Professional Reference Shelf

B. Transition State Theory

Overview

Transition state theory provides an approach to explain the temperature and concentration dependence of the rate law. For example, for the elementary reaction

$$
A+B C ~ П \quad A B+C
$$

The rate law is

$$
\square \mathrm{r}_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}=\mathrm{Ae}^{\square \mathrm{E}_{\mathrm{A}} / \mathrm{RT}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}
$$

For simple reactions, transition state theory can predict E and A in concert with computational chemistry. In transition state theory (TST), an activated molecule is formed during the reaction at the transition state between products from reactants.

$$
\mathrm{A}+\mathrm{BC} \stackrel{\square}{\square} \quad \mathrm{~A} \square \mathrm{~B} \square \mathrm{C}^{\#} \square \mathrm{AB}+\mathrm{C}
$$

The rate of reaction is equal to the product of the frequency, v_{I}, of the activated complex crossing the barrier and the concentration of the transition state complex

$$
\square \mathrm{r}_{\mathrm{A}}=\mathrm{v}_{\mathrm{I}} \mathrm{C}_{\mathrm{ABC}^{\#}}
$$

The transition state molecule ($\mathrm{A} \square \mathrm{B} \square \mathrm{C}^{\#}$) and the reactants are in pseudo equilibrium at the top of the energy barrier.

$$
\mathrm{K}_{\mathrm{C}}^{\#}=\frac{\mathrm{C}_{\mathrm{ABC}^{\#}}}{\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}}
$$

Combining gives

$$
\square \mathrm{r}_{\mathrm{A}}=\mathrm{v}_{\mathrm{I}} \mathrm{~K}_{\mathrm{C}}^{\#} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}
$$

We will now use statistical and quantum mechanics to evaluate $K_{C}^{\#}$ to arrive at the equation

$$
\square \mathrm{r}_{\mathrm{A}}=\frac{\square \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} e^{\square \frac{\square \mathrm{E}_{0}}{\mathrm{kT}}} \frac{\mathrm{q}_{\mathrm{ABC}^{\#}}}{\mathrm{q} \mathrm{q}_{\mathrm{BC}}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}
$$

where $q \square$ is overall the partition function per unit volume and is the product of translational, vibration, rotational, and electric partition functions, that is,

The individual partition functions to be evaluated are

Translation

Vibration

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{v}}=\frac{1}{1 \square \exp \frac{\mathrm{hv}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}}
\end{aligned}
$$

Rotation

$$
\begin{gathered}
\mathrm{q}_{\mathrm{R}}=\frac{8 \square^{2} \mathrm{Ik}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{~h}^{2}}=12.4 \frac{\mathrm{~T}}{300 \mathrm{~K}} \frac{\mathrm{I}_{\mathrm{AB}}}{} \mathrm{I}_{\mathrm{AB}}=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \\
\mathrm{I}_{\mathrm{AB}}=\square_{\mathrm{AB}} \mathrm{~d}^{2} \text { for diatomic molecules } \AA^{2}=\frac{1}{\mathrm{~S}_{\mathrm{y}}}
\end{gathered}
$$

The Eyring Equation
Liquids

$$
\mathrm{k}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}}=\frac{\mathrm{e}^{\square \mathrm{s}^{\#} / \mathrm{R}^{\square \square \mathrm{H}^{\#} / \mathrm{RT}}}}{\mathrm{~K}_{\square} \mathrm{C}_{\mathrm{T} 0}}
$$

I. Introduction
A. The Transition State
B. Procedure to Calculate the Frequency Factor
II. Background
A. Molecular Partition Function
B. Relating $\tilde{\mathrm{S}}, \mathrm{n}_{\mathrm{i}}$ and N
C. Relate \tilde{S} and q
D. Canonical Partition Function for Interacting Molecules
E. Thermodynamic relationships to relate \tilde{G}, \tilde{S} and q
F. Relate G, the molar partition function q_{m}
G. Relating the dimensionless equilibrium constant K and the molar partition function q_{m}
H. Relate the molecular partition function on a basis of per unit volume, q■and the equilibrium constant K
I. Recall the relationship between K and K_{C} from Appendix C.
J. The Loose Vibration, v_{I}
K. Evaluating the Partition Functions
III. The Eyring Equation

References for Collision Theory, Transition State Theory and Molecular Dynamics
P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998)
P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994).
G. D. Billing and K. V. Mikkelsen, Introduction to Molecular Dynamics and Chemical Kinetics (New York: Wiley, 1996).
P.W. Atkins, The Elements of Physical Chemistry, 2nd ed. (Oxford: Oxford Press, 1996).
K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987).
G. Odian, Principles of Polymerization, 3rd ed. (New York: Wiley 1991).
R. I. Masel, Chemical Kinetics and Catalysis, Wiley Interscience, New York, 2001.

References Nomenclature

A5p403 Means Atkins, P. W. Physical Chemistry, 5th ed. (1994) page 403. A6p701 Means Atkins, P. W. Physical Chemistry, 6th ed. (1998) page 701. L3p208 Means Laidler, K. J., Chemical Kinetics, 3rd ed. (1987) page 208.
M1p304 Means Masel, R.I., $1^{\text {st }}$ Edition (2001) page 304.

I. INTRODUCTION

While the idea of an activated complex has been postulated for years, the first real definitive observation was made by Nobel Prize Laureate, Ahmed Zewail. He used femtosecond spectroscopy to study the formation of ethylene from cyclobutane. ${ }^{1}$ The reaction is shown schematically in Figure R3.B-1.

Reaction Coordinate
Figure R3.B-1 Evidence of active intermediate.
The active intermediate is shown in transition state at the top of the energy barrier. A class of reactions that also goes through a transition state is the $\mathrm{S}_{\mathrm{N} 2}$ reaction.

A. The Transition State

We shall first consider $\mathbf{S}_{\mathbf{N}} 2$ reactions [SUbstitution, $\underline{\text { Nucleophilic, }} \underline{\underline{2}}$ nd order] because many of these reactions can be described by transition state theory. A Nucleophileis a substance (species) with an unshared electron. It is a species that seeks a positive center.

$$
\mathrm{Nu}:^{\square}+\mathrm{R}: \mathrm{X}\| \| \mathrm{Nu}: \mathrm{R}+\mathrm{X}^{\square}
$$

An example is the exchange of Cl for OH^{-}, that is,

$$
\begin{gathered}
\mathrm{OH}^{\square}+\mathrm{CH}_{3} \mathrm{Cl} \square \square \mathrm{HOCH}_{3}+\mathrm{Cl}^{\square} \\
\mathrm{C}^{+}-: \stackrel{\square}{\mathrm{Cl}}:
\end{gathered}
$$

The nucleophile seeks the carbon atom that contains the halogen. The nucleophile always approaches from the backside, directly opposite the leaving group. As the nucleophile approaches the orbital that contains the nucleophile electron pairs, it begins to overlap the empty antibonding orbital of the carbon atom bearing the leaving group. ${ }^{2}$

[^0]

Figure R3.B-1 shows the energy of the molecules along the reaction coordinate which measures the progress of the reaction. One measure of this progress might be the distance between the CH_{3} group and the Cl atom.

Figure R3.B-2!!Reaction coordinate for (a) $\mathrm{S}_{\mathrm{N} 2}$ reaction, and (b) generalized reaction.
We now generalize

$$
\mathrm{A}+\mathrm{BC} \sqcap \mathrm{ABC}^{\#} \sqcap \mathrm{AB}+\mathrm{C}
$$

with the reaction coordinate given in terms of the distance between the B and C molecules. The reaction coordinate for this reaction was discussed in R.3-A Collision Theory-D Polyani Equations when discussing the Polanyi equation.

The energy barrier shown in Figure R3.B-2 is the shallowest barrier along the reaction coordinate. The entire energy diagram for the $\mathrm{A}-\mathrm{B}-\mathrm{C}$ system is shown in three dimensions in Figure R3.B-3. To obtain Figure R3.B-2 from Figure R3.B-3, we start from the initial state (A!+!BC) and move through the valley up over the barrier, E_{b} (which is also in a valley), over to the valley on the other side of the barrier to the final state $(\mathrm{A}!+!\mathrm{BC})$. If we plot the energy along the dashed line pathway through the valley of Figure R3.B-3, we arrive at Figure R3.B-2.

Figure R3.B-3 3-D energy surface for generalized reaction.
The rate of reaction for the general reaction ${ }^{3}$ is the rate of crossing the energy barrier

We consider the dissociation of the activated complex $A \square B \square C^{\#}$ as a loose vibration of frequency $v_{\mathrm{I}^{\prime}}\left(\mathrm{s}^{-1}\right)$. The rate of crossing the energy barrier is just the vibrational frequency, v_{I}, times the concentration of the activated complex, $\mathrm{C}_{\mathrm{ABC}^{\#}}$:

$$
\begin{equation*}
\square \mathrm{r}_{\mathrm{A}}=v_{\mathrm{I}} \quad \mathrm{C}_{\mathrm{ABC}^{\#}} \tag{R3.B-1}
\end{equation*}
$$

We assume the activated complex $A B C^{\#}$ is in virtual equilibrium with the reactants A and BC . Consequently, we can use the equilibrium concentration constant $\mathrm{K}_{\mathrm{C}}^{\#}$ to relate these concentrations, that is,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{C}}^{\#}=\frac{\left(\mathrm{ABC}^{\#}\right)}{(\mathrm{A})(\mathrm{B})} \equiv \frac{\mathrm{C}_{\mathrm{ABC}^{\#}}}{\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}} \tag{R3.B-2}
\end{equation*}
$$

Combining Equations (A) and (B), we obtain

$$
\begin{equation*}
\square \mathrm{r}_{\mathrm{A}}=v_{\mathrm{I}} \quad \mathrm{~K}_{\mathrm{C}}^{\#} \quad \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}} \tag{R3.B-3}
\end{equation*}
$$

The procedure to evaluate v_{I} and $\mathrm{K}_{\mathrm{C}}^{\#}$ is shown in Table R.3B-1.

[^1]
B. Procedure to Calculate the Frequency Factor

Table R3.B-1 Transition State Procedure to Calculate v_{l} and $\mathrm{K}_{\mathrm{C}}^{\#}$

Step 1. Molecular partition function. The number of ways, W, of arranging N molecules in m energy states, with n_{i} molecules in the \square energy state is

$$
\mathrm{W}=\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\ldots \mathrm{n}_{\mathrm{m}}!}
$$

The distribution that gives a maximum in W is the Boltzmann distribution from which we obtain the molecular partition function, q.

Step 2. Relating $\tilde{\mathbf{S}}, \mathbf{n}_{\mathbf{i}}$, and \mathbf{N}. The entropy or the system is given by the fundamental postulate

$$
\tilde{\mathrm{S}}=\mathrm{k} \ln \mathrm{~W}=\mathrm{k} \ln \frac{\mathrm{~N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\ldots \mathrm{n}_{\mathrm{m}}!}
$$

Next we manipulate the Boltzmann equation for N molecules distributed in m energy states using Stirling's approximation to arrive at

$$
\tilde{\mathrm{S}}=\square \mathrm{k} \square \mathrm{n}_{\mathrm{i}} \ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}}[
$$

Step 3. Relate $\tilde{\mathbf{S}}$ and q. Starting with the total energy of the system $\mathrm{E}!=!\tilde{\mathrm{U}}-!\tilde{\mathrm{U}}_{0}=!\square \mathrm{n}_{\mathrm{i}} \square$, relative to the ground state, substitute for the number of molecules, n_{i}, in energy state, \square, using the Boltzmann distribution in the last equation of Step 3

$$
\ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}}=\square \square_{\mathrm{i}} \square \ln \mathrm{q}
$$

and then sum to arrive at

$$
\tilde{\mathrm{S}}=\frac{\tilde{\mathrm{U}} \square \tilde{\mathrm{U}}_{0}}{\mathrm{~T}}+\mathrm{kN} \ln \mathrm{q}
$$

for noninteracting molecules. \tilde{U}_{0} is the ground state energy.
Step 4. Canonical partition function for interacting molecules. We need to consider interacting molecules. To do this, we have to use the canonical partition function

$$
\mathrm{Q}=\square_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{e}^{\square \mathrm{Z}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}}
$$

The probability of finding a system with energy, E_{i}, is

$$
P_{i}=\frac{e^{\square D_{i} \mathrm{E}_{\mathrm{i}}}}{\mathrm{Q}}
$$

These relationships are developed with the same procedure as that used for the molecular partition function. For indistinguishable molecules, the canonical and molecular partition functions are related by

$$
\mathrm{Q}=\frac{\mathrm{q}^{\mathrm{N}}}{\mathrm{~N}!}
$$

Using the preceding equation, we can arrive at

$$
\tilde{\mathrm{S}}=\frac{\tilde{\mathrm{U}} \square \tilde{\mathrm{U}}_{0}}{\mathrm{~T}}+\mathrm{kN} \ln \underset{\mathrm{~N}!}{\mathrm{q}!}[
$$

Step 5. Thermodynamic relationship to relate $\tilde{\mathbf{G}}, \tilde{\mathbf{U}}$ and q_{i}, the molecular partition function. We begin by combining the Maxwell relationship, that is,

$$
\tilde{G}=\tilde{U} \mathrm{DT} \tilde{S}+\mathrm{PV}
$$

with the last equation in Step 4 where the tilde (e.g., $\tilde{\mathrm{G}}$) represents the symbols are in units of kcal or kJ without the tilde is in units per mole (e.g., $\mathrm{kJ} / \mathrm{mol}$). We first use the last equation for S in Step 4 to substitute in the Maxwell equation. We next use the relationship between Q and q, that is,

$$
\mathrm{Q}=\frac{\mathrm{q}^{\mathrm{N}}}{\mathrm{~N}!}
$$

to relate \tilde{G} to q, the molecular partition function. For N indistinguishable molecules of an ideal gas,

$$
\tilde{\mathrm{G}}=\tilde{\mathrm{U}}_{0} \square \mathrm{nRT} \ln \frac{\mathrm{q}}{\mathrm{~N}}
$$

Step 6. Relate G to the molar partition function $\mathbf{q}_{\mathbf{m}}$. We define q_{m} as

$$
\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}}, \text { where } \mathrm{N}=\mathrm{n} \mathrm{~N}_{\mathrm{Avo}}
$$

and then substitute in the last equation in Step 5 .

$$
\mathrm{G}=\mathrm{U}_{0} \square \mathrm{RT} \ln \frac{\mathrm{q}_{\mathrm{m}}}{\mathrm{~N}_{\mathrm{Avo}}}
$$

