Polymath Regression tutorial on Polynomial fitting of data (Example 16-1)

The following table shows the raw data for experimental tracer concentration from a reactor which you need to fit using Polymath (refer Example 16-1, Table E16-1.1, Elements of chemical reaction engineering, 6th edition)

Time (t)	0	0.5	1	2	3	4	5	6	7	8	9	10	12	14
C_tracer (C)	0	0.6	1.4	5	8	10	8	6	4	3	2.2	1.6	0.6	0

The polynomial fit is of the form:

 $C(t) = ao + a1t + a2t^{2} + a3t^{3} + a4t^{4} + \cdots ant^{n}$

The given C(t) data is first increasing and then decreasing with time. So, we will use two polynomials to fit the C-curve, one for the ascending portion, C1(t), and another for the descending portion, C2(t). We will split our data into two parts, an increasing and a decreasing part, and regress both the data sets separately. Split the data at its maximum, and that happens at t = 4, when C(t) is 10. Our data now looks like this:

T1	0	0.5	1	2	3	4
C1	0	0.6	1.4	5	8	10

and

T2	4	5	6	7	8	9	10	12	14
C2	10	8	6	4	3	2.2	1.6	0.6	0

Both the polynomial must meet and give same value at t=4 and should look like this

We will first regress the first portion of C(t) curve and then regress the second portion

Step 1: First, launch Polymath which you can download from <u>http://www.polymath-software.com</u> You will see a window that looks like this.

POLYMATH 6.10 Educational Release	
File Program Window Help	
D 🚅 🗳 🖬 👗 🖻 🛍 🖉 🚧 🐍 🕅 💷 💭 🏓 🗍	靈 ?
12:04 25-02-2017 CAPS NUM	

Step 2: To regress the data in Polymath, first click on the "Program" tab present on the toolbar. This will bring up a list of options from which you need to select. In this case we want to perform polynomial fitting, so select "REG Regression". The shortcut button for Regression solver is also present on the menu bar () as shown by red circle in below screenshot

File Pro	MATH 6.10 Educational Release	
	LEQ Linear Equations NLE Nonlinear Equations DEQ Differential Equations REG Regression	2 🖬 🗐 📾 🎾 ! 🚟 💡
12:07	25-02-2017 CAPS NUM	

The following window will appear

🤕 РС	DLYMATH 6.1	.0 Educational	Release - [Dat	ta Table]		-
	ile <u>P</u> rogran	n <u>E</u> dit <u>R</u> ow	/ <u>C</u> olumn	For <u>m</u> at <u>A</u> nalysis	Examples Window Help	×
	ê 🖉 🗟	ቆ 🖻 🛍 «	2 🕅 👪	🗾 🖪 💷 🌐	🔜 🎾 ! 🚟 💡	
R001	: C001 C01	×	~	\$	Regres <u>s</u> ion A <u>n</u> alysis Graph	
	C01	C02	C03	C04	🗘 🔟 🔷 🗆 Graph 🗆 Besiduals	
01						
02						
03					Linear & Polynomial Multiple linear Nonlinear	
04						
05					Dependent Variable	
06					Independent Variable	
07					Polypomial Degree	
				•		
No Fi	e	No Title				
12:14	25-02-20	17 CAPS NU	М			//

Step 3: Before inserting the data into the spreadsheet, it is recommended to change the column name with the name of the variable mentioned in the data table. This would make it easy to comprehend the polymath output. To change the column name of C01, double click on the column name "C01" or right click on C01 and select "Column Name..." A dialog box will appear where column name can be changed

POLYMATH 6.10 Educational	Release - [Data Table]	
<u>File</u> Program Edit Rov	v <u>C</u> olumn For <u>m</u> at <u>A</u> nalysis E <u>x</u> amples <u>W</u> indow <u>H</u> elp	_ 8 ×
🗅 📂 🥙 🔚 👗 🛍 🛍 (2 🚧 🕹 🖬 📾 📖 🖬 🎾 ! 🚟 💡	
R001: C001 C01 X	Regression Analysis Graph	
C01 C02	Polymath Table Column Name	Residuals
01 02 03 04 05 06 07 08	Enter column name: Cancel C01 Polynomial Degree	Nonlinear
No File No Title 12:16 25-02-2017 CAPS NU	IM I	

