Lecture 7

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 7 - Tuesday 1/29/2013

- Block 1: Mole Balances
- Block 2: Rate Laws
- Block 3: Stoichiometry
- Block 4: Combine
- California Professional Engineers Exam

In the past, the exam has not been curved,
75% or better to pass
Problem 4-12

General Guidelines for the California Professional Engineering Exam

Some hints:

1. Group unknown parameters/values on the same side of the equation

$$
\text { example: } \quad[\text { unknowns] = [knowns] }
$$

2. Look for a Case 1 and a Case 2 (usually two data points) to make intermediate calculations
3. Take ratios of Case 1 and Case 2 to cancel as many unknowns as possible
4. Carry all symbols to the end of the manipulation before evaluating, UNLESS THEY ARE ZERO
P. E. Example

P5-17 ${ }_{B}$ California Professional Exam Problem

$$
\mathrm{A} \rightleftarrows \mathrm{~B} \underset{\mathrm{x}_{1}=0.55}{K_{C}=5.8}
$$

PR

$$
W_{1}=W_{2}
$$

$$
\mathrm{X}_{2}=\frac{\text { Total moles reacted at Point } 2}{\text { Mole fed to first reactor }}
$$

Knows: Intermediate Conversion, $\mathrm{X}_{1}, \mathrm{~K}_{\mathrm{C}}$, and $\mathrm{W}_{1}=\mathrm{W}_{2}$ Unknowns: $\mathrm{F}_{\mathrm{A} 0}, \mathrm{~W}_{1}, \mathrm{C}_{\mathrm{A} 0}$

P. E. Example

1) Mole Balances

$$
\frac{d X}{d W}=\frac{-r_{A}^{\prime}}{F_{A 0}}
$$

2) Rate Laws

$$
-r_{A}=k\left[C_{A}-\frac{C_{B}}{K_{C}}\right]
$$

3) Stoichiometry

Liquid, $v=v_{0}$

$$
\begin{gathered}
C_{A}=\frac{F_{A}}{v_{0}}=\frac{F_{A 0}(1-X)}{v_{0}}=C_{A 0}(1-X) \\
C_{B}=\frac{F_{B}}{v_{0}}=\frac{F_{A 0} X}{v_{0}}=C_{A 0} X
\end{gathered}
$$

P. E. Example

4) Combine

$$
\begin{gathered}
-r_{A}=k C_{\text {А0 }}\left[1-X-\frac{X}{K_{C}}\right] \\
\frac{d X}{d W}=\frac{-r_{A}^{\prime}}{F_{A 0}}=\frac{k C_{A 0}}{F_{A 0}}\left[1-\left(1+\frac{1}{K_{C}}\right) X\right]
\end{gathered}
$$

5) Evaluate

$$
W_{1}=W_{2}
$$

$$
W_{1}=\frac{F_{A 0}}{k C_{A 0}} \int_{0}^{X} \frac{d X}{\left[1-\left(1+\frac{1}{K_{C}}\right) X\right]}=W_{2}=\frac{F_{A 0}}{k C_{A 0}} \int_{X_{1}}^{X_{2}} \frac{d X}{\left[1-\left(1+\frac{1}{K_{C}}\right) X\right]}
$$

P. E. Example

$W_{1}=\frac{F_{A 0}}{k C_{A 0}} \frac{1}{\left(1+\frac{1}{K_{C}}\right)} \ln \frac{1}{1-\left(1+\frac{1}{K_{C}}\right) X_{1}}=\frac{F_{A 0}}{k C_{A 0}} \frac{1}{\left(1+\frac{1}{K_{C}}\right)} \ln \frac{\left(1-\left(1+\frac{1}{K_{C}}\right) X_{1}\right)}{\left(1-\left(1+\frac{1}{K_{C}}\right) X_{2}\right)}$
Cancel unknowns $\mathrm{F}_{\mathrm{A} 0}$, k and C_{AO}

$$
X_{2}=\frac{\left[1-\left(1-\left(1+\frac{1}{K_{C}}\right) X_{1}\right)^{2}\right]}{1+\frac{1}{K_{C}}}
$$

Substitute $\mathrm{X}_{1}=0.55$ and $\mathrm{K}_{\mathrm{C}}=5.8$

$$
X_{2}=0.745
$$

P. E. Example

$$
X_{\text {overall }}=\frac{F_{A 0}-F_{A 2}}{F_{A 0}}
$$

$$
F_{A 2}=F_{A 1}\left(1-X_{2}^{\prime}\right)
$$

Conversion X_{2} based on $\mathrm{F}_{\mathrm{A} 1}$

P. E. Example

$$
W_{1}=\frac{F_{A 0}}{k C_{A 0}} \frac{1}{\left(1+\frac{1}{K_{C}}\right)} \ln \frac{1}{1-\left(1+\frac{1}{K_{C}}\right) X_{1}}
$$

$$
\begin{gathered}
W_{2}=\frac{F_{A 1}}{k C_{A 0}} \int_{0}^{X_{2}^{\prime}} \frac{d X}{\left[1-\left(1+\frac{1}{K_{C}}\right) X\right]}=\frac{F_{A 1}}{k C_{A 0}\left(1+\frac{1}{K_{C}}\right)} \ln \frac{1}{\left(1-\left(1+\frac{1}{K_{C}}\right) X_{2}^{\prime}\right)} \\
W_{1}=W_{2} \\
F_{A 1}= \\
F_{A 0}\left(1-X_{1}\right)
\end{gathered}
$$

Substitute for $\mathrm{F}_{\mathrm{A} 1}$ and cancel $\mathrm{F}_{\mathrm{A} 0}, \mathrm{C}_{\mathrm{A} 0}, \mathrm{k}$

$$
\begin{gathered}
\ln \frac{1}{\left(1-\left(1+\frac{1}{K_{C}}\right) X_{1}\right)}=\left(1-X_{1}\right) \ln \frac{1}{1-\left(1+\frac{1}{K_{C}}\right) X_{2}^{\prime}} \\
X_{1}=0.55 \quad K_{C}=5.8
\end{gathered}
$$

P. E. Example

One equation and one unknown Solving for X_{2}^{\prime}

$$
X_{2}^{\prime}=0.768
$$

$$
\begin{aligned}
X_{\text {overall }} & =\frac{F_{A 0}-F_{A 2}}{F_{A 0}}=\frac{F_{A 0}-F_{A 1}\left(1-X_{2}^{\prime}\right)}{F_{A 0}}=\frac{F_{A 0}-F_{A 0}\left(1-X_{1}\right)\left(1-X_{2}^{\prime}\right)}{F_{A 0}} \\
& =1-\left(1-X_{1}\right)\left(1-X_{2}^{\prime}\right)=\underline{0.895}
\end{aligned}
$$

$$
X_{\text {overall }}=0.895
$$

End of Lecture 7