(Note: The tilde's have been removed.)
where $\mathrm{n}=$ Number of moles, $\mathrm{N}_{\mathrm{Avo}}=$ Avogadro's number, and G and U_{0} are on a per mole basis (e.g., $\mathrm{kJ} / \mathrm{mole}$).
Step 7. Relate the dimensionless equilibrium constant K and the molar partition function $q_{m i}$. For the reaction

$$
\mathrm{aA}+\mathrm{bB}_{\square}^{\square} \mathrm{cC}+\mathrm{dD}
$$

the change in the Gibb's free energies is related to K by

$$
\begin{gathered}
\square v_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}=\square \mathrm{G}=\square \mathrm{RT} \ln \mathrm{~K} \\
\mathrm{G}_{\mathrm{i}}=\mathrm{U}_{\mathrm{i} 0} \square \mathrm{RT} \ln \mathrm{q}_{\mathrm{mi}} / \mathrm{N}_{\mathrm{Avo}}
\end{gathered}
$$

Combining the last equation in Step 6 and the preceding equations give

$$
\begin{array}{|ll|}
\hline \mathrm{K}=\mathrm{e}^{\mathrm{\square DE}_{\mathrm{o}} / \mathrm{RT}} & \frac{\mathrm{q}_{\mathrm{mC}}^{\mathrm{c}} \mathrm{q}_{\mathrm{mD}}^{\mathrm{d}}}{\mathrm{q}_{\mathrm{mA}}^{\mathrm{a}} \mathrm{q}_{\mathrm{mB}}^{\mathrm{b}}} \mathrm{~N}_{\mathrm{Avo}}^{\mathrm{a}} \\
\hline
\end{array}
$$

where

$$
\Pi=\mathrm{d}+\mathrm{c} \Pi \mathrm{~b} \Pi \mathrm{a}
$$

Step 8. Relate the partition function on a per unit volume basis, q and the equilibrium constant, K.

$$
\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}}=\mathrm{q} \sqrt{\mathrm{~N}} \frac{\mathrm{v}}{\mathrm{n}}=\mathrm{q} \square \mathrm{~V}_{\mathrm{m}}
$$

Where V_{m} is the molar volume $\left(\mathrm{dm}^{3} / \mathrm{mol}\right)$. Substituting for $q_{m i}$ in the equation for K in Step 7, we obtain

$$
\mathrm{K}=\mathrm{e}^{\mathrm{G} \frac{\mathrm{DE} \mathrm{E}_{\mathrm{o}}}{\mathrm{RT}} \frac{(\mathrm{q} \square)^{\mathrm{c}}(\mathrm{qD})^{\mathrm{d}}}{(\mathrm{q} \square)^{\mathrm{a}}(\mathrm{qB})^{\mathrm{b}}} \mathrm{~V}_{\mathrm{m}}^{\square} \mathrm{N}_{\mathrm{Avo}}^{\square \mathrm{D}}}
$$

Step 9. Recall the relationship between K and K_{C} from Appendix C.

$$
\mathrm{K}=\mathrm{K}_{\square} \mathrm{K}_{\mathrm{C}} \underset{\mathrm{f}^{\circ}}{\square \mathrm{RT}} \square_{\square}^{\square}=\mathrm{K}_{\square} \mathrm{K}_{\mathrm{C}} \mathrm{~V}_{\mathrm{m}}^{\square}
$$

Equate the equilibrium constant K given in the last equation of Step 8 to the thermodynamic K for an ideal gas, $\left(K_{\square}=1\right)$ to obtain K_{C} in terms the partition functions. In other words, for the transition state A - B - C ${ }^{\#}$, with $\square!=!-1$,
we also know

$$
\mathrm{K}_{\mathrm{C}}^{\#}=\frac{\mathrm{C}_{\mathrm{ABC}^{\#}}}{\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}}
$$

Equating the two equations and solving for $\mathrm{C}_{\mathrm{ABC}^{\#}}$

The prime (e.g., $q[]$ denotes the partition functions are per unit volume.
Step 10. The loose vibration. The rate of reaction is the frequency, v_{I}, of crossing the barrier times the concentration of the activated complex $\mathrm{C}_{\mathrm{ABC}^{\#}}$:

$$
\mathrm{r}_{\mathrm{ABC}}=\mathrm{v}_{\mathrm{I}} \mathrm{C}_{\mathrm{ABC}}{ }^{\#}
$$

This frequency of crossing is referred to as a loose (imaginary) vibration. Expand the vibrational partition function to factor out the partition function for the crossing frequency:

$$
\mathrm{q}_{\mathrm{v}}^{\#}=\mathrm{q}_{\mathrm{v} \#} \quad \mathrm{q}_{\mathrm{vI}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{hv}_{\mathrm{I}}} \mathrm{q}_{\mathrm{v} \#}
$$

Note that \# has moved from a superscript to a subscript to denote the imaginary frequency of crossing the barrier has been factored out of both the vibrational, $\mathrm{q}_{\mathrm{V}}^{\#}$, and overall partition functions, $\mathrm{q}^{\#}$, of the activated complex.

$$
\begin{aligned}
& q H_{B C}=q Z_{B C} \frac{k_{B} T}{h_{V_{I}}}
\end{aligned}
$$

Combine with rate equation, $\square \mathrm{r}_{\mathrm{ABC}}=\mathrm{v}_{\mathrm{I}} \mathrm{C}_{\mathrm{ABC}}{ }^{\#}$ noting that v_{I} cancels out, we obtain
where A is the frequency factor.
Step11. Evaluate the partition functions $\left(\mathbf{q} \mid, \mathbf{q}_{\mathbf{V}}, \mathbf{q}_{\mathbf{R}}\right)$. Evaluate the molecular partition functions using the Schrödenger equation

$$
\frac{\mathrm{d}^{2} \square}{\mathrm{dx}^{2}} \square \frac{2 \mathrm{~m}}{\mathrm{~h}}[\mathrm{E} \square \mathrm{~V}(\mathrm{x})] \square=0
$$

we can solve for the partition function for a particle in a box, a harmonic oscillator and a rigid rotator to obtain the following partition functions:
Translation

$$
\mathrm{qq}=\frac{\left(2 \square \mathrm{mk}_{\mathrm{B}} \mathrm{~T}\right)^{3 / 2}}{\mathrm{~h}^{3}}=\frac{\square 9.84 \square 10^{29}-\mathrm{m}_{\mathrm{AB}}}{\mathrm{~m}^{3}} \frac{\mathrm{~T}}{\mathrm{amu}}=\mathrm{m}^{2 / 3} \mathrm{~m}^{3 / 2}
$$

Vibration

$$
\begin{gathered}
\mathrm{q}_{\mathrm{v}}=\frac{1}{1 \square \exp +\frac{\mathrm{hv}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=} \\
\frac{\mathrm{hv}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=\frac{\mathrm{hc} \square}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=4.8 \square 10^{\square 3} \frac{\square}{\square \mathrm{~cm}^{\square 1}} \mathrm{~m}^{300 \mathrm{~K}}=
\end{gathered}
$$

Rotation

$$
\begin{gathered}
\mathrm{q}_{\mathrm{R}}=\frac{8 \square^{2} \mathrm{Ik}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{~h}^{2}}=12.4 \frac{\mathrm{~T}}{300 \mathrm{~K}} \frac{\mathrm{I}_{\mathrm{AB}}}{\mathrm{I}_{\mathrm{AB}}=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}}
\end{gathered}
$$

The end result is to evaluate the rate constant and the activation energy in the equation

$$
\square \mathrm{r}_{\mathrm{A}}=\underbrace{\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} \mathrm{~N}_{\mathrm{Avo}} \frac{\mathrm{q} \|_{\mathrm{BC} \#}}{\mathrm{q} \not \mathrm{q}_{\mathrm{BC}}}}_{\mathrm{A}} \mathrm{e}^{\mathrm{\square DE}_{\mathrm{o}} / \mathrm{RT}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}
$$

We can use computational software packages such as Cerius ${ }^{2}$ or Spartan to calculate the partition functions of the transition state and to get the vibrational
frequencies of the reactant and product molecules. To calculate the activation energy one can either use the barrier height as E_{A} or use the Polyani equation.

Example R3.B-1: Calculating the Frequency Factor Using Transition State Theory
Use transition state theory to calculate the frequency factor A at $300!\mathrm{K}$ for the reaction

$$
\mathrm{H}+\mathrm{HBr} \square \mathrm{H}_{2}+\mathrm{Br}
$$

Additional Information. Literature values. ${ }^{4}$ (Note: Most of this information can be obtained from computational chemistry software packages such as Cerius ${ }^{2}$, Spartan, or Cache.)

Reactants - H, HBr

H atom (mass)	1 amu
HBr (mass)	$80.9 \mathrm{amu}^{-1}$
HBr vibration wave number	$2650 \mathrm{~cm}^{-1}$
H!-!Br separation distance	142 pm

Transition State Complex - $\mathrm{H}-\mathrm{H}-\mathrm{Br}$
Vibration wave numbers

$$
2340 \mathrm{~cm}^{-1}
$$

$$
460 \mathrm{~cm}^{-1} \text { (degenerate) }
$$

Separation distances

Solution

The reaction is

$$
\mathrm{H}+\mathrm{HBr} \underset{\square}{\square} \mathrm{H}-\mathrm{H}-\mathrm{Br} \square \mathrm{H}_{2}+\mathrm{Br}
$$

The specific reaction rate is

Reactants
Hydrogen
Translation

Hydrogen Bromide
Translation

[^2]CD/TransitionStatePRS.doc

$$
\begin{aligned}
& q \square_{\mathrm{H}}=9.88 \square 10^{29} \mathrm{~m}^{\square 3}
\end{aligned}
$$

Vibration

Rotation

$$
\mathrm{q}_{\mathrm{r}}=24.6
$$

The total partition function is

Transition State Complex

Translation

$$
\mathrm{q}_{\mathrm{T}, 1}^{\#}=7322 \square 10^{29} \mathrm{~m}^{[3}
$$

Vibration

$$
\mathrm{q}_{\mathrm{v}}^{\#}=\mathrm{q}_{\mathrm{v} 1} \mathrm{q}_{\mathrm{v} 2}^{2}
$$

$$
\begin{aligned}
& q \prod_{B r}=1.76 \square 10^{34} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{R}}=\frac{8 \square^{2} \mathrm{Ik}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{~h}^{2}}=12.4 \\
& \mathrm{I}_{\mathrm{HBr}}=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}=\square_{\mathrm{HBr}} \mathrm{~d}_{\mathrm{HBr}}^{2} \\
& \mathrm{I}=\square_{\mathrm{HBr}} \mathrm{~d}_{\mathrm{HBr}}^{2}=\frac{(79.9)(1)}{79.9+1}(1.42 \AA)^{2}=1.99 \mathrm{amu} \AA^{2} \\
& S_{y}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{v}}=\frac{1}{1 \square \exp \mathrm{k}_{\mathrm{B}} \mathrm{~T}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{hv}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=4.8 \square 10^{\square 3} \cdot 2650=12.7 \\
& \mathrm{q}_{\mathrm{H}, \mathrm{HBr}}=\frac{1}{1 \square \exp (\square 12.7))}=1.0
\end{aligned}
$$

1. $v!=!2,340 \mathrm{~cm}^{-1}$

$$
\begin{gathered}
\frac{\mathrm{hv}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=11.2 \\
\mathrm{q}_{\mathrm{V}_{1}}=\frac{1}{1 \square \mathrm{e}^{\square 11.2}}=1.0
\end{gathered}
$$

2. $v!=!460 \mathrm{~cm}^{2}$

$$
\begin{gathered}
\frac{\mathrm{hv}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=2.2 \\
\mathrm{q}_{\mathrm{v} 2}=\frac{1}{1 \square \mathrm{e}^{[2.2}}=1.235 \\
\mathrm{q}_{\mathrm{v}}^{\#} \mathrm{q}_{\mathrm{v} 1} \mathrm{q}_{\mathrm{v} 2}^{2}=(1)(1.1235)^{2}=1.26
\end{gathered}
$$

Rotation

$$
\begin{gathered}
\mathrm{q}_{\mathrm{R}}=\frac{8 \square^{2} \mathrm{Ik}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{~h}^{2}}=12.4 \mathrm{I}_{\mathrm{AB}}=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}
\end{gathered}
$$

Calculate the rotational partition function, $q_{r}^{\#}$, for the following transition state.

First, we find the center of mass at x.

$$
\begin{aligned}
\mathrm{m}_{\mathrm{Br}} \cdot \mathrm{x} & =(292 \square \mathrm{x}) \mathrm{m}_{\mathrm{H}}+(142 \square \mathrm{x}) \mathrm{m}_{\mathrm{H}} \\
79.9 \mathrm{x} & =(292 \square \mathrm{x})(1)+(142 \square \mathrm{x})(1) \\
\mathrm{x} & =5.34 \mathrm{pm}=0.0534 \AA
\end{aligned}
$$

The moment of inertia

$$
\begin{gathered}
\mathrm{I}=\mathrm{m}_{\mathrm{HI}} \mathrm{r}_{1}^{2}+\mathrm{m}_{\mathrm{H} 2} \mathrm{r}_{2}^{2}+\mathrm{m}_{\mathrm{Br}} \mathrm{r}_{3}^{2} \\
\mathrm{r}_{1}=292 \square 5.34=286.6 \mathrm{pm}=2.866 \AA \\
\mathrm{r}_{2}=142 \square 5.34=136.6 \mathrm{pm}=1.366 \AA \\
\mathrm{r}_{3}=0.0534 \AA \\
\mathrm{I}=(1 \mathrm{amu})(2.866 \AA)^{2}+(1 \mathrm{amu})(1.366 \AA)^{2}+(79.9 \mathrm{amu})(0.0534 \AA)^{2} \\
\mathrm{I}=8.21 \mathrm{amu} \AA^{2}+1.866 \mathrm{amu} \AA^{2}+0.228 \mathrm{amu} \AA^{2} \\
\mathrm{I}=10.3 \mathrm{amu} \AA^{2}
\end{gathered}
$$

CD/TransitionStatePRS.doc

The rotational partition function is

$$
\mathrm{q}_{\mathrm{r}}^{\#}=(12.4)(10.3)=127.8
$$

The total partition function for the transition state is

$$
\begin{aligned}
\mathrm{q}_{\mathrm{HBr}}^{\text {Hi }} & =\mathrm{q}_{4}^{\#} \mathrm{q}_{\mathrm{v}}^{\#} \mathrm{q}_{\mathrm{r}}^{\#}=\left(7322 \square 10^{29}\right)(1.26)(127.8) \\
& =1.17 \square 10^{35} / \mathrm{m}^{3}
\end{aligned}
$$

We now calculate the frequency factoring A .

$$
\begin{aligned}
& A=\xlongequal[h]{\square k_{B} T} \overbrace{q_{H} q_{H B r}}^{\#} q_{\text {Avo }}^{\#} \\
& =\begin{array}{c}
\square 1.38 \square 10^{\square 23} \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2} / \text { molecule } / \mathrm{K} \quad 300 \mathrm{~K} \square \\
\square \quad \mathrm{~h}=6.626 \square 10^{\square 34} \mathrm{~kg} \square \mathrm{~m}^{2} / \mathrm{s} \\
\square
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =253 \square 10^{5} \frac{\mathrm{~m}^{3}}{\mathrm{~mol} \cdot \mathrm{~s}} \square \frac{1000 \mathrm{dm}^{3}}{\mathrm{~m}^{3}}=2.53 \square 10^{10} \frac{\mathrm{dm}^{3}}{\mathrm{~mol} \cdot \mathrm{~s}} \\
& \mathrm{~A}=2.53 \square 10^{10} \frac{\mathrm{dm}^{3}}{\mathrm{~mol} \bullet \mathrm{~s}}
\end{aligned}
$$

Data From Computational Chemistry

Now let's calculate A and E using the parameters from cache.
For the reaction:

$$
\mathrm{H}+\mathrm{HBr} \square \mathrm{H}_{2}+\mathrm{Br}
$$

The three dimensional potential energy surfaces of the reacting particles along the reaction coordinates was calculated using the MOPAC PM3 method:

Figure R3.B-4 Potential energy surface.
The transition state structure was found at the saddle point, refined by using the DFT/B88-PW91 method as

Figure R3.B-5 H-H-Br transition state.
In the transition state, the three atoms are linear, and the $\mathrm{H}-\mathrm{Br}$ distance is $1.48 \AA$ while the $\mathrm{H}-\mathrm{H}$ distance is $1.55 \AA$.