Change the column name from C01 to T1 and press OK. You will find that column name is changed to T1 $\,$

🧐 РС)LYMATH 6.:	10 Educational	Release - [Dat	a Table]			
🖽 F	ile Progra	m Edit Row	Column	Format Ana	lysis Exa	mples	Window Help _ & ×
D 🛛	ž 🖻 🖬	እ 🖻 🛍 ሪ	2 🚧 🔥	🗾 🌆 🔣	•	× !	鑼 💡
R001	: C001 T1	×				4	Regres <u>s</u> ion A <u>n</u> alysis <u>G</u> raph
	T1	C02	C03	C04	C05	^	🗘 🗵 🔿 🗆 Graph 🗆 Residu <u>a</u> ls
01							Report Store Model
03							Linear & Polynomial Multiple linear Nonlinear
04							Dependent Variable
06							
07							Polynomial Degree
09						-	
1							
No Fil	e	No Title					
18:01	13-03-20	017 CAPS NU	M				li.

Similarly, rename C02 to C1 as shown below. By default Polymath select Regression method as "Linear and Polynomial". If it is not so, then, click on the Regression tab on the right side of the window, and select the "Nonlinear" regression tab under the "Report" and "Store Model" check boxes (shown by red rectangle) The window should look like this:

🧐 РС	DLYMATH 6.	10 Educational I	Release - [Dat	ta Table]		
	File Program	m Edit Row	Column	Format Ana	lysis Examples	Window Help
	ê 🖻 🖶	እଁ 🖻 🛍 ሪ	2 🚧 🐍	🗾 🔝	🎟 🛤 🏓 !	🚟 🦻
R001	: C002 C1	×	~		\$	Regression Analysis Graph
	T1	C1	C03	C04	C05 🔺	🗘 🗵 🔿 🗆 Graph 🗆 Residuals
01						I
03						Linear & Polynomial Multiple linear Nonlinear
04						
05						Dependent Variable
07						Independent Variable
08						Polynomial Degree
09	1					1
]	N. Tal-			•	
18:02	13-03-20	D17 CAPS NU	M			

Step 4: To input the data for T1, select the first cell (row 01, column time) and enter the first data as shown below:

🥹 POL	YMATH 6.	10 Educational	Release - [Dat	a Table]			
🖽 Fil	e Progra	m Edit Row	Column	Format Ana	lysis Exar	nples	Window Help _ 문 ×
D 🖻	🖻 🔚	ቆ 🖻 🛍 ሪ	2 🚧 🕹	🗾 🌆 🖬	🖽 📾 .	×!	羅 ?
R001:	C001 T1	×	✓ 0			\$	Regres <u>s</u> ion A <u>n</u> alysis <u>G</u> raph
	T1	C1	C03	C04	C05		🗘 🗵 🔿 🗆 Graph 🗆 Residuals
01	(0					Geport Store Model
03							Linear & Polynomial Multiple linear Nonlinear
04							
06							
07							Polynomial Degree
08							
•						▶	
No File		No Title					
18:04	13-03-20	017 CAPS NU	М				li.

Similarly, enter the remaining data of T1 in subsequent rows. Repeat this procedure to input the data for C1. After entering the data, the spreadsheet would look like this

🧐 Р	OLYMATH 6.1	0 Educational R	elease - [Da	ata Table]		
	File Progran	n Edit Row	Column	Format Analys	is Examples	Window Help _ & ×
D	🖻 🖻 🗎	እ 🖻 🛍 🖉	2 🙀 to	🗾 🔝 💷) 🖬 🌂 !	a 🗱 💡
R00	6 : C002 C1	×	/ 10		\$	Regression Analysis Graph
	T1	C1	C03	C04	C05	🗘 🗵 🔿 🗖 Graph 🗖 Residuals
01	0	0				
02	0.5	0.6				✓ <u>Report</u> Store Mogel
03	1	1.4				Linear & Polynomial Multiple linear Nonlinear
04	2	5				
05	3	8				Dependent Variable
06	4	10				
07						
08	1					Polynomial Degree
09	1				-	1
•					•	·
No F	ïle	No Title				
18:00	6 13-03-20	17 CAPS NUM	1			<i>"</i>

