Lecture 8

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 8 – Tuesday 2/5/2013

- Block 1: Mole Balances
- Block 2: Rate Laws
- Block 3: Stoichiometry
- Block 4: Combine
- Pressure Drop
 - Liquid Phase Reactions
 - Gas Phase Reactions
 - Engineering Analysis of Pressure Drop

Concentration Flow System: $C_A = \frac{F_A}{v}$

Gas Phase Flow System: $v = v_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P_0}{P}$

$$C_{A} = \frac{F_{A}}{v} = \frac{F_{A0}(1-X)}{v_{0}(1+\varepsilon X)\frac{T}{T_{0}}\frac{P_{0}}{P}} = \frac{C_{A0}(1-X)}{(1+\varepsilon X)}\frac{T_{0}}{T}\frac{P}{P_{0}}$$

$$C_{B} = \frac{F_{B}}{v} = \frac{F_{A0} \left(\Theta_{B} - \frac{b}{a}X\right)}{v_{0} \left(1 + \varepsilon X\right) \frac{T}{T_{0}} \frac{P_{0}}{P}} = \frac{C_{A0} \left(\Theta_{B} - \frac{b}{a}X\right)}{\left(1 + \varepsilon X\right)} \frac{T_{0}}{T} \frac{P}{P_{0}}$$

Note: Pressure Drop does NOT affect liquid phase reactions

Sample Question:

Analyze the following second order gas phase reaction that occurs isothermally in a PBR:

$$A \rightarrow B$$

Mole Balances

Must use the differential form of the mole balance to separate variables: $F_{A0} \frac{dX}{dW} = -r_A^{'}$

Rate Laws

Second order in A and irreversible: $-r_A' = kC_A^2$

Stoichiometry

$$C_A = \frac{F_A}{v} = C_{A0} \frac{(1-X)}{(1+\varepsilon X)} \frac{P}{P_0} \frac{T_0}{T}$$

Isothermal, T=T₀

$$C_A = C_{A0} \frac{(1-X)}{(1+\varepsilon X)} \frac{P}{P_0}$$

Combine:

$$\frac{dX}{dW} = \frac{kC_{A0}^{2}}{F_{A0}} \frac{(1-X)^{2}}{(1+\varepsilon X)^{2}} \left(\frac{P}{P_{0}}\right)^{2}$$

Need to find (P/P_0) as a function of W (or V if you have a PFR)

Ergun Equation:
$$\frac{dP}{dz} = \frac{-G}{\rho g_c D_p} \left(\frac{1-\phi}{\phi^3} \right) \left[\frac{150(1-\phi)\mu}{D_p} + \underbrace{1.75G}_{TURBULENT} \right]$$

Constant mass flow:
$$\dot{m} = \dot{m}_0$$

$$\rho v = \rho_0 v_0$$

$$\rho = \rho_0 \frac{v_0}{v}$$

$$\upsilon = \upsilon_0 \frac{F_T}{F_{T0}} \frac{P_0}{P} \frac{T}{T_0}$$

$$\upsilon = \upsilon_0 (1 + \varepsilon X) \frac{P_0}{P} \frac{T}{T_0}$$

Variable Density
$$\rho = \rho_0 \frac{P}{P_0} \frac{T_0}{T} \frac{F_{T0}}{F_T}$$

$$\frac{dP}{dz} = \frac{-G}{\rho_0 g_c D_p} \left(\frac{1-\phi}{\phi^3}\right) \left[\frac{150(1-\phi)\mu}{D_p} + 1.75G\right] \frac{P_0}{P} \frac{T}{T_0} \frac{F_T}{F_{T0}}$$

Let
$$\beta_0 = \frac{G}{\rho_0 g_c D_p} \left(\frac{1 - \phi}{\phi^3} \right) \left| \frac{150(1 - \phi)\mu}{D_p} + 1.75G \right|$$