The transition state was further proved by vibrational analysis (PM3 FORCE), showing one and only one negative vibration (imaginary frequency of crossing the barrier). Moreover, the negative vibration corresponds to the movement of the atoms on the two reaction coordinates.

Figure R3.B-6 \qquad .

Example R3.B-2: Summary of Information from Cache Software

Reactants - H, HBr
H atom (mass) 1 amu
HBr (mass)
80.9 amu

HBr vibration wave number
$2,122 \mathrm{~cm}^{-1}$
H!-!Br separation distance
147 pm
Transition State Complex $-\mathrm{H}-\mathrm{H}-\mathrm{Br}$
Vibration wave numbers
$1,736 \mathrm{~cm}^{-1}$
$289 \mathrm{~cm}^{-1}$
Separation distances
$\mathrm{H} \xrightarrow{155 \mathrm{pm}} \mathrm{H} \xrightarrow{148 \mathrm{pm}} \mathrm{Br}$
The translational partition functions remain the same:

$$
\begin{aligned}
\mathrm{q} & =9.88 \square 10^{29} \mathrm{~m}^{\square 3} \\
\mathrm{q}_{\mathrm{HBr}} & =7189 \square 10^{29} \mathrm{~m}^{\square 3} \\
\mathrm{q}_{\mathrm{HHBr}} & =7322 \square 10^{29} \mathrm{~m}^{\square 3}
\end{aligned}
$$

HBr
Vibration

$$
\begin{gathered}
\frac{\mathrm{h} v}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}=10.19 \\
\mathrm{q}_{\mathrm{v}}=1
\end{gathered}
$$

Rotation

$$
\begin{gathered}
\mathrm{I}_{\mathrm{HBr}}=\frac{(79.9)(1)}{79.9+1}(1.47 \AA)^{2}=2.13 \mathrm{amu} \AA^{2} \\
\mathrm{q}_{\mathrm{r}}=(12.4)(2.13)=26.46 \\
\mathrm{q}_{\mathrm{Hr}}=\left(7,189 \square 10^{29}\right)(1)(26.46)=1.90 \square 10^{34} / \mathrm{m}^{3}
\end{gathered}
$$

HHBr
Vibration

1. $\frac{\mathrm{h} v}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}=(1736)\left(4.8 \square 10^{\square 3}\right)=8.33$

$$
\mathrm{q}_{\mathrm{v} 1}=1.0002
$$

2. $\frac{\mathrm{h} v}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}=(289)\left(4.8 \square 10^{\square 3}\right)=1.387$
$q_{v 2}=1.33$
Rotation
Calculate the rotational partition function, $q_{r}^{\#}$, for the followingtransition state.

First, we find the center of mass at x :

$$
\begin{gathered}
\mathrm{m}_{\mathrm{Br}} \cdot \mathrm{x}=(303 \square \mathrm{x}) \mathrm{m}_{\mathrm{H}}+(148 \square \mathrm{x}) \mathrm{m}_{\mathrm{H}} \\
79.9 \mathrm{x}=(303 \square \mathrm{x})(1)+(148 \square \mathrm{x})(1) \\
\mathrm{x}=5.51 \mathrm{pm}=0.0551 \AA \\
\mathrm{r}_{1}=303 \square 5.51=2.97 \mathrm{pm}=2.97 \AA \\
\mathrm{r}_{2}=148 \square 5.51=142.5 \mathrm{pm}=1.425 \AA \\
\mathrm{r}_{3}=0.0551 \AA \\
\mathrm{I}=(1)(2.97)^{2}+(1)(1.425)^{2}+(79.9)(0.0551) \\
\mathrm{I}=8.82+2.03+0.24=11.1 \\
\mathrm{q}_{\mathrm{HHBr}}^{\#}=\left(7322 \square 10^{29}\right)(1.0002)(1.33)(137.5) / \mathrm{m}^{3} \\
\mathrm{~A}=\left(62.5 \square 10^{11} / \mathrm{s}\right) \frac{1.339 \square 10^{35} \mathrm{~m}^{3}}{\left(1.9 \square 10^{34}\right)\left(9.88 \square 10^{29}\right)}\left(6.02 \square 10^{23}\right) \\
=\left(62.5 \square 10^{11} / \mathrm{s}\right)\left(7.13 \square 10^{\square 30} \mathrm{~m}^{3}\right)\left(6.02 \square 10^{23}\right) \\
\mathrm{q}=1.339 \square 10^{35} \mathrm{~m}^{\square 3} \\
\mathrm{~A}=2.66 \square 10^{10} \frac{\mathrm{dm}^{3}}{\mathrm{~mol}^{3} \cdot \mathrm{~s}}
\end{gathered}
$$

Chemical	Heat of formation at 298!K (kcal/mol)		Energy of zero point level (au)
	MOPAC PM3 method	Experiments	DFT/B88-PW91 method
HBr	5.3	-8.71	-2574.451933
H	52.1	52.1	-0.502437858
$\mathrm{H}-\mathrm{H}-\mathrm{Br}$ Transition state	59.6	$\mathrm{~N} / \mathrm{A}$	-2574.953345

Therefore, the standard enthalpy of activation is:

$$
\square \mathrm{H}_{298}^{\ddagger}=59.6 \square 5.3 \square 52.1=2.2 \mathrm{kcal} / \mathrm{mol}=9.2 \mathrm{~kJ} / \mathrm{mol}
$$

The intrinsic Arrhenius activation energy is

$$
\mathrm{E}_{\mathrm{a}}^{\text {intrinsic }}=\square \mathrm{H}_{298}^{\dagger}+298 \mathrm{R}=2.8 \mathrm{kcal} / \mathrm{mol}=11.7 \mathrm{~kJ} / \mathrm{mol}
$$

Barrier height E_{0} (difference between zero-point levels of activated complexes and reactants) (because the conversion between the au and the $\mathrm{kcal} / \mathrm{mol}$ units is very large, we need to maintain a high number of decimal points):
$E_{0}=627.5^{*}((\square 2574.953345) \square(\square 2574.451933) \square(\square 0.502437858))=0.64 \mathrm{kcal} / \mathrm{mol}=2.7$ $\mathrm{kJ} / \mathrm{mol}$

II. BACKGROUND

A. Molecular Partition Function

In this section, we will develop and discuss the molecular partition function for N molecules with a fixed total energy E in which molecules can occupy different energy states, C .
Total Energy of System
Total number of molecules, N , is

$$
\begin{equation*}
\mathrm{N}=\square \mathrm{n}_{\mathrm{i}} \tag{R3.B-4}
\end{equation*}
$$

where $n_{i}=$ Number of molecules with energy $[$.
The total energy, E , is

$$
\begin{equation*}
\mathrm{E}=\square \mathrm{n}_{\mathrm{i}} \square_{\mathrm{i}} \tag{R3.B-5}
\end{equation*}
$$

The number of ways, W , arranging N molecules among m energy states ($\left.\square_{1},!\square_{2},!!!!!!, \square_{m}\right)$ is

$$
\begin{equation*}
\mathrm{W}=\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\ldots \mathrm{n}_{\mathrm{m}}!} \tag{R3.B-6}
\end{equation*}
$$

For example, if we have $N!=!20$ molecules shared in four energy levels (\square_{1}, \square_{2}, $\left.\square_{3}, \square_{4}\right)$ as shown here

$$
\begin{aligned}
& \mathrm{W}=\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\mathrm{n}_{3}!\mathrm{n}_{4}!}=\frac{20!}{6!8!4!2!} \\
& \mathrm{W}=1.75 \square 10^{9}
\end{aligned}
$$

there are $1.75!\mathrm{x}!10^{9}$ ways to arrange the 20 molecules among the four energy levels shown. There are better ways to put the 20 molecules in the four energy states to arrive at a number of arrangements greater than $1.75!x!10^{9}$. What are they?

For a constant total energy, E , there will be a maximum in W , the number of possible arrangements, and this arrangement will overwhelm the rest. Consequently, the system will almost always be found in that arrangement. Differentiating Equation (R3.B-3) and setting dW!=!0, we find the distribution that gives this maximum. ${ }^{5}$ The fraction of molecules in energy state, \bar{C}, is

[^3]Boltzmann distribution

$$
\begin{align*}
& \mathrm{q}=\mathrm{\square} \mathrm{e}^{\mathrm{DID} \mathrm{i}_{\mathrm{i}}} \tag{R3.B-8}
\end{align*}
$$

The molecular partition function, q, measures how the molecules are distributed (i.e., partitioned) over the available energy states.

Equation (R3.B-7) is the Boltzmann distribution. It is the most probable distribution of N molecules among all energy states \square from $\mathrm{i}!=!0$ to $\mathrm{i}!=!$ subject to the constraints that the total number of molecules, N , and the total energy, E , are constant.

$$
\begin{equation*}
\mathrm{E}=\square \mathrm{n}_{\mathrm{i}} \square_{\mathrm{i}} \tag{R3.B-5}
\end{equation*}
$$

This energy, $\mathrm{E}!=!\square \mathrm{n}_{\mathrm{i}}!\cdot \square$, is relative to the lowest energy, U_{0} (the ground state) the value at $T!=!0$. To this internal energy, E , we must add the energy at zero degrees Kelvin, U_{0}, ${ }^{6}$ to obtain the total internal energy

$$
\begin{equation*}
\tilde{\mathrm{U}}=\tilde{\mathrm{U}}_{0}+\square \mathrm{n}_{\mathrm{i}} \square_{\mathrm{i}} \tag{R3.B-9}
\end{equation*}
$$

The tildes, \tilde{U}, represent that this is the total energy not the energy per mole.

Comments on the Partition Function q

The molecular partition function gives an indication of the average number of states that are thermally accessible to a molecule at the temperature of the system. At low temperatures, only the ground state is accessible. Consider what happens as we go to the extremes of temperature.
(a) At high temperatures ($\mathrm{kT} \geq \geq \square$), almost all states are accessible.

Now as $T \Pi$, $\mathrm{e}^{\square \square_{i} / k T} \Pi 1$ are $\mathrm{q} \sqcup$ because $\square \square$, that is, $\mathrm{q}=1+1+1+1+1+\ldots$, and we see the partition function goes to infinity as all energy states are accessible.
(b) At the other extreme, very very low temperatures ($\mathrm{kT} \ll \square_{\square}$),
as $\quad \mathrm{T} \Pi 0$ and $\mathrm{e}^{-\square_{i} / k T} \Pi 0$
then $\quad \mathrm{q} \square \mathrm{g}_{0}$
and we see that none of the states are accessible with one exception, namely degeneracy in the ground state (i.e., $q \square g_{o}$ for $\square_{o}=0$).
B. Relating $\tilde{S}, \mathbf{n}_{\mathbf{i}}$, and \mathbf{N}

W is the number of ways of realizing a distribution for N particles distributed on \square levels for a total energy E

$$
\mathrm{E}=\square_{1} \mathrm{n}_{1}+\square_{2} \mathrm{n}_{2}+\square_{B} \mathrm{n}_{3}+\ldots
$$

[^4]\[

$$
\begin{equation*}
\mathrm{W}=\frac{\mathrm{N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\ldots \mathrm{n}_{\mathrm{i}}!} \tag{R3.B-6}
\end{equation*}
$$

\]

Boltzmann formula for entropy

Ludwig Boltzmann 1896
Recall $n_{i}=$ number of particles in energy level \square. The Basic Postulate is

$$
\begin{equation*}
\tilde{\mathrm{S}}=\mathrm{k} \ln \mathrm{~W}=\mathrm{k} \ln \frac{\mathrm{~N}!}{\mathrm{n}_{1}!\mathrm{n}_{2}!\ldots \mathrm{n}_{\mathrm{i}}!} \tag{R3.B-10}
\end{equation*}
$$

Next we relate \tilde{S} and q through W

$$
\begin{align*}
\ln \mathrm{W} & =\ln \mathrm{N}!\square \ln \mathrm{n}_{1}!\mathrm{n}_{2}! \\
& =\ln \mathrm{N}!\square\left[\ln \mathrm{n}_{0}!+\ln \mathrm{n}_{1}!+\ldots\right] \\
& \ln \mathrm{W}=\ln \mathrm{N}!\square \square \ln \left(\mathrm{n}_{\mathrm{i}}!\right) \tag{R3.B-11}
\end{align*}
$$

Stirling's approximation for the natural lag of factorials is

$$
\mathrm{X}!=(2 \square)^{1 / 2} \mathrm{X}^{\mathrm{X}+1 / 2} \mathrm{e}^{\mathrm{X}}
$$

or approximately

$$
\begin{equation*}
\ln X!=X \ln X \sqcap X \tag{R3.B-12}
\end{equation*}
$$

Stirling's approximation

For our system this approximation becomes

$$
\begin{gather*}
\ln \mathrm{W}=\mathrm{N} \ln \mathrm{~N} \square \mathrm{~N} \square \mathrm{~B}_{\mathrm{B}}^{\square} \mathrm{n}_{\mathrm{i}} \ln \mathrm{n}_{\mathrm{i}} \square \underbrace{\square \mathrm{n}_{\mathrm{i}}}_{\mathrm{N}} \frac{[}{E}= \tag{R3.B-13}\\
\mathrm{N}=\square \mathrm{n}_{\mathrm{i}} \tag{R3.B-4}
\end{gather*}
$$

