Solutions

  1. How many pound moles of gas are in the system we have chosen for the Los Angeles basin if the temperature is 75°F and the pressure is 1 atm?

    DATA

    T=75T = 75°FF

    P=1atmP = 1 atm

    V=(21010ft2)(2000ft)=41013ft3V = (2*10^{10} ft^2)(2000 ft) = 4*10^{13} ft^3

    R=0.7302ft3atmlbmolRR = 0.7302 \frac{ft^3 * atm}{lb*mol*R}

    PV=nRTPV=nRT

    n=PVRTn=\frac{PV}{RT}

    n=1atm(41013ft3)0.7302ft3atmlbmolR(534.67R)n= \frac{1atm*(4*10^{13}ft^3)}{0.7302 \frac{ft^3 * atm}{lb*mol*R}*(534.67R)}

    n=1.0241011lbmoln = 1.024*10^{11} lb*mol

  2. What is the rate, FCO,AF_{CO,A}, at which all autos emit carbon monoxide into the basin (lb mol COh\frac{lb\ mol\ CO}{h})?

    DATA

    Cars = 400,000400,000

    P = 1 atm

    V @ std =3000ft3h= 3000 \frac{ft^3}{h}

    T @ std =32= 32ºFF

    R=0.7302ft3atmlbmolRR = 0.7302 \frac{ft^3 * atm}{lb*mol*R}

    Molar % CO = 2%2\%

    PV=nRTPV=nRT

    n=PVRTn=\frac{PV}{RT}

    n=1atm(3000ft3h)0.7302ft3atmlbmolR(491.67R)n= \frac{1atm*(3000 \frac{ft^3}{h})}{0.7302 \frac{ft^3 * atm}{lb*mol*R}*(491.67R)}

    n=8.3561lbmolhc400,000n = 8.3561 \frac{lb*mol}{\frac{h}{c}}*400,000

    n=3342456.06lbmolhn = 3342456.06 \frac{lb*mol}{h}

    n=3342456.06lbmolh0.02[CO]n = 3342456.06 \frac{lb*mol}{h}* 0.02[CO]

    FCO,A=6.68104lb(moles of CO)hF_{CO,A} = 6.68*10^4\frac{lb*(moles\ of\ CO)}{h}

  3. What is the volumetric flow rate (ft3h)(\frac{ft^3}{h}) of a 15 mph wind through the corridor 20 miles wide and 2000 feet high?

    DATA

    v=15 mph=79,200fthv = 15\ mph = 79,200 \frac{ft}{h}

    A=2000ft105,600ft=2.112108ft2A = 2000 ft * 105,600 ft = 2.112*10^8 ft^2

    Q=vAQ = v*A

    Q=79200fthr2.112108 ft2Q = 79200\frac{ft}{hr}*2.112*10^8\ ft^2

    Q=1.671013ft3hQ = 1.67*10^{13}\frac{ft^3}{h}

  4. Assuming that the volumetric flow rates entering and leaving the basin are identical ν=ν0\nu = \nu_0 show that the unsteady mole balance on CO within the basin becomes:

    FCO,A+FCO,SvOCCO=V(dCCOdt)F_{CO,A} + F_{CO,S} - v_OC_{CO} = V(\frac{dC_{CO}}{dt})

    From the general material balance equation:

    Input – Output + Generation – Consumption = Accumulation

    Input =FCO,A+FCO,S= F_{CO,A}+F_{CO,S}

    Output =v0CCO= v_0*C_{CO}

    Generation = 0

    Consumption = 0

    Accumulation = dNCOdt=d(VCCO)dt=VdC(CO)dt\frac{dN_{CO}}{dt} = \frac{d(VC_{CO})}{dt} = V*\frac{dC_(CO)}{dt}

    Therefore, substitution yields:

    FCO,A+FCO,SvOCCO=V(dCCOdt)F_{CO,A} + F_{CO,S} - v_OC_{CO} = V(\frac{dC_{CO}}{dt})

  5. Verify that the solution to the previous equation is

    t=Vν0ln([FCO,A+FCO,S]ν0CCO,O[FCO,A+FCO,S]ν0CCO,f)t = \frac{V}{\nu_0}ln(\frac{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,O}}{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,f}})

    Starting from the equation obtained in part e, we must first separate variables by solving for dtdt, which is the value that we are trying to obtain. We might as well assume that FCO,AF_{CO,A} and FCO,SF_{CO,S} are a constant factor.