Catalyst Weight
$$W = zA_c\rho_b = zA_c(1-\phi)\rho_c$$

$$\rho_b = bulk \ density$$
 $\rho_c = solid \ catalyst \ density$
 $\phi = porosity \ (a.k.a., void \ fraction)$
 $(1-\phi) = solid \ fraction$

$$\frac{dP}{dW} = \frac{-\beta_0}{A_c (1 - \phi)\rho_c} \frac{P_0}{P} \frac{T}{T_0} \frac{F_T}{F_{T0}}$$

Let
$$\alpha = \frac{2\beta_0}{A_c(1-\phi)\rho_c} \frac{1}{P_0}$$

$$\frac{dp}{dW} = -\frac{\alpha}{2p} \frac{T}{T_0} \frac{F_T}{F_{T0}} \qquad p = \frac{P}{P_0}$$

We will use this form for single reactions:

$$\frac{d(P/P_0)}{dW} = -\frac{\alpha}{2} \frac{1}{(P/P_0)} \frac{T}{T_0} (1 + \varepsilon X)$$

$$\frac{dp}{dW} = -\frac{\alpha}{2p} \frac{T}{T_0} (1 + \varepsilon X)$$

$$\frac{dp}{dW} = -\frac{\alpha}{2p} (1 + \varepsilon X)$$

Isothermal case

$$\frac{dX}{dW} = \frac{kC_{A0}^2 \left(1 - X\right)^2}{F_{A0} \left(1 + \varepsilon X\right)^2} p^2$$

$$\frac{dX}{dW} = f(X, P)$$
 and $\frac{dP}{dW} = f(X, P)$ or $\frac{dp}{dW} = f(p, X)$

The two expressions are coupled ordinary differential equations. We can only solve them simultaneously using an ODE solver such as Polymath. For the special case of isothermal operation and epsilon = 0, we can obtain an analytical solution.

Polymath will combine the Mole Balances, Rate Laws and Stoichiometry.