Recall substituting Equation (R3.B-4) in Equation (R3.B-13). We find

$$
\begin{aligned}
\ln \mathrm{W} & =\mathrm{N} \ln \mathrm{~N} \square \square \mathrm{n}_{\mathrm{i}} \ln \mathrm{n}_{\mathrm{i}} \\
& =\square \mathrm{n}_{\mathrm{i}} \ln \mathrm{~N} \square \square \mathrm{n}_{\mathrm{i}} \ln \mathrm{n}_{\mathrm{i}} \\
\ln \mathrm{~W} & =\square \square\left(\mathrm{n}_{\mathrm{i}} \ln \mathrm{n}_{\mathrm{i}} \square \mathrm{n}_{\mathrm{i}} \ln \mathrm{~N}\right)
\end{aligned}
$$

Further rearrangement gives

$$
\begin{equation*}
\ln \mathrm{W}=\mathrm{CD} \mathrm{n}_{\mathrm{i}} \ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}} \tag{R3.B-14}
\end{equation*}
$$

combining Equations (R3.B-10) and (R3.B-14)

$$
\begin{equation*}
\tilde{S}=\square \mathrm{k} \square \mathrm{n}_{\mathrm{i}} \ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}} \tag{R3.B-15}
\end{equation*}
$$

C. Relate $\tilde{\mathbf{S}}$ and q

Recall that the fraction of molecules in the $i^{\text {th }}$ energy state is

$$
\begin{equation*}
\frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}}=\frac{\mathrm{e}^{\mathrm{DIq}}}{\mathrm{q}} \tag{R3.B-8}
\end{equation*}
$$

Taking the natural log of Equation (R3.B-5) gives

$$
\ln \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}}=\square \square_{\mathrm{i}} \square \ln \mathrm{q}
$$

Substituting for $\ln \int \frac{n_{i}}{N}=$ in Equation (R3.B-13) gives

$$
\tilde{\mathrm{S}}=\square \mathrm{k} \square \mathrm{n}_{\mathrm{i}}\left[\square \square \square_{\mathrm{i}} \square \ln \mathrm{q}\right]
$$

Rearranging gives

$$
\begin{aligned}
& =\mathrm{k} \square \square \mathrm{n}_{\mathrm{i}} \square_{\mathrm{i}}+\mathrm{k} \square \mathrm{n}_{\mathrm{i}} \ln \mathrm{q} \\
\tilde{\mathrm{~S}} & =\frac{\square \mathrm{n}_{\mathrm{i}} \square_{\mathrm{i}}}{\mathrm{~T}}+\mathrm{kN} \ln \mathrm{q}
\end{aligned}
$$

Recall from Equation (R3.B-9) for $\square n_{i} \square=E=\tilde{U}-U_{0}$, where U_{0} is the ground state energy in kcal.

$$
\begin{equation*}
\tilde{S}=\frac{\tilde{\mathrm{U}} \square \tilde{\mathrm{U}}_{0}}{\mathrm{~T}}+\mathrm{kN} \ln \mathrm{q} \tag{R3.B-16}
\end{equation*}
$$

This result is for noninteracting molecules. We now must extend/generalize our conclusion to include systems of interacting molecules. The molecular partition function, q , is based on the assumption the molecules are independent and don't interact. To account for interacting molecules distributed in different energy state, we must consider the canonical partition function, Q .

D. Canonical Partition Function for Interacting Molecules

Canonical Ensemble (Collection) ${ }^{\text {Z }}$

We now will consider interacting molecules. To do this, we must use the canonical ensemble, which is a collection of systems at the same temperature, T ; volume, V; and number of molecules, N. These systems can exchange energy with each other.

[^5]

System of specified volume, temperature, and composition (number of molecules), which we will "replicate" N times.

Energy exchange between ensembles

15 replications

Let
$E_{i}=$ Energy of ensemble i
$\hat{\mathrm{E}}=$ Total energy of all the systems $\square \hat{\mathrm{n}}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}=$ a constant
$\hat{\mathrm{n}}_{\mathrm{i}}=$ Number of members of the ensemble with energy E_{I}
$\tilde{\mathbf{N}}=$ Total number of ensembles
Let P_{i} be the probability of occurrence that a member of the ensemble has an energy, E_{i}. The fraction of members of the ensemble with energy E_{i} can be derived in a manner similar to the molecular partition function.

$$
\begin{gather*}
P_{i}=\frac{\hat{n}_{i}}{\tilde{N}}=\frac{\mathrm{e}^{\square \mathrm{E}_{\mathrm{i}}}}{\mathrm{Q}} \\
\mathrm{Q}=\square \mathrm{e}^{\square \mathrm{E}_{\mathrm{i}}} \tag{R3.B-17}
\end{gather*}
$$

Q is the canonical partition function.
We now rate the canonical partition function the molecular partition function. ${ }^{8}$ The energy of ensemble $\mathrm{i}, \mathrm{E}_{\mathrm{i}}$, is the sum of the energies of each of the molecules in the ensembles

$$
\begin{aligned}
& E_{i}=\square_{i}(1)+\square_{N}(2)+\ldots+\square_{N}(N) \\
& 4 \text { Energy of Energy of molecule } \\
& \text { molecule } 1 \text { when } \mathrm{N} \text { when it is in } \\
& \text { it is in state! } \mathrm{i} \text { state } \mathrm{N}
\end{aligned}
$$

Expanding the $\mathrm{i}!=!1$ and $\mathrm{i}!=!2$ terms,

Each molecule (e.g., molecule 1) is likely to occupy all the states available to it. Consequently, instead of summing over the states i of the system, we can sum over the states i of molecule 1 , molecule 2 , and so on.

[^6]\[

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{q}^{\mathrm{N}}
\end{aligned}
$$
\]

This result (Equation (R3.B-17)) is for distinguishable molecules. However, for indistinguishable molecules, it doesn't matter which molecule is in which state, that is, whether molecule 1 is in state (a) or (b) or (c) ${ }^{9}$
(1)! \square !(a)!!!(1)! \square
!(b) !! (1)!
!(c)
(2)! ! !(b)!!!(2)! $\square!(c)!!(2)!\square!(a)$

$$
E=\square_{a}+\square_{b}+\square_{c}
$$

(3)! \square !(c)!!!(3)! \square !(a)!!!(3)! \square !(b) (etc.)

Consequently, we have to divide by N !

$$
\begin{equation*}
\mathrm{Q}=\frac{\mathrm{q}^{\mathrm{N}}}{\mathrm{~N}!} \tag{R3.B-18}
\end{equation*}
$$

The molecular partition function is just the product of the partition functions for translational $\left(q_{T}\right)$, vibrational $\left(q_{V}\right)$, rotational $\left(q_{R}\right)$, and electronic energy $\left(q_{E}\right)$ partition functions.

$$
\begin{equation*}
\mathrm{q}=\mathrm{q}^{\mathrm{T}} \mathrm{q}^{\mathrm{V}} \mathrm{q}^{\mathrm{R}} \mathrm{q}^{\mathrm{E}} \tag{R3.B-19}
\end{equation*}
$$

This molecular partition function, q, describes molecules that are not interacting. For interacting particles, we have to use the canonical ensemble. We can do a similar analysis on the canonical ensemble [collection] to obtain ${ }^{10}$

$$
\begin{equation*}
\tilde{S}=\frac{\tilde{U} \square \tilde{\mathrm{U}}_{\mathrm{o}}}{\mathrm{~T}}+\mathrm{k} \ln \mathrm{Q} \tag{R3.B-20}
\end{equation*}
$$

Combining Equations (R3.B-17) and (R3.B-20) thus gives

Which is a result we have been looking for.

E. Thermodynamic Relationships to Relate $\tilde{\mathbf{G}}, \tilde{\mathbf{S}}$, and \mathbf{q}

We now are going to use the various thermodynamic relationships to relate the molecular partition function to change in free energy $\square G$. Then we can finally relate the molecular partition function to the equilibrium constant K . From thermodynamic relationships, we know that the Gibbs free energy, \tilde{G}, can be written as

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}} \square \mathrm{~T} \tilde{S}+\mathrm{PV} \tag{R3.B-23}
\end{equation*}
$$

For an ideal gas with n total moles,

[^7]\[

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}} \mathrm{\square T} \tilde{S}+\mathrm{nRT} \tag{R3.B-24}
\end{equation*}
$$

\]

Again we note the dimensions of \tilde{G} are energy (e.g., kcal or kJ) and not energy $/ \mathrm{mol}$ (e.g. $\mathrm{kcal} / \mathrm{mol}$). Combining Equations (R3.B-20) and (R3.B-24) for \tilde{S} and \tilde{G}, we obtain

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}}_{0} \square \mathrm{kT} \ln \mathrm{Q}+\mathrm{nRT} \tag{R3.B-25}
\end{equation*}
$$

Recalling the relationship of Q to the molecular partition function

$$
\begin{gather*}
\mathrm{Q}=\mathrm{q}^{\mathrm{N}} / \mathrm{N}! \tag{R3.B-18}\\
\tilde{\mathrm{G}}=\tilde{\mathrm{U}}_{0} \square \mathrm{NkT} \ln \mathrm{q}+\mathrm{kT} \ln \mathrm{~N}!+\mathrm{nRT} \tag{R3.B-26}
\end{gather*}
$$

We use Avogadro's number to relate the number of molecules N and moles n (i.e., $\mathrm{N}=\mathrm{nN}_{\mathrm{avo}}$) along with the Stirling approximation to obtain

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}}_{0} \square \mathrm{~N}_{\mathrm{avo}} \mathrm{n} \quad \mathrm{kT} \ln \mathrm{q}+\mathrm{kT}(\mathrm{~N} \ln \mathrm{~N} \square \mathrm{~N})+\mathrm{nRT} \tag{R3.B-27}
\end{equation*}
$$

Now

$$
\mathrm{kTN}=\mathrm{kTN}_{\mathrm{avo}} \mathrm{n}=\mathrm{RTn}
$$

$$
=\tilde{\mathrm{U}}_{0} \square \mathrm{nRT} \ln \mathrm{q}+\mathrm{nRT} \ln \mathrm{~N} \square \mathrm{nRT}+\mathrm{nRT}
$$

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}}_{0} \square \mathrm{nRT} \ln \frac{\mathrm{q}}{\mathrm{~N}} \tag{R3.B-28}
\end{equation*}
$$

$\mathrm{N}=\mathrm{nN}_{\mathrm{avo}}$, where $\mathrm{N}_{\mathrm{avo}}=6.032 \square 10^{23}$ molecules $/ \mathrm{mole}$.

F. Relate G and the Molar Partition Function, q_{m}

We divide by the number of moles, n, to get

$$
\begin{gather*}
\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}} \tag{R3.B-29}\\
\frac{\mathrm{q}}{\mathrm{~N}}=\frac{\mathrm{q}}{\mathrm{nN}_{\mathrm{avo}}}=\frac{\mathrm{q}_{\mathrm{m}}}{\mathrm{~N}_{\mathrm{avo}}}
\end{gather*}
$$

Substituting for (q / N) in Equation (R3.B-28) gives

$$
\begin{equation*}
\tilde{\mathrm{G}}=\tilde{\mathrm{U}}_{0} \square \mathrm{nRT} \ln \frac{\mathrm{q}_{\mathrm{m}}}{\mathrm{~N}_{\mathrm{avo}}} \tag{R3.B-30}
\end{equation*}
$$

To put our thermodynamic variables on a per-mole basis (i.e., the Gibbs free energy and the internal energy), we divide by n, the number of moles.

where G and U_{0} are on a per-mole basis and are in units such as $\mathrm{kJ} / \mathrm{mol}$ or $\mathrm{kcal} / \mathrm{mol}$.
G. Relating the Dimensionless Equilibrium constant K and the Molar Partition Function q_{m}
Applying Equation (R3.B-31) to species i gives

$$
\mathrm{G}_{\mathrm{i}}=\mathrm{U}_{\mathrm{i} 0} \square \mathrm{RT} \ln \square \mathrm{q}_{\mathrm{im}}=
$$

For the reaction

$$
a A+b B_{\square}^{\square} c C+d D
$$

the change in Gibbs free energy is

$$
\begin{equation*}
\square \mathrm{G}=\mathrm{cG}_{\mathrm{C}}+\mathrm{dG}_{\mathrm{D}} \square \mathrm{bG}_{\mathrm{B}} \square \mathrm{aG}_{\mathrm{A}} \tag{R3.B-32}
\end{equation*}
$$

Combining Equations (R3.B-31) and (R3.B-32) gives

$$
\square \mathrm{G}=\underbrace{\mathrm{cU}_{\mathrm{C} 0}+\mathrm{dU}_{\mathrm{D} 0} \square \mathrm{bU}_{\mathrm{B} 0} \square \mathrm{aU}_{\mathrm{A} 0}}_{\square \mathrm{E}_{0}}
$$

$$
\begin{equation*}
\square \mathrm{G}=\square \mathrm{E}_{0} \square \mathrm{RT} \ln \prod_{\square \mathrm{q}_{\mathrm{Am}} \mathrm{q}_{\mathrm{Cm}}^{\mathrm{c}} \mathrm{q}_{\mathrm{Dm}}^{\mathrm{d}}}^{\mathrm{a}} \cdot \mathrm{~N}_{\mathrm{avo}}^{\square \mathrm{a}} \tag{R3.B-33}
\end{equation*}
$$

where again

$$
\square=\mathrm{c}+\mathrm{d} \square \mathrm{~b} \square \mathrm{a}
$$

From thermodynamics and Appendix C, we know

$$
\Pi \mathrm{G}=\Pi \mathrm{RT} \ln \mathrm{~K}
$$

Dividing by RT and taking the antilog, we get

$$
\begin{equation*}
K=e^{\square \frac{\square E_{0}}{R T}} \frac{q_{C m}^{c} q_{D m}^{d}}{q_{A m}^{\mathrm{c}} q_{B m}^{\mathrm{b}}} N_{A v o}^{\square]} \tag{R3.B-34}
\end{equation*}
$$

H. Relate the Molecular Partition Function on a Basis of Per-Unit Volume, qd and the Equilibrium Constant, K
The molecular partition function, q, is just the product of the electronic $\left(q_{E}\right)$ translational $\left(q_{T}\right)$ vibrational $\left(q_{V}\right)$ and rotational $\left(q_{R}\right)$ partition functions

$$
\begin{align*}
& \mathrm{q}=\mathrm{q}_{\mathrm{E}} \mathrm{q}_{\mathrm{T}} \mathrm{q}_{\mathrm{V}} \mathrm{q}_{\mathrm{R}} \tag{R3.B-19}
\end{align*}
$$

Equations for each of these partition functions $\left(q_{E}, q_{T}, \ldots\right)$ will be given later. We now want to put the molecular partition function on a per-unit volume basis. We will do this by putting the translational partition function on a perunit volume basis. This result comes naturally when we write the equation for q_{T}

$$
\begin{equation*}
\mathrm{q}_{\mathrm{T}}=\mathrm{q} \rrbracket \mathrm{~V} \tag{R3.B-35}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
\mathrm{q}=\mathrm{q} \nabla \mathrm{Vq}_{\mathrm{E}} \mathrm{q}_{\mathrm{V}} \mathrm{q}_{\mathrm{R}}=\mathrm{q} \square \mathrm{~V} \tag{R3.B-36}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}}=\mathrm{q} \square \frac{\mathrm{~V}}{\mathrm{n}}=\mathrm{q} \square \mathrm{~V}_{\mathrm{m}} \tag{R3.B-37}
\end{equation*}
$$

By putting $q \rrbracket$ on a per-unit volume basis, we put the product $q \square=q \rrbracket q_{E} q_{R} q_{V}$ on a per-unit volume basis. The prime again denotes the fact that the transitional partition function, and hence the overall molecular partition function, is on per-unit volume.