    FCO,A+FCO,SvOCCO=(VdCCOdt)F_{CO,A} + F_{CO,S} - v_OC_{CO} = (\frac{V*dC_{CO}}{dt})

    dt=VdCC0[FCO,A+FCO,S]ν0CCOdt = \frac{VdC_{C0}}{[F_{CO,A} + F_{CO,S}]-\nu_0*C_{CO}}

    VV, the total volume of air in the Basin, is considered to be constant. FCO,AF_{CO,A} and FCO,SF_{CO,S} represent a specific volumetric flow rate multiplied by a specific concentration (vxCCO,xv_xC_{CO,x}), which is also constant:

    dtV=dCC0[FCO,A+FCO,S]ν0CCO\frac{dt}{V} = \frac{dC_{C0}}{[F_{CO,A} + F_{CO,S}]-\nu_0*C_{CO}}

    Only dtdt and CCOC_{CO} remain as the last variables in the equation. Let CCOC_{CO} = xx to simplify mathematical procedures. Let FCO,A+FCO,S=aF_{CO,A}+ F_{CO,S} = a to represent a constant term. Let ν0=b\nu_0 = b.

    dtV=dx(abx)\frac{dt}{V} = \frac{dx}{(a-bx)}

    We can know integrate the equation.

    0tdtV=CCO,OCCO,fdxabx\int^t_0\frac{dt}{V} = \int^{C_{CO,f}}_{C_{CO,O}}\frac{dx}{a-bx}

    ν0tV=ln([FCO,A+FCO,S]ν0CCO,f)+ln([FCO,A+FCO,S]ν0CCO,O)\frac{\nu_0t}{V} = -ln([F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,f})+ln([F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,O})

    ν0tV=ln([FCO,A+FCO,S]ν0CCO,O[FCO,A+FCO,S]ν0CCO,f)\frac{\nu_0t}{V} = ln(\frac{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,O}}{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,f}})

    t=Vν0ln([FCO,A+FCO,S]ν0CCO,O[FCO,A+FCO,S]ν0CCO,f)t = \frac{V}{\nu_0}ln(\frac{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,O}}{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,f}})

  6. If the initial concentration of carbon monoxide in the Los Angeles basin before the Santa Ana wind starts to blow is 8 ppm (2.04108lb molft3)(2.04 * 10^{-8} \frac{lb\ mol}{ft^3}), calculate the time required for the carbon monoxide to reach a level of 2 ppm.

    DATA

    V=41013ft3V = 4*10^{13} ft^3

    ν0=νcars+νwind\nu_0 = \nu_{cars} + \nu_{wind}

    FCO,A=6.68104lb (moles of CO)hF_{CO,A} = 6.68*10^4 \frac{lb\ (moles\ of\ CO)}{h}

    FCO,S=3412.31lb (moles of CO)hF_{CO,S} = 3412.31 \frac{lb\ (moles\ of\ CO)}{h}

    CCO,O=2.04108lb (moles of CO)ft3C_{CO,O} = 2.04*10^{-8} \frac{lb\ (moles\ of\ CO)}{ft^3}

    CCO,F=2 ppmC_{CO,F} = 2\ ppm

    n=1.0241011lb(moles of air)n= 1.024*10^{11} lb(moles\ of\ air)

    ν0=νcars+νwind\nu_0 = \nu_{cars} + \nu_{wind}

    ν0=3,000ft3h400,000 cars+1.671013ft3h\nu_0 = 3,000 \frac{ft^3}{h}*400,000\ cars + 1.67*10^{13}\frac{ft^3}{h}

    ν0=1.67281013ft3h\nu_0 = 1.6728*10^{13}\frac{ft^3}{h}


    CCO,F=2 ppmC_{CO,F} = 2\ ppm

    CCO,F=2 ppm1,000,000lb mol1.0241011lb mol41013ft3C_{CO,F} = \frac{2\ ppm}{1,000,000lb\ mol}*\frac{1.024*10^{11}lb\ mol}{4*10^{13}ft^3}

    CCO,F=5.12109lb(moles of CO)ft3C_{CO,F} = 5.12*10^{-9}\frac{lb(moles\ of\ CO)}{ft^3}

    t=Vν0ln([FCO,A+FCO,S]ν0CCO,O[FCO,A+FCO,S]ν0CCO,f)t = \frac{V}{\nu_0}ln(\frac{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,O}}{[F_{CO,A}+F_{CO,S}]-\nu_0C_{CO,f}})

    FCO,A+FCO,S=6.681014lb(moles of CO)h+3412.13lb(moles of CO)hF_{CO,A} + F_{CO,S} = 6.68*10^{14}\frac{lb(moles\ of\ CO)}{h} + 3412.13\frac{lb(moles\ of\ CO)}{h}

    t=41013ft31.67281013ft3hrln([FCO,A+FCO,S]1.67281013ft3h2.04108lb (moles of CO)ft3[FCO,A+FCO,S]1.67281013ft3h5.12109lb(moles of CO)ft3)t = \frac{4*10^{13}ft^3}{1.6728*10^{13}\frac{ft^3}{hr}}ln(\frac{[F_{CO,A}+F_{CO,S}]-1.6728*10^{13}\frac{ft^3}{h}*2.04*10^{-8} \frac{lb\ (moles\ of\ CO)}{ft^3}}{[F_{CO,A}+F_{CO,S}]-1.6728*10^{13}\frac{ft^3}{h}*5.12*10^{-9}\frac{lb(moles\ of\ CO)}{ft^3}})

    t=6.85ht = 6.85h

  7. There is heavier traffic in the L.A. basin in the mornings and in the evenings as workers go to and from work in downtown L.A. Consequently, the flow of CO into the L.A. basin might be better represented by the sine function over a 24-hour period.

