}
$$

when

$$
\mathrm{G}=\frac{\tilde{\mathrm{G}}}{\mathrm{n}}, \quad \mathrm{U}_{\mathrm{o}}=\frac{\tilde{\mathrm{U}}}{\mathrm{n}}
$$

Typical units of G and U are ($\mathrm{J} / \mathrm{mol}$).
We now will apply Equation (18) to each species in the reaction

$$
\begin{gather*}
\mathrm{aA}+\mathrm{bB} \sqcap \mathrm{cC}+\mathrm{dD} \tag{19}\\
\mathrm{G}_{\mathrm{i}}=\mathrm{U}_{\mathrm{oi}} \square \mathrm{RT} \ln \frac{\mathrm{q}_{\mathrm{mi}}}{\mathrm{~N}_{\mathrm{Avo}}} \tag{20}
\end{gather*}
$$

The change in Gibbs free energy for reaction (19) is

$$
\begin{equation*}
\square \mathrm{G}=\mathrm{cG}_{\mathrm{C}}+\mathrm{dG}_{\mathrm{D}} \square \mathrm{bG}_{\mathrm{B}} \square \mathrm{aG}_{\mathrm{A}} \tag{21}
\end{equation*}
$$

Using Equation (18) we obtain
where

$$
\begin{equation*}
\square \mathrm{E}_{0}=\mathrm{cU}_{\mathrm{C}}+\mathrm{dU}_{\mathrm{Do}} \square \mathrm{bU}_{\mathrm{Bo}} \square \mathrm{aU}_{\mathrm{Ao}} \tag{23}
\end{equation*}
$$

and

$$
\Pi=\mathrm{d}+\mathrm{c} \Pi \mathrm{~b} П \mathrm{a}
$$

using Equation (22)

The molar partition function is

$$
\mathrm{q}_{\mathrm{mi}}=\mathrm{q}_{\mathrm{i}} / \mathrm{n}
$$

and the partition function per unit volume is
then

$$
q q_{i}=q_{i} / v
$$

$$
\begin{align*}
& q_{m i}=q\left[\frac{V}{n}=q V_{m}\right. \tag{25}
\end{align*}
$$

Recalling Equation (6) and equating it to Equation (26)

For ideal mixtures $\mathrm{K} \square=1$ and canceling the molar volumes we arrive at the main result we have been looking for

We now apply Equation (28) to our transition state reaction ($\square=-1$)

$$
\begin{align*}
& \mathrm{A}+\mathrm{BC} \Pi \square \sqcap \mathrm{ABC}^{\#} \Pi \square \sqcap \mathrm{AB}+\mathrm{C} \tag{29}
\end{align*}
$$

Part II Partition Function

We now focus on the partition function per unit volume

$$
\begin{align*}
& =\mathrm{q}_{\mathrm{el}} \bullet \mathrm{q}_{\mathrm{T}} \bullet \mathrm{q}_{\mathrm{V}} \bullet \mathrm{q}_{\mathrm{R}} \tag{30}\\
& \mathrm{q}_{\mathrm{T}}=\mathrm{q} \Phi \mathrm{~V} \tag{31}
\end{align*}
$$

Dividing by V

$$
\begin{equation*}
\mathrm{q}=\mathrm{q}_{\mathrm{el}} \bullet \mathrm{qq}^{\bullet} \cdot \mathrm{q}_{\mathrm{V}} \bullet \mathrm{q}_{\mathrm{R}} \tag{32}
\end{equation*}
$$

The Transitional Partition Function, $\underline{q_{T}}$
The translational partition function is obtained by solving the wave equation for a particle in a box.

$$
\begin{gather*}
\mathrm{q}_{\mathrm{T}}=\frac{1}{\square^{3}} \mathrm{~V} \\
\mathrm{q} \Phi=\frac{1}{\square^{3}}=\frac{\square(2 \square \mathrm{mkT})^{1 / 2}}{\mathrm{~h}} \tag{33}
\end{gather*}
$$

Where \square is the thermal wave length, h is Plank's constant, $m=$ mass of the molecule and k is Boltzmann's constant. Substituting for k and h and simplifying