The molar volume is

$$
\mathrm{V}_{\mathrm{m}}=\frac{\mathrm{RT}}{\mathrm{f}^{\circ}}, \quad f^{\circ}=1 \mathrm{~atm}
$$

where f° is the fugacity of the standard state of a gas and is equal to 1 atm.

$$
\begin{equation*}
K=e^{\square \frac{\mathrm{DE}}{\mathrm{E}} \mathrm{RT}} \frac{(\mathrm{qE})^{\mathrm{c}}(\mathrm{qD})^{\mathrm{d}}}{(\mathrm{q} \|)^{\mathrm{a}}\left(\mathrm{qB}_{\mathrm{B}}\right)^{\mathrm{b}}}-\frac{\mathrm{RT}}{1 \mathrm{~atm}} \tag{R3.B-38}
\end{equation*}
$$

(See Appendix TS2 page 29 of Transition State Theory notes for derivation.)

I. Recall the Relationship Between K and K_{C} from Appendix C

The equilibrium constant and free energy are related by

$$
\begin{aligned}
& \square G=\square R T \ln K
\end{aligned}
$$

The standard state is $f_{i 0}=1 \mathrm{~atm}$. The fugacity is given by $f_{A}=\square_{A} P_{A}$ (See Appendix C of text.)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \mathrm{RT}
\end{aligned}
$$

For an ideal gas $K_{\square}=1$
Equating Equations (R3.B-40) and (R3.B-41) and canceling $\left(\mathrm{RT} / \mathrm{f}_{\mathrm{i}}^{\circ}\right)^{\square}$ on both sides gives

$$
\begin{equation*}
\mathrm{K}_{\mathrm{C}}=\mathrm{e}^{\mathrm{a} \frac{\mathrm{E}_{0}}{\mathrm{RT}} \frac{(\mathrm{qD})^{\mathrm{c}}(\mathrm{qD})^{\mathrm{d}}}{(\mathrm{qD})^{\mathrm{a}}(\mathrm{qB})^{\mathrm{b}}}} \mathrm{~N}_{\mathrm{avo}}^{\mathrm{ID}} \tag{R3.B-42}
\end{equation*}
$$

Now back to our transition state reaction

$$
\begin{align*}
& A+B C 円 A B C^{\#} \text { ㅁㅁ } A B+C \\
& \square=1 \square 1 \square 1=\square 1 \\
& \square \mathrm{r}_{\mathrm{A}}=\mathrm{v}_{\mathrm{I}} \mathrm{C}_{\mathrm{ABC} \#}=\mathrm{V}_{\mathrm{I}} \mathrm{~K}_{\mathrm{c}}^{\#} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \tag{c}
\end{align*}
$$

where $q A_{B C}$ is the molecular partition function per unit volume for the activated complex.

$$
\begin{equation*}
q_{A B C}^{\#}=q_{E}^{\#} q_{V}^{\#} q_{R}^{\#} q_{ \pm}^{\#} \tag{R3.B-44}
\end{equation*}
$$

Rearranging Equation (R3.B-43), we solve for the concentration of the activated complex $\mathrm{C}_{\mathrm{ABC}}$ \#

J. The Loose Vibration, v_{I}

We consider the dissociation of $A-B-C^{\#}$ as a loose vibration with frequency v_{I} in that the transition state molecule A-B-C ${ }^{\#}$ dissociates when it crosses the barrier. Therefore the rate of dissociation is just the vibrational frequency at which it dissociates times the concentration of $A B C^{\# 11}$

$$
\begin{equation*}
\square \mathrm{r}_{\mathrm{ABC}}=\mathrm{v}_{\mathrm{I}} \mathrm{C}_{\mathrm{ABC}^{\#}} \tag{R3.B-46}
\end{equation*}
$$

Substituting Equation (R3.B-45) into Equation (R3.B-46) yields

Where q Dis the partition function per unit volume. Where v_{I} is the "imaginary" dissociation frequency of crossing the barrier.

The vibrational partition, $\mathrm{q}_{\mathrm{v}}^{\#}$, function is the product of the partition function for all vibrations

$$
\begin{equation*}
q_{v}^{\#}=q_{v 1} q_{v 1} q_{v 2} \tag{R3.B-47}
\end{equation*}
$$

Factoring out q_{vI} for the frequency of crossing the barrier gives

[^8]\[

$$
\begin{gather*}
q_{v}^{\#}=q_{v I} \overbrace{q_{v 1} q_{v 2}}^{q_{v} \#} \\
q_{v}^{\#}=q_{v I} q_{v \#} \tag{R3.B-48}\\
q \rrbracket_{B C \#}=q_{E}^{\#} q_{v I} q_{v \#} q_{R}^{\#} q_{4}^{\#} \tag{R3.B-49}
\end{gather*}
$$
\]

Note that we have moved the \# from a superscript to subscript to denote that $\mathrm{q}_{\mathrm{v} \#}$ is the vibrational partition function less the imaginary mode $\mathrm{v}_{\mathrm{I}} \cdot \mathrm{q}_{\mathrm{v}}^{\#}$ is the vibrational partition function for all modes of vibration, including the imaginary dissociation frequency. ${ }^{12}$

$$
\begin{align*}
& \mathrm{q}_{\mathrm{vI}}=\frac{1}{1 \square e^{\square \frac{\mathrm{hv}_{\mathrm{I}}}{k_{B} T}}}=\frac{1}{1 \square \square \frac{\mathrm{hv}_{\mathrm{I}}}{\mathrm{kT}}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{hv}_{\mathrm{I}}} \tag{R3.B-50}
\end{align*}
$$

Substituting for $q_{A B C}^{\#}$ in Equation (R3.B-45) and canceling v_{I}
where $q \mathbb{Z B C}_{\mathrm{BC}}$ is the partition function per unit volume with the partition function for the vibration frequency for crossing removed.

Nomenclature Notes:
$\mathrm{q}=$ molecular partition function $=\mathrm{q}_{\mathrm{E}} \mathrm{q}_{\mathrm{T}} \mathrm{q}_{V} \mathrm{q}_{\mathrm{R}}$
$\mathrm{q} \square=$ molecular partition function per unit volume
$\mathrm{q}=\mathrm{q} \square \mathrm{V}$
$\mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}}=\mathrm{q} \nabla_{\mathrm{m}}$! molar partition function
$q^{\#}=$ Partition function (per unit volume) of activated complex that includes partition function of the vibration frequency v_{I}, the frequency of crossing
$\mathrm{q} \rrbracket=$ Partition function (per unit volume) of the activated complex but does not include the partition function of the loose vibration for crossing the barrier

What Are the Equations for $\mathrm{q} \mathrm{q}^{,} \mathrm{q}_{\mathrm{V}}, \mathrm{q}_{\mathrm{E}}$, and q_{R} ?

[^9]
K. Evaluating the Partition Functions

Schrödinger Wave Equation

We will use the Schrödinger wave equation to obtain the molecular partition functions. The energy of the molecule can be obtained from solutions to the Schrödinger wave equation ${ }^{13}$

$$
\begin{equation*}
\frac{\square \mathrm{h}^{2}}{2 \square^{2} \mathrm{~m}} \square^{2}+\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \square=\mathrm{B} \square(\mathrm{x}, \mathrm{y}, \mathrm{z}) \tag{R3.B-53}
\end{equation*}
$$

This equation describes the wave function, \square, for a particle (molecule) of mass, m, and energy, E, traveling in a potential energy surface $V(x, y, z)$. " h " is Planck's constant. The one-dimensional form is

$$
\begin{align*}
& \square \frac{\mathrm{d}^{2} \square}{\mathrm{dx}^{2}}=\frac{2 \mathrm{~m}}{\mathrm{~h}^{2}}[\mathrm{E} \square \mathrm{~V}(\mathrm{x})] \square=0 \tag{R3.B-54}\\
& \mathrm{~h}=\mathrm{h} / 2 \square=1.05 \square 10^{\square 34} \mathrm{~J} \cdot \mathrm{~s}
\end{align*}
$$

The probability of finding a particle in a region between x and $x!+!d x$ is
Probability $=\square^{2} \mathrm{dx}$
\square^{2} is the probability density. ${ }^{14}$

Molecular Partition Function

We shall use this equation to obtain the translational, vibrational, and rotational energies, ($\square_{,}, \square_{V}$, and \square_{R}) used in the partition function q . The equation is solved for three special cases
1.!!Translational energy, C. Particle in a Box.

2!!!Vibrational energy, \square_{V}. Harmonic Oscillator.
3.!!Rotational Energy, \square_{R}. Rigid Rotator.
4.!!Electronic Energy, \square_{E}.

Recall $q \square=q_{E} q_{V} q_{R} q$ 园
The electronic partition functions q_{E}, is most always close to one.

[^10]Parameter Values
1 atomic mass unit $\equiv 1 \mathrm{amu}=1.67!\mathrm{x}!10^{-27} \mathrm{~kg}, \mathrm{~h}=6.626!\mathrm{x}!10^{-34} \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$,

$$
\mathrm{k}_{\mathrm{B}}=1.38!\mathrm{x}!10^{-23} \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}^{2} / \mathrm{K} / \text { molecule }
$$

1. Transitional Partition Function $q \boxplus$ Derive

$$
\begin{align*}
& \mathrm{q} \square=\frac{\left(2 \square \mathrm{mk}_{\mathrm{B}} \mathrm{~T}\right)^{3 / 2}}{\mathrm{~h}^{3}}=\frac{1}{\square^{3}}=\text { the order of } 10^{30} \mathrm{~m}^{\square 3} \tag{R3.B-55}\\
& \square=\text { Thermal wavelength }=\frac{h}{\left(2 \square \mathrm{mk}_{\mathrm{B}} \mathrm{~T}\right)^{1 / 2}} \\
& q=\stackrel{\square 2 \square \mathrm{k}_{\mathrm{B}} \square_{\square}^{3 / 2}}{\square \mathrm{~h}^{2}}(\mathrm{~m})^{3 / 2 \square \mathrm{amu} \square^{3 / 2}} \underset{\square}{\square \mathrm{amu}} \mathrm{~T}^{3 / 2} \square \frac{300}{300} \\
& =\frac{\square 2 \square \mathrm{k}_{\mathrm{B}} \cdot 300 \cdot 1 \mathrm{amu} \mathrm{\beta}^{3 / 2}}{\mathrm{~h}^{2}} \cdot \frac{\square \mathrm{~m}_{\mathrm{AB}}}{\square} \stackrel{\beta^{3 / 2} \square \mathrm{~T} \square^{3 / 2}}{\square}
\end{align*}
$$

Substituting for $\mathrm{k}_{\mathrm{B}}, 1 \mathrm{amu}$ and Plank's constant h

$$
\begin{aligned}
& \text { for } \mathrm{H}_{2} \text { at } 25^{\circ} \mathrm{C} \quad \square=7.12 \square 10^{\square 11} \mathrm{~m}
\end{aligned}
$$

2. Vibrational Partition Function q_{v} Derive

$$
\begin{equation*}
\mathrm{q}_{\mathrm{v}}=\frac{1}{1 \prod \mathrm{e}^{\square h \mathrm{v} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}}} \tag{R3.B-57}
\end{equation*}
$$

Expanding in a Taylor series

$$
\begin{align*}
& q_{v}=\frac{1}{\frac{e^{\square}}{\mathrm{k}^{\mathrm{h} T}}} \tag{Derive}
\end{align*}
$$

3. Electronic Partition Function

$$
\begin{equation*}
\mathrm{q}_{\mathrm{E}}=\mathrm{q}_{\mathrm{E}} \quad\left(\mathrm{q}_{\mathrm{E}}=1\right) \tag{Derive}
\end{equation*}
$$

4. Rotational Partition Function q_{R} Derive

For linear molecules,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{R}}=\frac{8 \square^{2} \mathrm{Ik}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{~h}^{2}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{hcB}} \tag{R3.B-59}
\end{equation*}
$$

$B=$ Rotational constant $=\frac{h}{8 \square^{2} \mathrm{cI}}$

$$
\mathrm{I}=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}
$$

For nonlinear molecules,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{R}} \frac{1}{\mathrm{~S}_{\mathrm{y}}}=\stackrel{\square \mathrm{k}_{\mathrm{B}} \mathrm{~T} \square^{3 / 2} \overbrace{\mathrm{hc}}^{\square}-\frac{\square}{\square}}{\square}=\text { the order of } 10 \text { to } 1,000 \tag{Derive}
\end{equation*}
$$

where ABC are the rotational constants for a nonlinear molecule about the three axes at right angles to one another

$$
\mathrm{I}=\mathrm{C}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}
$$

For a linear molecule,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{R}}=12.4 \mathrm{~S}_{300}^{\mathrm{T}} \mathrm{a} \tag{R3.B-60}
\end{equation*}
$$

$S_{y}=$ symmetry number of different but equivalent arrangements that can be made by rotating the molecule. ${ }^{15}$

For the water and hydrogen molecule, $\mathrm{S}_{\mathrm{y}}=2$,

For $\mathrm{HCl} \mathrm{S} \mathrm{S}_{\mathrm{y}}=1$

Estimate A from Transition State Theory

Let's do an order of magnitude calculation to find the frequency factor A .

