Polymath Tutorial for estimating the Yield Coefficients and Rate-law parameters (*Example 9-4*)

a) **Estimating Yield Coefficients**

To estimate yield coefficients, we will use Polymath nonlinear equation solver.

Step 1: First make sure you have polymath installed. If you don't have it then refer to the installation instruction present on http://www.umich.edu/~elements/5e/software/polymath.html

When you open Polymath, following window would appear

🧐 POLYMATH 6.20 Educational Release 👘 👝	- 0	23
File Program Window Help		
🗅 🚅 🕼 🔚 🛝 🖻 🛍 🖉 🚧 🧞 💹 💷 💷 💭 📜 🚟 💡		
2:43 PM 4/20/2017 CAPS NUM		

Step 2: Click on the "Program" tab present on the toolbar. This will bring up a list of options from which you need to select. In this case we need to find slope of line which can be done using nonlinear equations solver. Select "NLE Nonlinear Equations". The shortcut button "fx" for nonlinear equation solver is also present on the menu bar () as shown by red circle in below screenshot

🧑 POL	YMATH 6.20 Educational Release	
File F	Program Window Help	
	LEQ Linear Equations	2 0 🗉 🖾 🌂 ! 🚟 🕈
	NLE Nonlinear Equations	
	DEQ Differential Equations	
	REG Regression	
	DIPPR DB	
2:44 PM	4/20/2017 CAPS NUM	

This will open up another window, which looks like this.

🧑 POLYMATH 6.20 Educational Release - [Nonlinear Equations Solver]	
🚺 File Program Edit Format Problem Examples Window Help 📃 🖅	×
🗅 📂 🗗 👗 🗈 🛍 🖉 🚧 🏞 📨 🖾 💷 🖾 📖 🦄 🥍 ! 🗮 💡	
f™ ×= ini- 1 I safenewt ▼	
Nonlinear Equations: 0 Auxiliary Equations: 0 × No equations entered.	
	<i>s</i>
▶ × □	
Ln 1 No File No Title	
2:45 PM 4/20/2017 CAPS NUM	//

Step 3: Enter the values of Cc, Cs, and Cp at different times as shown below

🚱 POLYMATH 6.20 Educational Release - [Nonlinear Equations Solver]
🔝 File Program Edit Format Problem Examples Window Help 📃 🖅 🗙
🗅 🚅 🗳 🔚 X 🗈 🛍 🖉 🚧 🔥 🖾 🖾 🖾 📾 📾 💷 📾 🎾 ! 🚟 ?
f‰ x ini- 🚯 🔟 🕩 safenewt 💌
Nonlinear Equations: 0 Auxiliary Equations: 12 🗸 Ready for solution
Cc0=1
Cc1=1.5
Cc2=2.2
CC3=3.29
Cs0=250
Cs1-244 Cs2=231
Cs3=218
Cp0=0
Cp1=2.14
Cp2=5.03
Cp3=8.96
Ln 5 No File No Title
2:48 PM 4/20/2017 CAPS NUM

POLYMATH 6.20 Educational Release - [Nonlinear Equations Solver]	x
🔝 File Program Edit Format Problem Examples Window Help	- 8 ×
D 📂 🕼 🔚 🐍 🖉 🚧 🏡 📨 🖾 🖾 📾 📖 🚔 🥍 ! 🚟 🂡	
fly xx ini- A Pres astanaut	
Nonlinear Equations: 0 Auxiliary Equations: 20 V Ready for solution	
Cc0=1	*
Cc1=1.5	
Cc2=2.2	
Cc3=3.29	
Cs0=250	
0-2-221	
Cs3=218	
Cp0=0	
Cp1=2.14	
Cp2=5.03	=
Cp3=8.96	
Ysc1=-(Cs1-Cs0)/(Cc1-Cc0)	
Ysc2=-(Cs3-Cs2)/(Cc3-Cc2)	
Ysc=(Ysc1+Ysc2)/2	
Vnc=1/Ven	
Ypc=(Cp2-Cp1)/(Cc2-Cc1)	
Ycp=1/Ypc	
	*
	•
Ln 20 No File No Title	
5:21 PM 4/20/2017 CAPS NUM	1.

Step 4: Next, enter all the equations for yield coefficients as per given in the textbook

Now you have entered all your data and equations in the Polymath.

Step 5: Click the pink arrow it to run the file. You should get a report window that looks like this. In the report, you can find the value of all the yield coefficients along with the equations which you entered

H Report Values of explicit variables Value 1. 1. 1.5 2.2 3.29 0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	20-Apr-20
H Report ions Values of explicit variables I Value 1. 1. 1.5 2.2 3.29 0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	20-Apr-2(
Values of explicit variables Value 1. 1.5 2.2 3.29 0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
1. 1.5 2.2 3.29 0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
1.5 2.2 3.29 0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
2.2 3.29 0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
3.29 0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
0 2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
2.14 5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
5.03 8.96 250. 244. 231. 218. 0.2422145 0.083589	
8.96 250. 244. 231. 218. 0.2422145 0.083589	
250. 244. 231. 218. 0.2422145 0.083589	
244. 231. 218. 0.2422145	
231. 218. 0.2422145	
218. 0.2422145	
0.2422145	
0.083580	
0.005303	
4.128571	
0.2223077	
11.9633	
12.	
11.92661	
4.49827	
4 0 1 1 4	.128571 .2223077 1.9633 2. 1.92661