Step 5: Clicking the refresh button (shown below by red circle) on the left of the green excel sign updates the file. Now, you will find that Dependent variable, Independent variable and Polynomial degree is updated (shown by blue rectangle). By default, Polymath select the first column as independent variable, second column as dependent variable, and Polynomial degree as "1 Linear". The window should look like this:

🧐 РС	DLYMATH 6.1	0 Educational	Release - [Da	ata Table]				
🛄 F	ile Program	n Edit Row	Column	Format A	Analysis	Exam	ples	Window Help _ &
	ê 🖻 🖬	እ 🖻 🛍 ሪ	2 🚧 ち	🛛 🗖	·· ·	i 💼 🖕	× !	🚟 💡
R006	: C002 C1	×	✓ 10				\$	Regression Analysis Graph
	T1	C1	C03	C04		C05	_	😨 🗵 🔿 🗆 Graph 🗆 Besiduals
01	C	0						
02	0.5	0.6						✓ <u>Report</u> Store Model
03	1	1.4						Linear & Polynomial Multiple linear Nonlinear
04	2	: 5						
05	3	8						Dependent Variable C1 🗨
06	4	10						Independent (/ viable T1 _
07								
08								Polynomial Degree 1 Linear
09								23
10								4
11								5
12								Thread a size
13								
14								
15							-	Polynomial Integration
1							•	
No Fil	e	No Title						
18:07	13-03-20	17 CAPS NU	M					

Step 6: You can also change the dependent variable, independent variable by selecting from the drop down menu next to variable name. In this case we want to change the polynomial degree only. Let's try to fit the data by Polynomial degree 3. Select the Polynomial degree as 3 as shown below

🧐 РС	DLYMATH 6.1	0 Educationa	Release - [D	ata Table]			
🛄 F	ile Progran	n Edit Rov	v Column	Format	Analysis	Examples	Window Help _ & ×
	ž 🖻 🖬	ሯ 🖻 🛍	0 🖊 👪	🗾 🌆	II III	🗖 🎽	! 🚟 💡
R006	: C002 C1	×	10			\$	Regression Analysis Graph
	T1	C1	C03	C04		C05	🔺 🗘 🔟 🕂 🔿 🗖 🖾 🖓
01	0	()				 ↓ Report ↓ Store Model
02	1	1.4	, 1				Linear & Polynomial Multiple linear Nonlinear
04	2		5				
05	3	ŧ	3				Dependent Variable C1 💌
06	4	1()				Independent Variable T1 💌
07							Polynomial Degree 1 Linear
09							2
10							4
11							5
12							🗖 Through origin
14							
15							Polynomial
						•	
No Fil	e	No Title					
18:09	13-03-20	17 CAPS NI	JM				

Step 7: Now select what you want polymath to output by checking the boxes on the right side of the window. The options are Graph, Residuals, Report, and Store Model. Click on the pink arrow it to have Polymath perform the regression.

If you selected "Report" you will see a screen that details the results from the regression analysis. The report includes the model, the values of the model parameters, the statistical confidence of the parameters, and several other statistics.

1	POLYMAT	FH 6.10 Educa	itional Release - [Poly	nomial Regression,	Solution	#1]			
1	😕 File 🛛 Ed	lit Window	Help						_ & ×
C) 💣 🗳	🖬 👗 🖻	🛍 🖉 🖊 👪 🛛	🗾 🖪 🖬 🗐	i 🏓	1	靈	?	
	POLYMA Polynomial F Model: C1	TH Report Regression L = a0 + a1*	T1 + a2*T1^2 + a3	3*T1^3				13-Mar	-2017
L	Variable	Value	95% confidence						
	a0	0.0038746	0.8985601						
L	a1	0.2739782	2.326649						=
L	a2	1.574621	1.433956						
L	a3	-0.2550041	0.2343746						
	General Degree of Regression Number of	polynomial = n including a ^r observation	= 3 free parameter s = 6						
L	R^2	, 0.9988779							
L	R^2adj	0.9971948							
	Rmsd	0.0521199							
l	Variance	0.0488966							-
N	o File	POLYM	ATH Report						
1	3:12 13	-03-2017 CAP	S NUM						//