$$
\begin{gathered}
\square \mathrm{r}_{\mathrm{A}}=\underbrace{\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} \mathrm{~N}_{\mathrm{Avo}} \frac{\mathrm{q} \prod_{\mathrm{ABC}^{\#}}^{\mathrm{q} \mathrm{q}_{\mathrm{BC}}}}{}}_{\mathrm{A}\left(\mathrm{~m}^{3} / \mathrm{mol} \cdot \mathrm{~s}\right)} \mathrm{e}^{\square \mathrm{E} / \mathrm{RT}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \\
\square \mathrm{r}_{\mathrm{A}}=\mathrm{Ae}^{\square \square \mathrm{E} / \mathrm{RT}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}
\end{gathered}
$$

Let's first calculate the quantity

[^11]CD/TransitionStatePRS.doc

at $300!\mathrm{K}$

$$
\mathrm{N}_{\mathrm{Avo}}=6.02 \square 10^{23} \frac{\text { molecules }}{\mathrm{mole}}
$$

At 300 K

$$
\begin{array}{lccc}
& \frac{\mathrm{A}}{32} & \underline{\mathrm{BC}} & \underline{\mathrm{ABC}} \\
\mathrm{q} & 6 \times 10^{32} \mathrm{~m}^{-3} & 6 \times 10^{32} & 6 \times 10^{32} \\
\mathrm{q}_{\mathrm{v}} & & 5 & 5 \\
\mathrm{q}_{\mathrm{R}} & & 20 & 200 \\
\mathrm{q}[& 6 \times 10^{32} \mathrm{~m}^{-3} & 600 \times 10^{32} \mathrm{~m}^{-3} & 6000 \times 10^{32} \mathrm{~m}^{-3}
\end{array}
$$

$$
\begin{aligned}
& \frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}}=10^{13} \quad \mathrm{~s}^{\square 1} \text { molecule }^{\square 1} \\
& \text { q甲 } \bar{\square} 10^{32} \mathrm{~m}^{\square 3} \\
& q_{v} \quad \square 6 \\
& \mathrm{q}_{\mathrm{R}} \text { Д100 }
\end{aligned}
$$

$$
\begin{aligned}
& \square \mathrm{r}_{\mathrm{A}}=\mathrm{Ae}{ }^{\square \mathrm{E} / \mathrm{RT}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}}=\frac{1.38 \square 10^{\square 23} \mathrm{~J} / \mathrm{K} \cdot \text { molecule } \cdot 300 \mathrm{~K}}{6.62 \square 10^{\square 34} \mathrm{~J} \cdot \mathrm{~s}}=6.25 \square 10^{12} \mathrm{~s}^{\square 1} / \mathrm{molecule} \\
& \frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} \square 10^{13} \mathrm{~s}^{\square 1} / \text { molecule }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mathrm{A}=\left(1.7 \square 10^{[32} \mathrm{m}^{\square 3}\right)\right)_{6}^{6} \square 10^{23} \frac{\text { molecule }}{\text { mole }} \mathbb{H}^{13} \frac{1}{\text { molecule } \cdot \mathrm{s}} \mathrm{E} \\
& A \square 10 \square 10^{4} \mathrm{~m}^{3} / \mathrm{mole} \cdot \mathrm{~s}=10^{8} \mathrm{dm}^{3} / \mathrm{mole} \cdot \mathrm{~s}
\end{aligned}
$$

which compares with A predicted by collision theory.

Derivation of the equation for $q \mathrm{Z}, \mathrm{q}_{\mathrm{V}}, \mathrm{q}_{\mathrm{E}}$, and q_{R}

CLICK BACKS

1. Translational Partition Function, q_{T}

(Click Back 1)
HOT BUTTON
To show

$$
\begin{equation*}
q \mathrm{q}=\frac{2 \square \mathrm{k}_{\mathrm{B}} \mathrm{Tm} \overbrace{}^{3 / 2}}{\mathrm{~h}^{2}}\left(\mathrm{~m}^{\square 3}\right) \tag{T1}
\end{equation*}
$$

Translational Energy
We solve the Schrödinger equation for the energy of a molecule trapped in an infinite potential well. This situation is called "a particle in a box." For a particle in a box of length a,

The potential energy is zero everywhere except at the walls where it is infinite so that the particle cannot escape the box. Inside the box

$$
\begin{equation*}
\square \frac{\mathrm{h}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2} \square}{\mathrm{dx}}=\mathrm{E} \square \tag{T2}
\end{equation*}
$$

The box is a square well potential where the potential is zero between $x!=!0$ and $x!=a$ but infinite at $x!=!0$ and $x!=!a .^{16}$ The solution to the Equation (T2) is

$$
\begin{equation*}
\square=A \sin (k x)+B \cos (k x) \tag{T3}
\end{equation*}
$$

[^12]where
\[

$$
\begin{align*}
& E=\frac{k^{2} h^{2}}{2 m} \tag{T4}\\
& \square \text { from } k=\sqrt{\frac{2 m E}{h^{2}}}[
\end{align*}
$$
\]

We now use the boundary conditions
At $x!=!0!!!!\square!=!0, \sin 0=0$, and $\cos 0!=!1$
($\mathrm{B}!=!0$
The wave equation is now
$\square!=!A \sin !k x$
At $x!=!a,!!!!\square!=!0$,
\square will be zero provided
— ka!=!n \square
where n is an integer, $1,2,3$

$$
\mathrm{k}=\frac{\mathrm{n} \square}{\mathrm{a}}
$$

Substituting (T5) into (T4), we see that only certain energy states are allowed

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \mathrm{~h}^{2}}{8 \mathrm{ma} \mathrm{a}^{2}} \tag{T6}
\end{equation*}
$$

For particle in a three-dimensional box of sides a, b, and c

$$
\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{h}^{2}}{8 \mathrm{~m}} \frac{\mathrm{n}_{1}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{n}_{2}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{n}_{3}^{2}}{\mathrm{c}^{2}}=
$$

Back to one dimension

$$
E_{n}=\frac{n^{2} h^{2}}{8 m a^{2}}
$$

Therefore relative to the lowest energy level $n!=!1$, the energy is

$$
\begin{equation*}
\square_{\mathrm{n}}=\left(\mathrm{E}_{\mathrm{n}} \square \mathrm{E}_{1}\right)=\left(\mathrm{n}^{2} \square 1\right) \square \text { where } \square=\frac{\mathrm{h}^{2}}{8 \mathrm{ma}^{2}} \tag{T7}
\end{equation*}
$$

Then

$$
\begin{align*}
& \mathrm{q}_{\mathrm{Tx}}=\square_{\mathrm{n}=1}^{\mathrm{e}} \mathrm{e}^{\left(\mathrm{n}^{2} \square 1\right) \mathrm{a}} \tag{T8}\\
& \mathrm{q}_{\mathrm{Tx}}=\frac{2 \square \mathrm{kTm}}{\mathrm{~h}^{2}} \tag{T9}
\end{align*}
$$

Derive
(Click Back within a Click Back) - Hot Button within a Hot Button
We will assume that the energy states are sufficiently close together, such that there is a continuous distribution of energies. Replace \square by \square

Let:!! $x^{2}=n^{2} \square \square d n=d x /(\square \square)^{1 / 2}$

$$
\begin{align*}
& =\frac{-2 \square m}{h^{2} \square} \sigma^{1 / 2} a=\frac{2 \square \mathrm{kTm}}{\mathrm{~h}^{2}} 母^{1 / 2} a \tag{T10}
\end{align*}
$$

For Three Dimensions

The translation partition function for y and z directions are similar to that for q_{Tx}

We define \square as thermal wave length

$$
\begin{gather*}
\square=\frac{h^{2}}{2 \square \mathrm{mkT}}(\mathrm{~m}) \tag{T12}\\
\mathrm{q}=\frac{1}{\square^{3}}
\end{gather*}
$$

Order of Magnitude and Representative Values

For $\mathrm{O}_{2} @ 25^{\circ} \mathrm{C} q \mathrm{q}=2 \square 10^{28} \mathrm{~m}^{\square 3}$
at $25^{\circ} \mathrm{C}$ for $\mathrm{H}_{2}: \square=71 \mathrm{pm}$, for $\mathrm{O}_{2}: \square=18 \mathrm{pm}(\mathrm{pm}=$ picometer $)$

2. Vibration Partition Function $\mathbf{q}_{\mathbf{v}}$ (Click Back 2)

To show

$$
\begin{equation*}
\mathrm{q}_{\mathrm{v}}=\frac{1}{1 \square \mathrm{e}^{\square \mathrm{hv}}} \tag{Derive}
\end{equation*}
$$

(Click Back)

Again we solve the wave equation for two molecules undergoing oscillation about an equilibrium position $x=0$. The potential energy is shown here as a function of the displacement from the equilibrium position $x=0^{17}$

The uncertainty principle says that we cannot know exactly where the particle is located. Therefore, zero frequency of vibration in the ground state (i.e., $v=0$ is not an option. ${ }^{18}$ When v_{0} is the frequency of vibration, the ground state energy is

$$
\begin{equation*}
\mathrm{E}_{0}=\frac{1}{2} \mathrm{hv} \tag{V1}
\end{equation*}
$$

Harmonic oscillator ${ }^{19}$
Spring Force $F=\square k x$, potential energy from equilibrium position $x=0$

$$
\mathrm{m} \frac{\mathrm{dx}^{2}}{\mathrm{dt}^{2}}=\mathrm{kx}
$$

the solution is of the form for $t!=!0$ then $x!=!0$
where

$$
\mathrm{x}=\mathrm{A} \sin \Pi \mathrm{t}
$$

$$
\square=\sqrt[1]{\frac{\mathrm{k}}{\mathrm{~m}}}
$$

$$
\underbrace{\square=\square \text { Spring contant } \square}_{\text {Classical vibration }} \bar{\square}=(\mathrm{k} / \mathrm{m})^{1 / 2}, \quad \square=2 \square \mathrm{v}
$$

The potential energy is

$$
\begin{equation*}
\mathrm{V}=\frac{1}{2} \mathrm{kx}^{2} \tag{V2}
\end{equation*}
$$

We now want to show

$$
\begin{equation*}
\mathrm{E}_{\mathrm{v}}=\frac{\square}{\square}+\frac{1}{2} \mathrm{fv} \tag{V3}
\end{equation*}
$$

and solve the wave equation

[^13]\[

$$
\begin{equation*}
\square \frac{\mathrm{h}^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} \square+\frac{1}{2} \mathrm{kx}^{2} \square=\mathrm{E} \square \tag{V4}
\end{equation*}
$$

\]

to find the allowable energies, \square
Let $\mathrm{y}=\frac{\mathrm{x}}{\square}, \square=\frac{\mathrm{E}}{\frac{1}{2} \mathrm{~h} \square}$, where $\square=\frac{\square_{\mathrm{h}^{2}} \square^{1 / 4}}{\square \mathrm{mk}} \square^{2}, \square=\frac{\mathrm{k}}{\mathrm{m}}$, and $\mathrm{w}=2 \Pi \mathrm{v}$.
With these changes of variables Equation (A15) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \square}{\mathrm{dy}^{2}}+\left(\square \square \mathrm{y}^{2}\right) \square=0 \tag{V5}
\end{equation*}
$$

The solutions to this equation ${ }^{20}$ will go to infinity unless

$$
\begin{align*}
& \square=!2 v+1 \\
& v!=!0,1,2,3, \ldots \\
& E_{v}=\frac{\square}{\square}+\frac{1 \square}{2} \frac{\square}{\square} h, \quad v=\frac{\square}{2 \square}=\frac{c}{\square} \quad[c=\text { speed of light }]^{21} \\
& \text { Wave number }=\tilde{v}=\frac{\mathrm{v}}{\mathrm{c}}=\frac{1}{\square} \quad \stackrel{\square}{\square \tilde{\eta}}=\frac{\mathrm{s}^{\square 1}}{\mathrm{~cm} / \mathrm{s}}=\frac{1}{\mathrm{~cm}}[\\
& \square \text { = wave length } \\
& \mathrm{E}_{\square}=\frac{\square}{\square v}+\frac{1}{2} \square_{\square} \mathrm{hv}=\frac{\square}{\square}+\frac{1}{2} \frac{\square}{\square} \mathrm{hc} \tilde{v} \tag{V6}
\end{align*}
$$

Measuring energy relative to the zero point vibration frequency (i.e., $v!=!0$) gives

$$
\begin{gathered}
\mathrm{Ev}=\mathrm{hv}\left[\frac{1}{2} \frac{1}{2} \frac{1}{2} \mathrm{hv}\right. \\
\mathrm{E}_{v}=\frac{\mathrm{hvv}}{\mathrm{kT}}
\end{gathered}
$$

Substituting for E_{\square} in the partition function summation $\square \mathrm{e}^{\square \square \mathrm{E}_{v}}$ yields

$$
\begin{gathered}
\mathrm{q}_{\mathrm{v}}=\square_{v=0} \mathrm{e}^{\square \square \mathrm{hvv}}=\square_{v=0}\left(\mathrm{e}^{\square \square \mathrm{hv}}\right)^{v} \\
\square_{\mathrm{i}=0} \mathrm{X}^{\mathrm{i}}=\frac{1}{1 \square \mathrm{X}}
\end{gathered}
$$

${ }^{20}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 22, Appendix 8.