Packed Bed Reactors

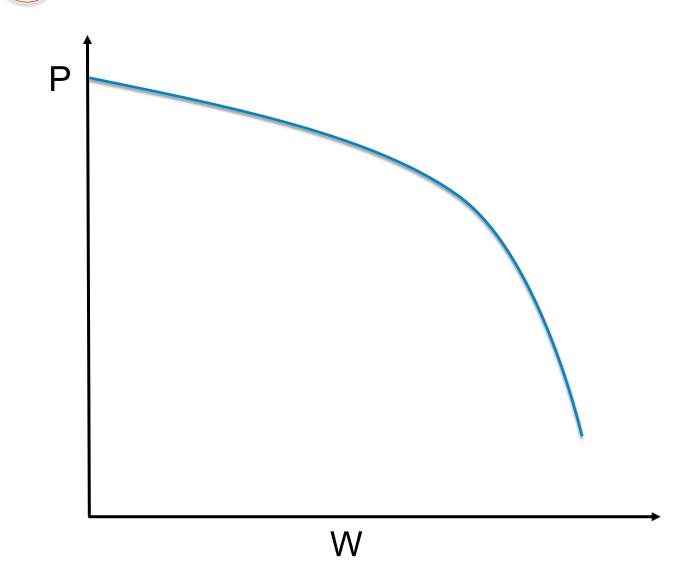
For
$$\varepsilon = 0$$

$$\frac{dp}{dW} = \frac{-\alpha}{2p}(1 + \varepsilon X)$$
When $W = 0$ $p = 1$

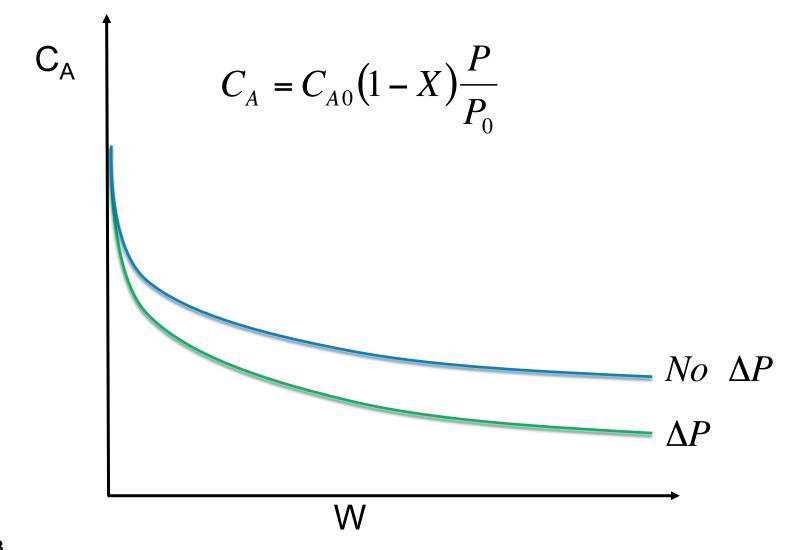
$$dp^{2} = -\alpha dW$$

$$p^{2} = (1 - \alpha W)$$

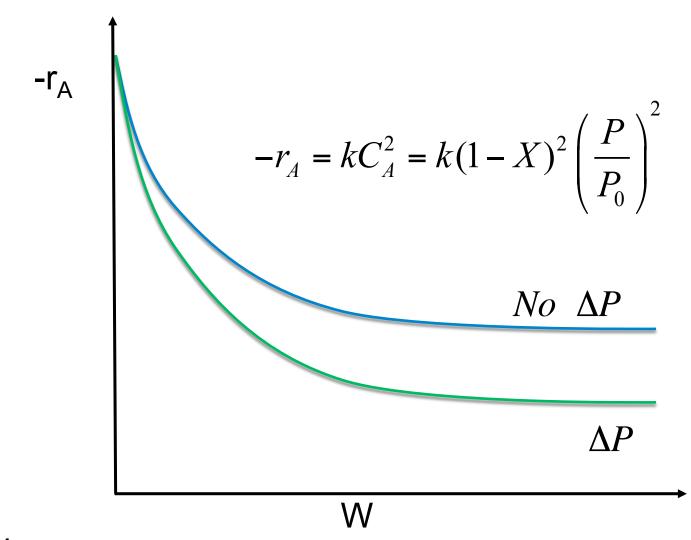
$$p = (1 - \alpha W)^{1/2}$$



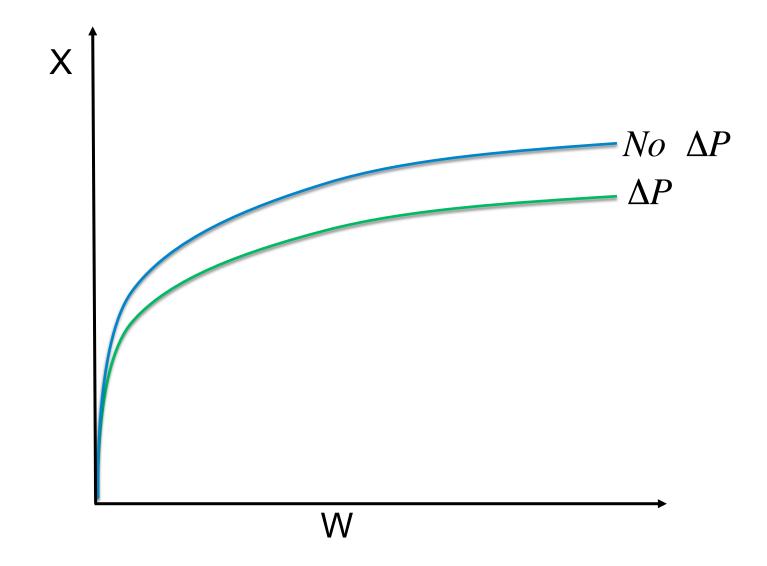
2 Concentration Profile in a PBR



Reaction Rate in a PBR



4 Conversion in a PBR



Flow Rate in a PBR

$$f = \frac{v}{v_0}$$

$$1$$
For $\varepsilon = 0$:
$$v = v_0 \left(\frac{P_0}{P}\right)$$
No ΔP

$$\upsilon = \upsilon_0 (1 + \varepsilon X) \frac{P_0}{P} \frac{T}{T_0}$$

$$T = T_0 \qquad p = \frac{P_0}{P}$$

$$f = \frac{\upsilon_0}{\upsilon} = \frac{1}{(1 + \varepsilon X)p}$$

Gas Phase Reaction in PBR for $\delta = 0$

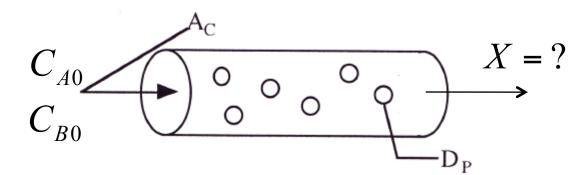
Gas Phase reaction in PBR with $\delta = 0$ (Analytical Solution)

$$A + B \rightarrow 2C$$

Repeat the previous one with equimolar feed of A and B and:

$$k_{\rm A}$$
 = 1.5dm⁶/mol/kg/min C_{A0} = C_{B0} α = 0.0099 kg⁻¹

Find X at 100 kg



Gas Phase Reaction in PBR for $\delta = 0$

$$\frac{dX}{dW} = \frac{-r'_A}{F_{A0}}$$