The above report shows that 3rd degree polynomial fits well to the 1^{st} set of data as is evident from $R^2 = 0.999$

The equation for 1st data set is

$$C_1(t) = 0.0039 + 0.274t + 1.57t^2 - 0.255t^3$$

If you checked the graph option, a new window will appear like this. The graph shows the model that we fit to the data.

Step 8: To enter the second set of data in the spreadsheet, change C03 to T2 and C04 to C2, enter the data in corresponding column and then you need to select the dependent and independent variable as C2 and T2 from the drop down menu (shown by red circle in the screenshot). Select the polynomial degree as 3 as was done earlier. Your window will appear like this

🥹 РС	DLYMATH 6.1	0 Educational	Release - [Dat	a Table]				
🖽 F	ile Program	n Edit Row	Column	Format Anal	ysis Exar	nples	Window Help	_ 8 ×
	j 🖻 🖉	እ 🖻 🛍 ረ	2 🐴 ち	🗾 🌆	III 🔤	×!	🚟 🤋	
R009	: C004 C2	×	✓ 0			\$	Regression Analysis	s Graph
	T1	C1	T2	C2	C05		⊘ ⊠ →	🔽 Graph 🗖 Besiduals
01	0	0	4	10				<u>, a</u> th <u>p</u>
02	0.5	0.6	5	8			✓ <u>Report</u> Store Mo	odel
03	1	1.4	6	6			Linear & Polynomial Mu	Itiple linear Nonlinear
04	2	5	7	4				
05	3	8	8	3			Dependent Variable	C1 💽
06	4	10	9	2.2			Independent Variable	
07			10	1.6			Polynomial Degree	
08			12	0.6			r olynomiai b ogree	1 Linear 2
09			14	0				3
10								5
11								
12							Through origin	
14								,
15							- Polynomial	
16							Integration	
17								
18							— Polunomial	
19							Derivative	
20						_ _		
]					-		
No Fil	e	NoTitle						
18:15	13-03-20	17 CAPS NU	М					1

Run the model by clicking the pink arrow and generate the report. The report shows R^2 value to be 0.998 which is a good fit

🥹 POLYMAT	TH 6.10 Educa	ational Release - [Poly	nomial Regressio	n, Solution	#4]			×
🥹 File Ed	lit Window	Help					_ 5	×
🗅 🧉 💕 🛛	🖬 👗 🖻	🛍 🖉 👫 ち 🛛	🗾 🖪 🔣 🖽	🖬 🌂	!	9		
POLYMA Polynomial R Model: C2	TH Report Regression 2 = a0 + a1*	T2 + a2*T2^2 + a3	3*T2^3				13-Mar-2017	
Variable	Value	95% confidence						
a0	25.23369	4.32018						=
a1	-5.059551	1.672019						
a2	0.3579524	0.1994068						
a3	-0.0089453	0.00739						
General Degree of Regressior Number of	polynomial = n including a observation	= 3 free parameter Is = 9						
Statistics								
R^2	0.9977556							
R^2adj	0.9964089							
Rmsd	0.0509054							
Variance	0.04198							
								Ŧ
No File	POLYM	ATH Report						
18:19 13	-03-2017 CAP:	S NUM						11.