    FCO,A=a+bsin(πt6)F_{CO,A} = a + b*sin(\frac{\pi t}{6})

    The time, t = 0, starts at midnight. Where a = 35,000 lb molh\frac{lb\ mol}{h} and b = 30,000 lb molh\frac{lb\ mol}{h}. The general material balance equation now becomes

    a+bsin(πt6)+FCO,SvOCCO=V(dCCOdt).a + b*sin(\frac{\pi t}{6}) + F_{CO,S} - v_OC_{CO} = V(\frac{dC_{CO}}{dt}).

    (Sine function, original conditions)

    Smog in Los Angeles
    Download the original Polymath file of this problem, by clicking here: LA Basin, sine function

    Use Polymath

  1. Smog begins to build up again immediately after a Santa Ana wind passes through the basin. The volumetric flow rate through the basin has dropped to 1.67x1012ft3hr1.67 x 10^{12} \frac{ft^3}{hr} (1.5 mph). Plot the concentration of carbon monoxide in the basin as a function of time for up to 72 hours and just after a Santa Ana wind. The initial concentration of CO is 0.08 ppm (21010lb molft3)(2 * 10^{-10} \frac{lb\ mol}{ft^3}).

    (Assuming wind stops blowing after 72 h)

    Smog in Los Angeles
    Download the original Polymath file of this problem, by clicking here: LA Basin, 72 h

    Considering that the Santa Ana wind provides a means of cleansing and lowering CO concentration in the Los Angeles Basin, once the current stops being available there would be no vehicle to dilute the air contaminants. Therefore, CO molecules would start to accumulate in the fixed volume of the system. This shows in the steep rise of carbon monoxide concentrations after 72 h.

  2. Plot the concentration of carbon monoxide as a function of time tt up to 48 hours for the case when a Santa Ana wind begins to blow after the 48 hours buildup of CO.

    (Assuming wind is not blowing until 48 h, and then resumes at 1.671012ft3h1.67*10^{12} \frac{ft^3}{h})

    Smog in Los Angeles
    Download the original Polymath file of this problem, by clicking here: LA Basin, 48 hrs

    The opposite phenomenon occurs once the wind starts blowing: with the possibility of venting out the accumulated gases in the Los Angeles Basin, the CO concentration will decrease abruptly. However, in the long run, it will increase again and stabilize.

  3. Vary the parameters, ν0,a,b\nu_0 , a, b, and write a paragraph describing what you find.

    Smog in Los Angeles
    Download the original Polymath file of this problem, by clicking here: LA Basin, vo variations

    Using ν0\nu_0 at 1.67E+11 ft3h\frac{ft^3}{h}, 1.67E+12 ft3h\frac{ft^3}{h}, and 1.67E+13 ft3h\frac{ft^3}{h}, we found an inversely proportional relationship between CO accumulation and volumetric flow rate of the Santa Ana wind. Thus, when vo is the lowest, CO accumulation presents a steeper slope than the other runs. It is important to note that at vo = 1.67E+13 ft3h\frac{ft^3}{h}, a stabilizing condition occurs, meaning that the amount of CO released by vehicles becomes negligible.

    Smog in Los Angeles
    Download the original Polymath file of this problem, by clicking here: LA Basin, a variations

    Using aa at 20000 lb(moles of CO)h\frac{lb(moles\ of\ CO)}{h}, 35000 lb(moles of CO)h\frac{lb(moles\ of\ CO)}{h}, and 50000 lb(moles of CO)h\frac{lb(moles\ of\ CO)}{h}, we notice that the final CO accumulation varies proportionally with the magnitude chosen. This happens because as the sine function for CO emissions in cars spreads over time, the accumulation tends to equal the y-axis intercept (a) of the sine function.

    Smog in Los Angeles
    Download the original Polymath file of this problem, by clicking here: LA Basin, b variations

    Using b at 15000 lbmol CO/h, 35000 lbmol CO/h, and 50000 lbmol CO/h, the amplitude of the variation in CO accumulation increased directly as the values for b became higher. This would be explained mathematically by remembering that the b multiplies the sine function directly, meaning that it accounts for its degree of amplitude from reference to lowest/highest crest.

Modeling the Accumulation and Depletion of Smog in Los Angeles

Alejandra De Obeso, Lauren Floyd, Dr. Nihat M. Gürmen, Prof. H. Scott Fogler