$$-r'_{A} = kC_{A}C_{B}$$

$$C_A = C_{A0} \left(1 - X \right) p$$

$$C_B = C_{A0} \left(1 - X \right) p$$

Gas Phase Reaction in PBR for $\delta = 0$

$$\frac{dp}{dW} = -\frac{\alpha}{2p}$$

$$2pdp = -\alpha dW$$

$$W = 0$$

$$W = 0 \quad , \quad p = 1 \qquad p^2 = 1 - \alpha W$$

$$p = \left(1 - \alpha W\right)^{1/2}$$

4) Combine

$$-r_A = kC_{A0}^2 (1 - X)^2 p^2 = kC_{A0}^2 (1 - X)^2 (1 - \alpha W)$$

$$\frac{dX}{dW} = \frac{kC_{A0}^{2}(1 - X)^{2}(1 - \alpha W)}{F_{A0}}$$

Gas Phase Reaction in PBR for $\delta = 0$

$$\frac{dX}{(1-X)^2} = \frac{kC_{A0}^2}{F_{A0}} (1 - \alpha W) dW$$

$$\frac{X}{1 - X} = \frac{kC_{A0}^2}{F_{A0}} \left(W - \frac{\alpha W^2}{2} \right)$$

$$W = 0, X = 0, W = W, X = X$$

$$X = 0.6$$
 (with pressure drop)

$$X = 0.75$$
 (without pressure drop, i.e. $\alpha = 0$)

Gas Phase Reaction in PBR for $\delta \neq 0$

The reaction

$$A + 2B \rightarrow C$$

is carried out in a packed bed reactor in which there is pressure drop. The feed is stoichiometric in A and B.

$$P_0 = 10 \text{ atm}$$
 $F_{A0} = 2 \text{ mol/min}$
 $C_{A0} = 0.2 \text{ mol/dm}^3$

Plot the conversion and pressure ratio $y = P/P_0$ as a function of catalyst weight up to 100 kg.