The Vibrational Partition Function, q_{V}

$$
\begin{equation*}
\mathrm{q}_{\mathrm{v}}=\mathrm{q}_{\mathrm{v}_{1}} \mathrm{q}_{\mathrm{v}_{2}} \mathrm{q}_{\mathrm{v} 3} \ldots \tag{34}
\end{equation*}
$$

For the harmonic oscillator

$$
\begin{equation*}
\mathrm{q}_{\mathrm{vi}}=\frac{1}{\square \operatorname{\square }_{\square} \exp \square \frac{\mathrm{h} \square_{\mathrm{i}}}{\mathrm{kT}} \frac{\square}{\square}} \tag{35}
\end{equation*}
$$

For small arguments of $\xlongequal[\square \mathrm{kT} \square_{\mathrm{i}}]{\square} \frac{[}{\square}$

$$
\begin{equation*}
\mathrm{q}_{\mathrm{vi}}=\frac{\mathrm{kT}}{\mathrm{~h} \square_{\mathrm{i}}} \tag{36}
\end{equation*}
$$

Evaluating

$$
\begin{aligned}
& \frac{\mathrm{h} \square}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=\frac{\mathrm{hc} \square}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=4.8 \square 10^{\square 3} \frac{\square}{\square \mathrm{l} \mathrm{~cm}} \text { 四 } 300 \mathrm{~K} \text { T } \\
& \mathrm{c}=\text { speed of light }
\end{aligned}
$$

The Rotational Partition Function, q_{R}

For linear molecules we solve the wave equation for the rigid rotator model to find the rotational partition function to be

$$
\begin{equation*}
\mathrm{q}_{\mathrm{R}}=\frac{\mathrm{kT}}{2 \mathrm{hcB}} \tag{37}
\end{equation*}
$$

where $B=$ Rotational Constant

$$
\mathrm{B}=\frac{\mathrm{h}}{8 \square \mathrm{cI}}
$$

where $\mathrm{I}=$ moment of inertia

$$
\begin{aligned}
& \mathrm{I}=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \\
\mathrm{c}= & \text { speed of light }
\end{aligned}
$$

Evaluating k, h, c, and simplifying

The overall or total partition function for the activated complex is

$$
\begin{equation*}
\mathrm{q} \vec{U}_{\mathrm{BC}}^{\#}=\mathrm{q}_{\mathrm{e}}^{\#} \mathrm{q}_{\mathrm{q}}^{\#} \mathrm{q}_{\mathrm{V}}^{\#} \mathrm{q}_{\mathrm{R}}^{\#} \tag{38}
\end{equation*}
$$

We now consider the loose imaginary vibration \square_{I}. The total vibrational partition function is the product of the partition functions for each vibrational mode, i.e.,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{V}}^{\#}=\mathrm{q}_{\mathrm{V} i}^{\#} \mathrm{q}_{\mathrm{V} 1}^{\#} \mathrm{q}_{\mathrm{V} 2}^{\#}=\frac{\mathrm{kT}}{\mathrm{~h} \square_{\mathrm{I}}} \mathrm{q}_{\mathrm{V} 1}^{\#} \mathrm{q}_{\mathrm{V} 2}^{\#}=\frac{\mathrm{kT}}{\mathrm{~h} \square_{\mathrm{I}}} \mathrm{q}_{\mathrm{V} \#} \tag{39}
\end{equation*}
$$

where $\mathrm{q}_{\mathrm{V} \#}$ is the partition function that includes the loose vibration and $\mathrm{q}_{\mathrm{V} \#}$ is the vibrational partition function without the loose vibration. Similarly for the total partition function

$$
\begin{equation*}
\mathrm{q}_{\mathrm{A}}^{\# \mathrm{BC}}{ }_{\mathrm{BC}}=\frac{\mathrm{kT}}{\mathrm{~h} \square_{\mathrm{I}}} \mathrm{q}_{\mathrm{ABC}} \tag{40}
\end{equation*}
$$

substituting into Equation (39)

$$
\begin{equation*}
\mathrm{K}_{\mathrm{C}}^{\#}=\frac{\mathrm{kT}}{\mathrm{~h} \square_{\mathrm{I}}} \mathrm{e}^{\square \mathrm{E} \mathrm{E}_{\mathrm{o}} / \mathrm{RT}} \frac{\mathrm{q} \rrbracket_{\mathrm{BC} \#}}{\mathrm{q} \mathrm{~A}_{\mathrm{BC}}} \mathrm{~N}_{\mathrm{Avo}} \tag{41}
\end{equation*}
$$