This is the result we have been looking for!	$\mathrm{q}_{\mathrm{v}}=\frac{1}{1 \square \mathrm{e}^{\square \square \mathrm{hv}}}$

For $\square \mathrm{hc} \tilde{v} \ll 1$, then $\left[\left(1 \square \mathrm{e}^{\square \mathrm{X}}\right)=1 \square(1 \square \mathrm{X})\right]=\mathrm{X}$. We can make the approximation

$$
\begin{equation*}
\mathrm{q}_{\mathrm{v}}=\frac{\mathrm{kT}}{\mathrm{hv}}=\frac{\mathrm{kT}}{\mathrm{hc}[\mathrm{~T}} \tag{V8}
\end{equation*}
$$

For m multiple frequencies of vibration

$$
q_{v}=q_{v 1} q_{v 2} \ldots q_{v m}
$$

Order of Magnitude and Representative Values

For $\mathrm{H}_{2} \mathrm{O}$ we have three vibrational frequencies with corresponding wave numbers, $\tilde{v}_{\mathrm{i}}, \tilde{v}_{2}$ and \tilde{v}_{3}.

$$
\begin{gathered}
\tilde{v}_{1}=3656 \mathrm{~cm}^{\square 1} \square \mathrm{q}_{\mathrm{v} 1}=1.03 \\
\tilde{v}_{2}=1594.8 \mathrm{~cm}^{\square 1} \square \mathrm{q}_{\mathrm{v} 2}=1.27
\end{gathered}
$$

and

$$
\begin{gathered}
\tilde{v}_{3}=3755.8 \mathrm{~cm}^{\square 1} \square \mathrm{q}_{\mathrm{v} 3}=1.028 \\
\mathrm{q}_{\mathrm{v}}=(1.03)(1.27)(1.028)=1.353
\end{gathered}
$$

3. Electronic Partition Function ${ }^{22}$ (Click Back 3)

From the ground state, electronic energy separation is very large.

$$
\mathrm{q}_{\mathrm{E}}!=!\mathrm{g}_{\mathrm{E}}
$$

where g_{E} is the degeneracy of the ground state.
For most cases,

$$
\begin{equation*}
q_{\mathrm{E}}!=!1 \tag{E1}
\end{equation*}
$$

4. Rotational Partition Function (Click Back 4)

$$
\mathrm{q}_{\mathrm{R}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\square \mathrm{hcB}}
$$

Rigid Rotation ${ }^{23}$
To show

$$
\begin{equation*}
\mathrm{q}_{\mathrm{R}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\square \mathrm{hcB}} \tag{R1}
\end{equation*}
$$

where

[^14]\[

$$
\begin{equation*}
\mathrm{B}=\frac{\mathrm{h}}{8 \square^{2} \mathrm{cI}}=\text { Rotational constant } \tag{R2}
\end{equation*}
$$

\]

Consider a particle of mass m rotating about the z-axis a distance r from the origin.

$$
\begin{equation*}
\square=\frac{2 \square \mathrm{r}}{\mathrm{~m}_{\ell}} \tag{R3}
\end{equation*}
$$

This time we convert the wave equation to spherical coordinate to obtain ${ }^{24}$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \square}{\mathrm{~d} \square^{2}}=\square \frac{2 \mathrm{IE}}{\mathrm{~h}^{2}} \tag{R4}
\end{equation*}
$$

Classical energy of a rigid rotator is

$$
\begin{equation*}
\mathrm{E}=\frac{1}{2} \square^{2} \mathrm{I} \tag{R5}
\end{equation*}
$$

where w is the angular velocity $(\mathrm{rod} / \mathrm{s})$ and I is the moment of inertia ${ }^{25}$

$$
\begin{equation*}
\mathrm{I}=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \tag{R6}
\end{equation*}
$$

where m_{i} is the mass located and distance r_{i} from the center of mass. Quantum mechanics solutions to the wave equation gives two quantum numbers, ℓ and m.

$$
\left.\begin{align*}
& \text { Magnitude of angular momentum }=[\ell(\ell+1)]^{1 / 2} \mathrm{f} \\
& \text { z!component of angular momentum }=m \mathrm{~h} \\
& \mathrm{E}=\ell(\ell+1) \frac{\mathrm{h}^{2}}{2 \mathrm{I}}
\end{aligned} \right\rvert\, \begin{aligned}
& \mathrm{E}, \tag{R7}\\
& m=0, \pm \ell \text { with } \begin{array}{l}
+\ell \text { clockwise rotation } \\
\square \ell \\
\text { counter clockwise rotation }
\end{array}
\end{align*}
$$

[^15]Let $\mathrm{J} \equiv \ell$
For a linear rigid rotator

$$
\begin{equation*}
\mathrm{E}!=\frac{\mathrm{J}(\mathrm{~J}+1) \mathrm{h}^{2}}{2 \mathrm{I}}=\mathrm{hcB} \mathrm{~J}(\mathrm{~J}+1) \tag{R8}
\end{equation*}
$$

Where B is the rotation constant:

$$
\begin{equation*}
\mathrm{B}=\frac{\mathrm{h}}{4 \square \mathrm{I} \mathrm{c}}=\frac{\mathrm{h}}{8 \square^{2} \mathrm{cI}} \tag{R2}
\end{equation*}
$$

with

$$
\begin{gathered}
c=\text { Speed of light } \\
I=\text { Moment of inertia about the center of mass }=\square \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}
\end{gathered}
$$

The rotational partition function is

$$
\begin{equation*}
\mathrm{q}_{\mathrm{R}}=\square_{\mathrm{J}=0}(2 \mathrm{~J}+1) \mathrm{e}^{\square \mathrm{hcB}(\mathrm{~J})(\mathrm{J}+1) \square} \tag{R9}
\end{equation*}
$$

Replacing the $\square_{\mathrm{J}=0}$ by an integral from 0 to and integrating, we obtain the rotational partition function q_{R} for a linear molecule ${ }^{29}$

$$
\begin{align*}
& \text { This is the result we } \tag{R10}\\
& \text { have been looking for! }
\end{align*} \quad \mathrm{q}_{\mathrm{R}}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{hcB}}=\frac{8 \square^{2} \mathrm{Ik}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~S}_{\mathrm{y}} \mathrm{~h}^{2}}
$$

where S_{y} is the symmetry number, which is the number of different but equivalent arrangements that can be made by rotating the molecules.

$$
\text { For } \mathrm{HCl} \quad \mathrm{~S}_{\mathrm{y}}=1
$$

For $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{S}_{\mathrm{y}}=2$

For a nonlinear molecule,

where

$$
\mathrm{A}=\frac{\mathrm{h}}{8 \square^{2} \mathrm{cI}_{\mathrm{A}}}, \quad \mathrm{~B}=\frac{\mathrm{h}}{8 \square^{2} \mathrm{cI}_{\mathrm{B}}}, \quad \mathrm{C}=\frac{\mathrm{h}}{8 \square^{2} \mathrm{cI}_{\mathrm{C}}}
$$

[^16]$S_{y}!=$!symmetry number. ${ }^{30}$ For a hetronuclear molecule, $\square!=!1$ and for a homonuclear diatomic molecule or a symmetrical linear molecule (e.g., H_{2}), then $\square!=!2$.

Order of Magnitude and Representative Values

For $\mathrm{HCl} @ @!25^{\circ} \mathrm{C}^{31} \mathrm{~B}!=!10.591!\mathrm{cm}^{-1}$ then $\mathrm{q}_{\mathrm{R}}!=!19.9$ and at $0^{\circ} \mathrm{C} \mathrm{q}_{\mathrm{R}}!=!18.26$.
For ethylene at $25^{\circ} \mathrm{C}$, then $\mathrm{q}_{\mathrm{R}}!=!661$.

III. THE EYRING EQUATION

For the reaction

$$
\mathrm{A}+\mathrm{BC} \sqcap \mathrm{AB}+\mathrm{C}
$$

The rate law is

$$
\begin{gather*}
\square \mathrm{r}_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}} \tag{R3.B-62}\\
\mathrm{k}=\mathrm{Ae}^{\square \mathrm{E}_{\mathrm{A}} / \mathrm{RT}} \tag{R3.B-63}\\
\ln \mathrm{k}=\mathrm{A} \ln \square \mathrm{E}_{\mathrm{A}} / \mathrm{RT} \tag{R3.B-64}\\
\frac{\mathrm{~d} \ln \mathrm{k}}{\mathrm{dT}}=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{RT}^{2}} \tag{R3.B-65}
\end{gather*}
$$

Now let's compare this with transition state theory.
The rate of reaction is the rate at which the activated complex crosses the barrier

$$
\begin{gather*}
\mathrm{A}+\mathrm{BC} \sqcap \mathrm{ABC}^{\#} \sqcap \mathrm{AB}+\mathrm{C} \\
\square \mathrm{r}_{\mathrm{A}}=v_{\mathrm{I}} \mathrm{C}_{\mathrm{ABC}^{\#}} \tag{R3.B-1}\\
\mathrm{~K}_{\mathrm{C}}^{\#}=\frac{\left(\mathrm{ABC}^{\#}\right)}{(\mathrm{A})(\mathrm{B})} \equiv \frac{\mathrm{C}_{\mathrm{ABC}^{\#}}}{\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}}} \tag{R3.B-2}\\
\square \mathrm{r}_{\mathrm{A}}=v_{\mathrm{I}} \mathrm{~K}_{\mathrm{C}}^{\#} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{BC}} \tag{R3.B-3}
\end{gather*}
$$

Factoring out partition function for the loose vibration frequency, v_{I}, from the vibrational partition function, $q_{v}^{\#}$, gives

$$
\begin{equation*}
q_{v}^{\#}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{hv}_{\mathrm{I}}} \mathrm{q}_{\mathrm{v} \#} \tag{R3.B-66}
\end{equation*}
$$

Then from Equation (R3.B-43), we can obtain

$$
\begin{equation*}
\mathrm{K}_{\mathrm{C}}^{\#}=\mathrm{K}_{\mathrm{C} \#} \frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{hv}_{\mathrm{I}}} \tag{R3.B-67}
\end{equation*}
$$

[^17]\[

$$
\begin{equation*}
\square \mathrm{r}_{\mathrm{A}}=\frac{-\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} \mathrm{~K}_{\mathrm{C} \#} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}} \tag{R3.B-68}
\end{equation*}
$$

\]

which is referred to as the Eyring equation.
From thermodynamics

$$
\begin{gather*}
\Pi \mathrm{G}=П \mathrm{H} П \mathrm{~T} П \mathrm{~S} \tag{R3.B-69}\\
\mathrm{~K}^{\#}=\mathrm{e}^{\square \square \mathrm{G}^{*} / \mathrm{RT}}=\mathrm{e}^{\square \mathrm{S}^{\#} / \mathrm{R}} \mathrm{e}^{\square \mathrm{CH} \mathrm{H}_{\mathrm{R}}^{*} / \mathrm{RT}} \tag{R3.B-70}
\end{gather*}
$$

The overall dimensionless terms of mole fraction x_{i} and the activity coefficients \square

$$
\begin{gather*}
\mathrm{K}^{\#}=\mathrm{K}_{\square} \mathrm{K}_{\mathrm{C}}^{\#} \mathrm{~V}_{\mathrm{m}}^{\square 1}=\mathrm{K}_{\square} \mathrm{K}_{\mathrm{C}}^{\#} \mathrm{C}_{\mathrm{T}} \tag{R3.B-71}\\
\mathrm{~K}_{\mathrm{C}}^{\#}=\frac{\mathrm{K}^{\#}}{\mathrm{~K}_{\square} \mathrm{C}_{\mathrm{T}}} \tag{R3.B-72}\\
\mathrm{~K}_{\mathrm{C}^{\#}}=\frac{\mathrm{K}}{\mathrm{~K}_{\square} \mathrm{C}_{\mathrm{T}}}=\frac{\mathrm{e}^{\square \square \mathrm{G}^{\#} / \mathrm{RT}}}{\mathrm{~K}_{\square} \mathrm{C}_{\mathrm{T}}}=\frac{\mathrm{e}^{\square \mathrm{S}^{\#} / \mathrm{R}} \mathrm{e}^{\square \square \mathrm{H} / \mathrm{RT}}}{\mathrm{~K}_{\square} \mathrm{C}_{\mathrm{T}}} \tag{R3.B-73}
\end{gather*}
$$

$\square S^{\#}$ will be negative because we are going from a less ordered system of $A, B C$ moving independently as reactants to a more ordered system of A, B and C being connected in the transition state. The entropy can be thought of as the number of configurations/ orientations available for reactions; that is,
$\frac{\text { Number of configurations leading to reaction }}{\text { Cotal number }}=\mathrm{e}^{\mathrm{D} / \mathrm{R}}$
Total number of configurations

$$
\square \mathrm{H}^{\#}=\left(\mathrm{H}_{\mathrm{ABC}^{\#}} \square \mathrm{H}_{\mathrm{A}} \square \mathrm{H}_{\mathrm{BC}}\right)
$$

will be positive because the energy of the transition state is greater than that of the reactant state.

Case I Liquid

For liquid $\mathrm{C}_{\mathrm{T}}!=!$ a constant $!=!\mathrm{C}_{\mathrm{T} 0}$. Recall for water that $\mathrm{C}_{\mathrm{w}}!=!55.5 \mathrm{~mol} / \mathrm{dm}^{3}$

$$
\begin{gather*}
\mathrm{k}=\frac{\square \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~h}} \cdot \frac{\mathrm{e}^{\square \mathrm{S} \mathrm{~S}^{\# / R}} \mathrm{e}^{\square \mathrm{H} / \mathrm{RT}}}{\mathrm{~K}_{\square} \mathrm{C}_{\mathrm{T} 0}} \tag{R3.B-74}\\
\square \mathrm{~S}^{\#}=\left(\mathrm{S}_{\mathrm{ABC}^{\#}} \square \mathrm{~S}_{\mathrm{A}} \square \mathrm{~S}_{\mathrm{BC}}\right) \tag{R3.B-75}
\end{gather*}
$$

Here we see the temperature dependence as

$$
\mathrm{k}(\mathrm{~T}) \sim \mathrm{T} \mathrm{e}^{\square \square \mathrm{H}^{ \pm} / \mathrm{RT}}
$$

Case II Gases
For gases

$$
C_{T}=\frac{P}{R T}
$$

$$
\mathrm{k}=\frac{\mathrm{k} \mathrm{k}_{\mathrm{B}} \mathrm{R}}{\mathrm{hP}}-\frac{\mathrm{T}^{2} \mathrm{e}^{\square \mathrm{S}^{\#} / \mathrm{R}^{\square \mathrm{a}} \mathrm{H}^{\#} / \mathrm{RT}}}{\mathrm{~K}_{\square}}
$$

Here we see the temperature dependence as

$$
\mathrm{k}(\mathrm{~T}) \sim \mathrm{T}^{2} \mathrm{e}^{\square \mathrm{D} \mathrm{H}^{\# / \mathrm{RT}}}
$$

As with liquids, $\square S^{\#}$ is negative, and $\square H_{R x}^{\#}$ is positive.