Additional Information $k_A = 6 \text{ dm}^9/\text{mol}^2/\text{kg/min}$ $\alpha = 0.02 \text{ kg}^{-1}$

Gas Phase Reaction in PBR for $\delta \neq 0$

$$A + 2B \rightarrow C$$

$$\frac{dX}{dW} = \frac{-r_A'}{F_{A0}}$$

$$-r_A' = kC_A C_B^2$$

3) Stoichiometry: Gas, Isothermal

$$\upsilon = \upsilon_0 (1 + \varepsilon X) \frac{P_0}{P}$$

$$C_A = C_{A0} \frac{(1-X)}{(1+\varepsilon X)} p$$

Gas Phase Reaction in PBR for $\delta \neq 0$

4)
$$C_B = C_{A0} \frac{\left(\Theta_B - 2X\right)}{\left(1 + \varepsilon X\right)} p$$

5)
$$\frac{dp}{dW} = -\frac{\alpha}{2p} (1 + \varepsilon X)$$

6)
$$f = \frac{v}{v_0} = \frac{(1 + \varepsilon X)}{p}$$

7)
$$\varepsilon = y_{A0}[1-1-2] = \frac{1}{3}[-2] = -\frac{2}{3}$$

$$C_{40} = 2, F_{40} = 2, k = 6, \alpha = 0.02$$

Initial values: W=0, X=0, p=1

Final values: W=100

Combine with Polymath.

If $\delta \neq 0$, polymath must be used to solve.

Gas Phase Reaction in PBR for $\delta \neq 0$

POLYMATH Results

POLYMATH Report 01-30-2006, Rev5.1.233

Calculated values of the DEQ variables

V	/ariable	initial value	minimal value	maximal value	final value
Ţ,	J	0	0	100	100
X		0	0	0.8587763	0.8587763
p		1	0.1148659	1	0.1148659
е	ps	-0.6666667	-0.6666667	-0.6666667	-0.6666667
С	ao	0.2	0.2	0.2	0.2
Т	heataB	2	2	2	2
С	b	0.4	0.0151789	0.4	0.0151789
F	ao	2	2	2	2
k		6	6	6	6
C	a	0.2	0.0075895	0.2	0.0075895
а	lpha	0.02	0.02	0.02	0.02
r	a	-0.192	-0.192	-1.049E-05	-1.049E-05

ODE Report (RKF45)

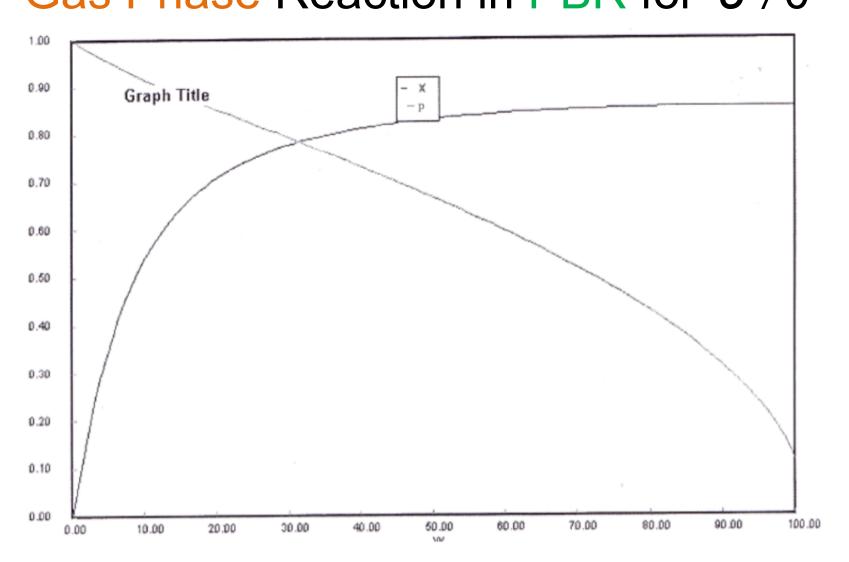
Differential equations as entered by the user