Substituting Equation (41) into Equation (3) we note that the loose vibration frequency cancels and we obtain

$$
\begin{aligned}
& \frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}}=\frac{6.25 \square 10^{12}}{\text { molecules } \cdot \mathrm{s}} \square \frac{\mathrm{~T}}{300 \mathrm{~K}}[\\
& \mathrm{N}_{\text {Avo }}=6.023 \square 10^{23} \frac{\text { molecules }}{\mathrm{mol}}
\end{aligned}
$$

Note: If B and C are the same molecule, B_{2}, in the reaction

$$
\mathrm{A}+\mathrm{B}_{1} \square \mathrm{~B}_{2} \square \mathrm{AB}+\mathrm{B}
$$

There will be a factor of $2(2 \mathrm{kT} / \mathrm{h})$ in the rate constant because A can attach either B molecule, B_{1} or B_{2}. It's sometimes easier to make TST calculations by taking ratios

The Eyring Equation

Letting $\mathrm{K}_{\mathrm{C} \#}$ represent the equilibrium constant with the loose vibration removed we have

$$
\square \mathrm{r}_{\mathrm{A}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} \mathrm{~K}_{\mathrm{C} \#} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}
$$

the true dimensionless equilibrium constant is

$$
\mathrm{K}=\mathrm{K}_{\square} \mathrm{K}_{\mathrm{C}} \mathrm{~V}_{\mathrm{m}}^{\square}
$$

then

$$
\mathrm{K}_{\mathrm{C} \#}=\mathrm{K}_{\#} \mathrm{~V}_{\mathrm{m}}^{\square \mathrm{l}}=\mathrm{K}_{\#} \mathrm{~V}_{\mathrm{m}}=\mathrm{K}_{\#} / \mathrm{C}_{\mathrm{T}}
$$

where C_{T} is the total concentration
$\square \mathrm{G}^{\#}=\square \mathrm{RT} \ln \mathrm{K}_{\text {\# }}$
$\mathrm{K}_{\#}=\mathrm{e}^{\mathrm{IDG} / \mathrm{RT}}$
$\square \mathrm{G}=\square \mathrm{H} \square \mathrm{T} \square \mathrm{S}$

$\square S^{\#}=S_{A B C}^{\#} \square S_{A} \square S_{B}=$ a negative number because we are going from a less ordered state to a more ordered state.
$\square \mathrm{H}^{\#}=\mathrm{H}_{\mathrm{ABCD} \mathrm{\#}} \square \mathrm{H}_{\mathrm{A}} \square \mathrm{H}_{\mathrm{BC}}=$ a positive number
$\mathrm{e}^{\square S^{\#} / \mathrm{R}}=\frac{\text { Configurations Leading to Reactions }}{\text { Total Number of Configurations }}$
Definitions
$\mathrm{q}=$ overall partition function $=\square \mathrm{e}^{\mathrm{D}\left[\mathrm{L}_{\mathrm{i}}\right.}, \square=\frac{1}{\mathrm{kT}}$
$\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}}=$ molar partition function
$\mathrm{q}=\mathrm{q}_{\mathrm{e}}{ }^{\bullet} \mathrm{q}_{\mathrm{Tr}} \bullet \mathrm{q}_{\mathrm{Vib}} \bullet \mathrm{q}_{\text {Rot }}$
$\mathrm{q}_{\mathrm{T}}=\mathrm{q} \square \mathrm{V}$
$q_{\mathrm{V}}=\mathrm{q}_{\mathrm{Vi}_{1}} \mathrm{q}_{\mathrm{V}_{1}} \mathrm{q}_{\mathrm{v} 2}$
$\mathrm{q}_{\mathrm{V}}^{\text {\# }}=$ vibrational partition for activated state including loose vibration
$q_{\mathrm{V} \#}=$ vibrational partition function with loose vibration removed
$\mathrm{q} \#$ = overall partition function per unit volume with loose vibration removed