Relating E_{A} and H_{Rx}

Now let's compare the temperature-dependent terms. The heat of reaction will be positive because the activated state is at a higher energy level than the reactants. See Figure R3.B-2.

$$
\begin{align*}
& \mathrm{k}=\frac{\square \mathrm{k}_{\mathrm{B}}}{\mathrm{~h}} \| \frac{\mathrm{R}}{\mathrm{P}}-\mathrm{T}^{2} \mathrm{e}^{\square \mathrm{S}^{\#} / \mathrm{R}} \mathrm{e}^{\square \mathrm{H} \mathrm{H}_{\mathrm{Rx}}^{\#} / \mathrm{RT}} \tag{R3.B-76}\\
& \ln \mathrm{k}=\ln \frac{\square \mathrm{k}_{\mathrm{B}} \mathrm{R}}{\mathrm{hP}}+\ln \mathrm{T}^{2}+\frac{\square \mathrm{S}^{\#}}{\mathrm{R}} \square \frac{\square \mathrm{H}_{\mathrm{Rx}}^{\#}}{\mathrm{RT}} \tag{R3.B-77}\\
& \tag{R3.B-78}\\
& \frac{\mathrm{~d}(\ln \mathrm{k})}{\mathrm{dT}}=\frac{2}{\mathrm{~T}}+\frac{\square \mathrm{H}_{\mathrm{Rx}}^{\#}}{\mathrm{RT}^{2}}=\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{RT}^{2}}
\end{align*}
$$

Comparing Equations (R3.B-1) and (R3.B-16), the activation energy the Erying equation is

$$
\begin{equation*}
\mathrm{E}_{\mathrm{A}}=2 \mathrm{RT}+\square \mathrm{H}_{\mathrm{Rx}}^{\#} \tag{R3.B-79}
\end{equation*}
$$

with the frequency factor

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{k}_{\mathrm{B}}}{\mathrm{~h}} \frac{\mathrm{R}}{\mathrm{R}} \mathrm{e}^{\square \mathrm{S}^{\#} / \mathrm{R}} \tag{R3.B-80}
\end{equation*}
$$

Some Generalizations May Be Eliminated

Table R3.B-3 Equations for Reaction Rate Constant Using Partition Functions
For reactants where there are N atoms ${ }^{32}$
Atoms

$$
\mathrm{q}=\mathrm{q}_{\mathrm{T}}^{3}
$$

Linear polyatomic molecules

$$
\mathrm{q}=\mathrm{q}_{\mathrm{T}}^{3} q_{R}^{2} q_{v}^{3 N D 5}
$$

Nonlinear polyatomic molecules

$$
\mathrm{q}=\mathrm{q}_{\mathrm{T}}^{3} \mathrm{q}_{\mathrm{R}}^{3} \mathrm{q}_{\mathrm{v}}^{3 N \square 6}
$$

Let $q_{T}!=10^{-8} \mathrm{~cm}^{-1}$ for each degree of transitional freedom, $\mathrm{q}_{\mathrm{R}}=10, \mathrm{q}_{\mathrm{v}}=1$ and $(\mathrm{kT} / \mathrm{h})!=!10^{13} \mathrm{~s}^{-1}$ with $\mathrm{N}_{\mathrm{A}}=6.02 \square 10^{23}$ molecules $/ \mathrm{mol}$.
Case 1 Atom + Atom $\sqcap \rightarrow$ Diatomic Activated Complex

$$
\mathrm{k}=\overbrace{\mathrm{N}_{\mathrm{avo}}-\frac{\square \mathrm{kT}}{\mathrm{~h}} \cap \frac{\mathrm{q}_{\mathrm{T}}^{3} \mathrm{q}_{\mathrm{R}}^{2}}{\mathrm{q}_{\mathrm{T}}^{3} \mathrm{q}_{\mathrm{T}}^{3}}}^{\mathrm{A}_{\text {calc }}} \mathrm{e}^{\square \overline{E_{0}^{+}} / \mathrm{RT}}
$$

Assuming all translational partition functions are approximately the same

$$
\mathrm{k}_{\mathrm{R}}=\underbrace{\mathrm{N}_{\mathrm{A}} \frac{\square \mathrm{kT} \square \square \square \mathrm{q}_{\mathrm{R}}^{2}}{\square \mathrm{~h} \square \mathrm{q}_{\mathrm{T}}^{3}}}_{\mathrm{A}_{\text {calc }}=6 \square 10^{14} \mathrm{~cm}^{3} / \mathrm{mol} / \mathrm{s}} \mathrm{e}^{\square \square \mathrm{E}_{0}^{+} / \mathrm{RT}}
$$

Case 2 Atom + Linear Molecule $\mathbb{\square}$ Linear Complex

$$
\begin{aligned}
& \mathrm{k}=\mathrm{N}_{\mathrm{A}} \frac{\square \mathrm{kT} \square \frac{\mathrm{q}_{\mathrm{T}}^{3} \mathrm{q}_{\mathrm{R}}^{2} \mathrm{q}_{\mathrm{v}}^{3(\mathrm{~N}+1) \square 6}}{\square} \frac{\mathrm{q}_{\mathrm{T}}^{3} \square \mathrm{q}_{\mathrm{T}}^{3} \mathrm{q}_{\mathrm{R}}^{2} q_{\mathrm{v}}^{3 \mathrm{~N} \square 5}}{\square\left(\mathrm{E}_{0} / \mathrm{RT}\right.} .}{}
\end{aligned}
$$

$$
\begin{aligned}
& A_{\text {calc }}=6 \square 10^{12} \mathrm{~m}^{3} / \mathrm{mol} \cdot \mathrm{~s}
\end{aligned}
$$

Case 3 Atom + Nonlinear Molecule
Same results as for a linear molecule
Case 4 Linear Molecule + Linear Molecule $\bigoplus \biguplus$ Linear Complex

[^18]CD/TransitionStatePRS.doc

$$
\mathrm{k}=\underbrace{\mathrm{N}_{\mathrm{A}} \square \frac{\square \mathrm{kT}}{\square} \square \frac{\mathrm{q}_{\mathrm{v}}^{4}}{\mathrm{q}_{\mathrm{R}}^{2} \mathrm{q}_{\mathrm{T}}^{3}}}_{\mathrm{A}_{\text {calc }}=6 \square 10^{10} \mathrm{~cm}^{3} / \mathrm{mol} \cdot \mathrm{~s}} \mathrm{e}^{\square \square \mathrm{E}_{0} / \mathrm{RT}}
$$

Case 5 Linear Molecule + Nonlinear Molecule $\sqcap \rightarrow$ Nonlinear Complex

$$
\mathrm{k}=\underbrace{\mathrm{N}_{\mathrm{A}} \frac{\square \mathrm{kT}}{\square \mathrm{~h}} \square \frac{\mathrm{q}_{\mathrm{v}}^{5}}{\square \mathrm{q}_{\mathrm{R}}^{3} \mathrm{q}_{\mathrm{T}}^{3}}}_{\mathrm{A}_{\text {calc }}=6 \square 10^{9} \mathrm{~cm}^{3} / \mathrm{mol} \cdot \mathrm{~s}} \mathrm{e}^{\square \square \mathrm{E}_{0}^{+} / \mathrm{RT}}
$$

Appendix

$$
\begin{aligned}
& \text { For the general reaction } \\
& \square G=\square_{i=1}^{M} v_{i} G_{i}=\square U_{i o} v_{i} \square R T \square v_{i} \ln \frac{q_{i m}}{N_{A}} \\
& \square_{\mathrm{i}=1}^{\mathrm{a}_{\mathrm{i}}} \ln \mathrm{~b}_{\mathrm{i}}=\square \ln \mathrm{b}_{\mathrm{i}}^{\mathrm{a}_{\mathrm{i}}}=\ln \mathrm{b}_{1}^{\mathrm{a}_{1}}+\ln \mathrm{b}_{2}^{\mathrm{a}_{2}}+\ln \mathrm{b}_{2}^{\mathrm{a}_{3}} \ldots \\
& =\ln b_{1}^{a_{1}} \quad b_{2}^{a_{2}} \quad b_{N}^{a_{N}}=\ln \square_{i=1}^{N} b_{i}^{a_{i}} \\
& \square G=\square E_{o} \square R T \ln \square_{i=1}^{M} \square q_{\mathrm{q}_{\mathrm{im}}}^{\mathrm{N}_{\mathrm{A}}} \square^{\mathrm{r}_{\mathrm{i}}}
\end{aligned}
$$

$$
\begin{aligned}
& \square v_{i} n R T \ln \frac{q_{m i}}{N_{A}}=n R T \prod v_{i} \ln \frac{q_{m i}}{N_{A}}=v_{1} \ln \frac{q_{m i}}{N_{A}}+v_{2} \ln \frac{q_{m}}{N_{A}}+\ldots=n R T \square q_{\text {mi }}^{v_{i}}[\\
& \square \mathrm{v}_{\mathrm{i}} \tilde{\mathrm{G}}_{\mathrm{o}}=\square \tilde{\mathrm{U}}_{0} \mathrm{v}_{\mathrm{i}} \square \mathrm{nRT} \ln \square \square \frac{\square \mathrm{q}_{\mathrm{mi}}}{\mathrm{~N}_{\mathrm{A}}} \square^{\mathrm{v}_{\mathrm{i}}} \\
& \div \text { by } n \quad \tilde{G} / n=G \quad \tilde{U} / n=U_{0} \\
& \square \mathrm{G}=\square \mathrm{RT} \ln \mathrm{~K}=\square \mathrm{U}_{\mathrm{io}} \mathrm{v}_{\mathrm{i}} \square \mathrm{RT} \square \mathrm{q}_{\mathrm{mi}} \square_{\mathrm{Avo}}^{\mathrm{v}_{\mathrm{i}}}
\end{aligned}
$$

$$
\begin{aligned}
& K_{C}=\frac{C_{A B C}}{C_{A} C_{B C}} \cdot e^{\square E E_{0} / R T}=\frac{q \rrbracket_{B C}}{q \ q \text { qBC }} N_{A v o}^{\square D} \\
& \square=1 \square 1 \square 1=\square 1
\end{aligned}
$$

$$
\begin{aligned}
& C_{A B C}=C_{A} C_{B C} e^{\square \square E_{0} / R T} \frac{q \rrbracket_{B C} N_{A v o}}{q \ q \text { 回C }}
\end{aligned}
$$

$$
\begin{gathered}
q_{A B C}^{\#}=q_{A B C} \frac{k T}{h} \\
r_{A}=v C_{A B C} \frac{k T}{h} e^{\square \square E_{0} / R T} \frac{q \prod_{B C} N_{A v o}}{q q_{B C}} / \mathrm{OK}
\end{gathered}
$$

Molar partition function

$$
\mathrm{K}=\mathrm{K}_{\square} \mathrm{K}_{\mathrm{C}}^{\square} \frac{\square \mathrm{RT} \square^{\mathrm{c}+\mathrm{d} \square \mathrm{a} \square \mathrm{~b}}}{\square}
$$

$$
\square \mathrm{E}_{0}=\square \mathrm{v}_{\mathrm{i}} \mathrm{U}_{\mathrm{io}}
$$

$$
\square \mathrm{RT} \ln \mathrm{~K}=\square \mathrm{E}_{0} \square \mathrm{RT} \ln \square \frac{\mathrm{q}_{\mathrm{mi}}^{\mathrm{v}_{\mathrm{i}}}}{\mathrm{~N}_{\mathrm{Avo}}}
$$

$$
\ln \mathrm{K}=\square \frac{\square \mathrm{E}}{\mathrm{RT}}+\ln \square \frac{\mathrm{q}_{\mathrm{mi}}}{\square \mathrm{~N}_{\mathrm{Avo}}} \square^{\mathrm{v}_{\mathrm{i}}} \quad \mathrm{q}_{\mathrm{m}}=\mathrm{mol}^{\square 1}
$$

$$
\mathrm{K}=\mathrm{e}^{\square\left[\mathrm{E}_{0} / \mathrm{RT}\right.} \square \mathrm{q}_{\mathrm{mi}}^{\square \mathrm{N}_{\mathrm{Avo}}} \square^{\mathrm{v}_{\mathrm{i}}}
$$

$$
\mathrm{q}_{\mathrm{m}}=\mathrm{q} \square_{\mathrm{m}} \frac{\mathrm{~V}}{\mathrm{n}}=\mathrm{q} \boxtimes_{\mathrm{m}}=
$$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{m}}=\frac{\mathrm{q}}{\mathrm{n}}=(\mathrm{q} / \mathrm{mol})
\end{aligned}
$$

$$
\begin{aligned}
& \square=\mathrm{c}+\mathrm{d} \square \mathrm{~b} \square \mathrm{a} \\
& K=\frac{a_{C}^{c} a_{D}^{d}}{a_{A}^{a} a_{B}^{b}}=\frac{\frac{f_{C}^{c}}{f_{C}^{\circ}}}{\frac{f_{D}^{d}}{f_{A}^{a}}} \frac{f_{C}^{c}}{f_{A}^{\circ}} \frac{f_{B}^{b}}{f_{B}^{\circ}}=\left(f^{\circ}\right)^{\square \square} \frac{f_{C}^{c} f_{D}^{d}}{f_{A}^{a} f_{B}^{b}}=\frac{\square_{C}^{c} \square_{D}^{d}}{\square_{A}^{a} \square_{B}^{b}} \frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}}\left(f^{\circ}\right)^{\square]} \\
& K=K_{\square} K_{P}\left(f^{\circ}\right)^{\square \square}, \quad P_{A}=C_{A} R T
\end{aligned}
$$

$$
\begin{aligned}
& \text { However, } \quad \frac{\mathrm{V}}{\mathrm{n}}=\frac{\mathrm{RT}}{\mathrm{f}^{\circ}}
\end{aligned}
$$

[^0]: ${ }^{1}$ Science News, Vol. 156, p. 247.
 ${ }^{2}$ T. W. G. Solomon, Organic Chemistry, $6^{\text {th }}$ ed. (New York: Wiley, 1996) p. 233.

[^1]: ${ }^{3}$ K. J. Laidler, Chemical Kinetics, $3^{\text {rd }}$ ed. (New York: Harper Collins, 1987) p. 90.

[^2]: ${ }^{4}$ K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987).

[^3]: ${ }^{5}$ See P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 571.

[^4]: ${ }^{6}$ P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 579.

[^5]: ${ }^{7}$ P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 583.

[^6]: ${ }^{8}$ P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 858
 23
 CD/TransitionStatePRS.doc

[^7]: ${ }^{9}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994) p. 605. P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998) p. 585.
 ${ }^{10}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994) p. 684.

[^8]: ${ }^{11}$ K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 208.
 CD/TransitionStatePRS.doc

[^9]: ${ }^{12}$ K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 96.
 CD/TransitionStatePRS.doc

[^10]: ${ }^{13}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 370.
 ${ }^{14}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 373.
 CD/TransitionStatePRS.doc

[^11]: ${ }^{15}$ K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 99.

[^12]: ${ }^{16}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 392.
 CD/TransitionStatePRS.doc

[^13]: ${ }^{17}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 402.
 ${ }^{18}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 22, 402.
 ${ }^{19}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 402.

[^14]: ${ }^{21}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 541.
 ${ }^{22}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 701.
 ${ }^{23}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 409, 413, 557, A24.

[^15]: ${ }^{24}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 410.
 ${ }^{25}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 555.
 ${ }^{26}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 408, 413.
 CD/TransitionStatePRS.doc

[^16]: ${ }^{27}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 557.
 ${ }^{28}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), pp. 414, 563, 671.
 ${ }^{29}$ P. W. Atkins, Physical Chemistry, 5th ed. (New York: Freeman, 1994), p. 694.

[^17]: ${ }^{30}$ For discussion of \square, see K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p.!99.
 ${ }^{31}$ P. W. Atkins, Physical Chemistry, 6th ed. (New York: Freeman, 1998), p. 695.
 CD/TransitionStatePRS.doc

[^18]: ${ }^{32}$ K. J. Laidler, Chemical Kinetics, 3rd ed. (New York: Harper Collins, 1987), p. 108.