- [1] d(X)/d(W) = -ra/Fao
- [2] d(p)/d(W) = -alpha * (1 + eps * X)/2/p

Explicit equations as entered by the user

- [1] eps = (1-2-1)/3
- [2] Cao = 0.2
- [3] TheataB = 2
- [4] Cb = Cao * (TheataB 2 * X)/(1 + eps * x) * p
- [5] Fao = 2
- [6] k=6
- [?] Cb = Cao * (1 X)/(1 + eps * x) * p
- [8] alpha = 0.02
- [9] ra = -k*Ca*Cb^2

Example 2: Gas Phase Reaction in PBR for $\delta \neq 0$



Gas Phase Reaction in PBR with Pressure Drop

$$\frac{dX}{dW} = -r_A' / F_{A0}$$

$$-r'_A = kC_A$$

Stoichiometry Gas $T = T_0$

$$C_A = \frac{C_{A0}(1)}{1}$$

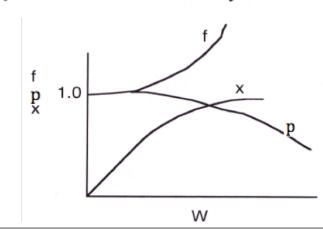
$$\frac{dp}{dw} = \frac{\alpha(1+\epsilon X)}{2p}$$

$$(5) - (9)$$

Parameters, ε , α , ...

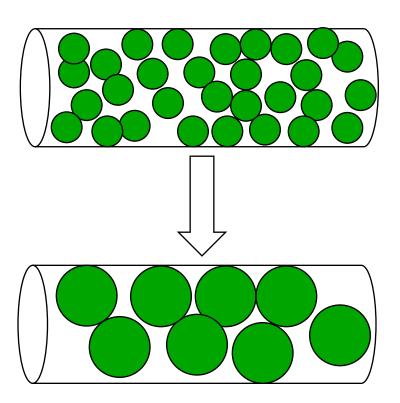
Combine:

Polymath with combine for you



Robert the Worrier wonders: *What if* we increase the catalyst size by a factor of 2?

Robert



Pressure Drop Engineering Analysis

$$\alpha = \frac{2}{A_{C}(1-\phi)\rho_{C}P_{0}}\beta_{0} = \frac{2}{A_{C}(1-\phi)\rho_{C}P_{0}}\left[\frac{G(1-\phi)}{\rho_{0}g_{C}D_{P}\phi^{3}}\left[\frac{\frac{Laminar}{150(1-\phi)\mu}}{D_{P}} + \frac{Turbulent}{1.75G}\right]\right]$$

$$\rho \downarrow 0 = MW * C \downarrow T 0 = MW * P \downarrow 0 /RT \downarrow 0$$

$$\alpha = 2RT \downarrow 0 /A \downarrow C \rho \downarrow C g \downarrow C P \downarrow 0 \uparrow 2 D \downarrow P \phi \uparrow 3 MW G[150(1-\phi)\mu/D \downarrow P +1.75G]$$

$$\alpha \approx (1/P \downarrow 0) \uparrow 2$$

Pressure Drop Engineering Analysis

A. Laminar Flow Dominant (Term 1 >> Term 2)

$$\alpha \sim \frac{G}{A_C D_P^2 P_0^2}$$

Case 1 / Case 2

$$\alpha_2 = \alpha_1 \left(\frac{G_2}{G_1} \right) \left(\frac{A_{C1}}{A_{C2}} \right) \left(\frac{D_{P1}}{D_{P2}} \right)^2 \left(\frac{P_{01}}{P_{02}} \right)^2$$

Example

How will the pressure drop (e.g., α) change if you decrease the particle diameter by a factor of 4 and increase entering pressure by a factor of 3

$$D_{P2} = \frac{1}{4}D_{P1}$$
 and $P_{02} = 3P_{01}$

$$\alpha_2 = \alpha_1 \left(\frac{D_{P1}}{\frac{1}{4}D_{P1}}\right)^2 \left(\frac{P_{01}}{3P_{01}}\right)^2 = \frac{16}{9}\alpha_1$$