To improve the accuracy of the fitting of the second data set, we can use higher order polynomial. Let's regress using a 6th Order polynomial. The maximum polynomial degree is limited to 5 under "Linear and Polynomial Tab". So, we will use another feature to regress polynomials with order greater than 5

🛄 Da	ata Table							
R014	: C008 C08	× ~				¢	Regression Analysis Grap	h
	T1	C1	T2	C2	C05		🔹 💌 🔿 🗆 Grad	nh 🗆 Besiduals
01	0	0	4	10				, <u>, , , , , , , , , , , , , , , , , , </u>
02	0.5	0.6	5	8			✓ <u>Report</u> Store Model	
03	1	1.4	6	6			Linear & Polynomial Multiple linear	Nonlinear
04	2	5	7	4			fee	
05	3	8	8	3			Model:	L-M 🗾
06	4	10	9	2.2				
07			10	1.6				
08			12	0.6				e.g. y = 2*x^A+B
09			14	0			Model Parameters Initial Guess:	
10							Model parm Initial guess	
11								
12								
13								
14								
15								
16								
17								

Step 9: Go back to the main window and click on "Nonlinear" Tab. In the Nonlinear Tab, we can enter equations of our choice to regress the data.

Step 10: Now enter the 6th order polynomial equation in "Model" Section (shown in red circle)

```
C2=a0+a1*T2+a2*T2^2+a3*T2^3+a4*T2^4+a5*T2^5+a6*T2^6
```

Next, we need to enter Initial guess values for the Model Parameters. The initial guess values are shown under blue Box. You can start with some initial guess values and check R^2 value. If R^2 is not good, then try another guess value until you obtain R^2>0.99

💷 D	ata Table					
R001	: C004 C2	×	✓ 10			Regression Analysis Graph
	T1	C1	T2	C2	C05	🔺 🤹 💌 🔿 🗆 Graph 🗆 Besiduals
01	0	0	4	10		
02	0.5	0.6	5	8		I Report □ Store Model
03	1	1.4	6	6		Linear & Polynomial Multiple linear Nonlinear
04	2	5	7	4		f04
05	3	8	8	3		Model:
06	4	10	9	2.2		C2=a0+a1*T2+a2*T2^2+a3*T2^3+a4*T2^4+a5*T2^5
07			10	1.6		+4012 0
08			12	0.6		e.g. y = 2*x^A+B
09			14	0		Model Parameters Initial Guess:
10						Model parm Initial guess
11						a0 -20
12						a1 20
13						a2 -10
14						a3 1
15						a4 1
16						a5 0.001
17						a6 -2e-5
18						
19						Dependent Variable C2
						▶Independent Variable/s T2
16-1 t	utorial.pol	No Title				

Step 11: Now Run the file by clicking on the pink arrow \clubsuit to have Polymath perform the regression. The following report is generated. It is to be noted that R^2 value is >0.999 which represents a very good fit. All the model parameters are given in the table

POLYMA	TH Report		
Nonlinear Re	gression (L-M)		
Madalı C) _ =0.1=1*T2	L-1*T1/1	2******
Model: C		rd2 ° 1 2° 2+d	3 12 3+04 12 4
Variable	Initial guess	Value	95% confidence
a0	-20.	-33.43834	265.6643
a1	20.	37.18985	218.3198
a2	-10.	-11.58842	71.92468
a3	1.	1.69531	12.177
a4	1.	-0.1298673	1.119291
a5	0.001	0.005028	0.053058
a6	-2.0E-05	-7.743E-05	0.0010153
Nonlinear	regression s	ettings	
Max # iter	ations = 64	-	
Dracisian			
Precision	0.0005955		
K ^m Z	0.9995855		
R^2adj	0.9983418		
Rmsd	0.0218774		
Variance	0.0193842		

The equation for 2nd data set is

 $C_2(t) = -33.4 + 37.2t - 11.6t^2 + 1.7t^3 - 0.13t^4 + 0.005t^5 - 7.7 * 10^{-5}t^6$

From Step 7 and Step 11, the polynomial equation is given by

For 1st data set $t \le 4 \min$, C1(t)= $0.0039 + 0.274t + 1.57t^2 - 0.255t^3$

For 2^{nd} data set, $t \ge 4 \min and t \le 14 \min$,

$$C2(t) = -33.4 + 37.2t - 11.6t^{2} + 1.7t^{3} - 0.13t^{4} + 0.005t^{5} - 7.7 * 10^{-5}t^{6}$$

The complete equation for C(t) curve can be written as

 $C(t) = If(t \le 4 \text{ and } t \ge 0)$ then C1 else if $(t \ge 4 \text{ and } t \le 14)$ then C2 else 0