From the above report,

 $Y_{s/c} = 11.96 \ g/g, Y_{c/s} = 0.084 \ g/g$ $Y_{s/p} = 4.5 \ g/g, Y_{p/s} = 0.22 \ g/g$ $Y_{p/c} = 4.13 \ g/g, Y_{c/p} = 0.242 \ g/g$

For more step-by-step tutorial on Polymath Nonlinear equation Solver, refer to tutorial http://umich.edu/~elements/5e/software/Non_linear_equation_tutorial.pdf

b) Determination of Rate- law parameters

The rate law equation is given by

$$\frac{C_c \ C_s}{r_g} = \frac{K_s}{\mu_{max}} + \frac{C_s}{\mu_{max}}$$

Where, K_s and μ_{max} are model parameters

The data for $\frac{C_c C_s}{r_g}$ and C_s are given below

t	0	1	2	3
$C_c C_s / r_g$	625	610	567.8	558.1
C_s	250	244	231	218

We will use Polymath nonlinear regression solver to determine the model parameters

Step 1: Open Polymath and click on the "Program" tab present on the toolbar. Select "REG Regression". The shortcut button for nonlinear regression solver is also present on the menu bar as shown by red circle in below screenshot

🧐 Р	OLYMAT	H 6.20 E	Educational	Release - [Da	ata Table]		
	File Pro	ogram	Edit Rov	v Column	Format Ana	alysis Exam	ples Window Help
D	🖻 🖻 🛛	- %	Þa 🛍 .	0 🐴 ち	🗾 🖪 🔣	🔲 🖬 🛛	≫! ﷺ ?
R00	1 : C001	C01	×	 Image: A start of the start of		+	Regres <u>s</u> ion A <u>n</u> alysis <u>G</u> raph
	C01	1	C02	C03	C04	C05 _	🕇 🗘 🔣 🔿 🗖 Graph 🗖 Residuals
01							□
03							Linear & Polynomial Multiple linear Nonlinear
04	-						
06							
07							Independent Variable
08	-						
10							
11	-						
12							Through origin
•						►	
No F	ile	No	o Title				
6:26	PM 4/2	20/2017	CAPS NL	IM			1

This will open up a spreadsheet which looks like this:

Step 2: Now enter the data for $C_c C_s / r_g$ and C_s in Column C01 and C02 respectively as shown below. For nonlinear regression, click on the Regression tab on the right side of the window, and select the "Nonlinear" regression tab under the "Report" and "Store Model" check boxes.

🛄 Fil	e Program	V D CO	wo	Column	Format	Analysis	Example	es Window Help	- 6
		3 40 C	0	979 Cb			W /		
R001:	C001 C01		×v	625			- 4 (Regression Analysis Gra	aph
	C01	C02		C03	C04		C05 _	2 3 4 5	iranh 🖂 Residuals
01	625	2	250		1				Tight 1 Licennigle
02	610	2	244						
03	567.8	2	231					Linear & Polynomial Multiple lin	ear Nonlinear D
04	558.1	2	18					fet- 1	
05								Model:	L-M _
06									
07									
08									e.a. v = 2*x^A+
09								Model Parameters Initial Guess:	
10								Model parm Initial guess	
11									
12									
13							-		
							<u> </u>		
lo File	1	No Title							

Step 3: Now, you need to input the model form you wish your equation to match. In this case, the form is C01=Ks/umax +C02/umax, where C01 represents $C_c C_s / r_g$ and C02 represents C_s . To input the model, place the cursor in the rectangular box below "Model:" and type the equation as shown in the below screen shot.

Next, you also need to provide initial guesses for the parameters in your model, in this case, Ks and umax. Let's put 20 and 0.1 as initial guess for Ks and umax respectively. To input the initial guess, select the cell corresponding to each parameter under section "Model Parameters Initial Guess" and then enter the guess value

Now select what you want polymath to output by checking the boxes on the right side of the window. The options are Graph, Residuals, Report, and Store Model. Click on the pink arrow is to have Polymath perform the regression.

Step 4: If you selected "Report" you will see a screen like this that details the results from the regression analysis.

e	E.C.	Uala				
	Edit	Неір				
	OLYMA nlinear R odel: Cl	TH Repor egression (1 01 = Ks/ut	rt L-M) max+C02/ur	max		20-Apr-201
v	ariable	Initial g	uess Value	e 95% conf	idence	
K	5	20.	33.30	253 217.1552		
u	max	0.1	0.455	8474 0.3674965		
R	msd ariance	3.585592 102.8517	,			
Ge S	e neral ample s	ize 4				
Μ	odel va	rs 2				
Ir	dep var	s 1				
It	erations	8				
So	ource d	ata point	ts and calc	ulated data po	ints	
	C02 C	D1 C01	calc Delta	C01		
1	250 62	25 621.4	4855 3.5145	538		
	244 61	10 608.3	3232 1.6768	338		
2	244 0.					
2 3	231 56	57.8 579.8	8048 -12.00	485		

From the above report, $R^2 = 0.93$ which shows model fits well to the data.

The model parameters are

$$K_s = 33.3$$
$$\mu_{max} = 0.46$$

For more step-by-step tutorial on Polymath Nonlinear regression Solver, refer to nonlinear regression tutorial at <u>http://umich.edu/~elements/5e/software/polymath.html</u>