Pressure Drop Engineering Analysis

B. Turbulent Flow Dominates (Term 2 >> Term 1)

$$\alpha \sim \frac{G^2}{A_C D_P P_0^2}$$

$$\alpha_2 = \alpha_1 \left(\frac{G_2}{G_1}\right)^2 \left(\frac{A_{C1}}{A_{C2}}\right) \left(\frac{P_{01}}{P_{02}}\right)^2 \left(\frac{D_{P1}}{D_{P2}}\right)$$

$$D_{P2} = \frac{1}{4}D_{P1}$$
 and $P_{02} = 3P_{01}$

$$\alpha_2 = \alpha_1 \left(\frac{D_{P1}}{\frac{1}{4} D_{P1}} \right) \left(\frac{P_{01}}{3 P_{01}} \right)^2 = \frac{4}{9} \alpha_1$$

Again

Heat Effects

Isothermal Design

Stoichiometry

Rate Laws

Mole Balance

End of Lecture 8

Pressure Drop - Summary

Pressure Drop

- Liquid Phase Reactions
 - Pressure Drop does not affect concentrations in liquid phase reactions.

Gas Phase Reactions

- Epsilon does not equal to zero
 d(P)/d(W)=...
 Polymath will combine with d(X)/d(W) =... for you
- Epsilon = 0 and isothermalP=f(W)
 - Combine then separate variables (X,W) and integrate
- Engineering Analysis of Pressure Drop

Pressure Change – Molar Flow Rate

$$\frac{dP}{dW} = -\frac{\beta_0 \frac{F_T}{F_{T0}} \frac{P_0}{P} \frac{T}{T_0}}{\rho A_c (1 - \phi) \rho_c}$$

$$\frac{dp}{dW} = -\frac{\beta_0 \frac{F_T}{F_{T0}} \frac{T}{T_0}}{pP_0 A_c (1 - \phi) \rho_c}$$

$$\alpha = \frac{2\beta_0}{P_0 A_C (1 - \varphi) \rho_C}$$

$$\frac{dy}{dW} = -\frac{\alpha}{2p} \frac{F_T}{F_{T0}} \frac{T}{T_0}$$

Use for heat effects, multiple rxns

$$\frac{F_{T}}{F_{T0}} = (1 + \varepsilon X)$$
 Isothermal: $T = T_{0}$ $\frac{dX}{dW} = -\frac{\alpha}{2p}(1 + \varepsilon X)$

$$\frac{dX}{dW} = -\frac{\alpha}{2p} (1 + \varepsilon X)$$

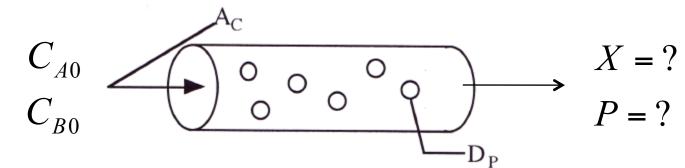
Gas Phase Reaction in PBR for $\delta = 0$

$A + B \rightarrow 2C$

$$k = 1.5 \frac{dm^6}{mol \cdot kg \cdot min}$$
, $\alpha = 0.0099 kg^{-1}$, $C_{B0} = C_{A0}$

Case 1:
$$W = 100kg$$
, $X = ?$, $P = ?$

Case 2:
$$D_P = 2D_{P1}$$
 , $P_{02} = \frac{1}{2}P_{01}$, $X = ?$, $P = ?$



PBR

$$F_{A0} \frac{dX}{dW} = -r'_{A}$$

$$r_{A} = -kC_{A}C_{B}$$

$$C_{A} = \frac{F_{A}}{F_{T}}p$$

$$C_{A} = C_{B}$$

$$\delta = 0 \text{ and } T = T_{0} \therefore p = (1 - \alpha W)^{1/2}$$