Lecture 3

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 3

- Review of Lectures 1 and 2
- Building Block 1
- Mole Balances (Review)
- Size CSTRs and PFRs given $-r_{A}=f(X)$
- Conversion for Reactors in Series
- Building Block 2
- Rate Laws
- Reaction Orders
- Arrhenius Equation
- Activation Energy
- Effect of Temperature

Review Chapter 1

Building Block 1:

 Mole BalanceThe GMBE applied to the four major reactor
 types (and the general reaction $A \rightarrow B$)
Reactor Differential Algebraic Integral
Batch $\frac{d N_{A}}{d t}=r_{A} V$

$$
t=\int_{N_{A 0}}^{N_{A}} \frac{d N_{A}}{r_{A} V}
$$

CSTR

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
$$

PBR

$$
\frac{d F_{A}}{d V}=r_{A}
$$

PFR

$$
V=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{d r_{A}}
$$

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

$$
W=\int_{F_{A 0}}^{F_{A}} \frac{d F_{A}}{r_{A}^{\prime}} \mathrm{F}_{\mathrm{A}} \underbrace{}_{\mathrm{W}}
$$

$$
\mathrm{a} \mathrm{~A}+\mathrm{bB} \longrightarrow \mathrm{c} C+\mathrm{dD}
$$

Choose limiting reactant A as basis of calculation

$$
\mathrm{A}+\frac{\mathrm{b}}{\mathrm{a}} \mathrm{~B} \longrightarrow \frac{\mathrm{c}}{\mathrm{a}} \mathrm{C}+\frac{\mathrm{d}}{\mathrm{a}} \mathrm{D}
$$

$$
X=\frac{\text { moles A reacted }}{\text { moles A fed }}
$$

Review Chapter 2

Building Block 1: Mole Balance In terms of Conversion

Reactor
Differential

Batch

$$
N_{A 0} \frac{d X}{d t}=-r_{A} V
$$

Algebraic

CSTR

$$
V=\frac{F_{A 0} X}{-r_{A}}
$$

PFR

$$
F_{A 0} \frac{d X}{d V}=-r_{A}
$$

$\mathrm{PBR} \quad F_{A 0} \frac{d X}{d W}=-r_{A}^{\prime}$

$$
V=F_{A 0} \int_{0}^{X} \frac{d X}{-r_{A}}
$$

Levenspiel Plots

Reactors in Series

Only valid if there are no side streams

Review Chapter 2

Reactors in Series

Building Block 2: Rate Laws

Power Law Model:

$$
-r_{A}=k C_{A}^{\alpha} C_{B}^{\beta} \quad \begin{aligned}
& \alpha \text { orderin A } \\
& \beta \text { orderin B }
\end{aligned}
$$

Overall RectionOrder $=\alpha+\beta$

Building Block 2: Rate Laws

$$
2 \mathrm{~A}+\mathrm{B} \rightarrow 3 \mathrm{C}
$$

A reactor follows an elementary rate law if the reaction orders just happens to agree with the stoichiometric coefficients for the reaction as written. e.g. If the above reaction follows an elementary rate law

$$
-r_{A}=k_{A} C_{A}^{2} C_{B}
$$

2nd order in A, 1st order in B, overall third order

Building Block 2: Rate Laws

- Rate Laws are found from Experiments

$$
2 A+B \rightarrow 3 C
$$

- Rate Laws could be non-elementary. For example, reaction could be:
Second Order in A
Zero Order in B
Overall Second Order

$$
\begin{aligned}
-r_{A} & =k_{A} C_{A}^{2} \\
-r_{B} & =k_{B} C_{A}^{2} \\
r_{C} & =k_{C} C_{A}^{2}
\end{aligned}
$$

Relative Rates of Reaction

$a A+b B \rightarrow c C+d D$

$A+\frac{b}{a} B \rightarrow \frac{c}{a} C+\frac{d}{a} D$

$$
\frac{r_{A}}{-a}=\frac{r_{B}}{-b}=\frac{r_{C}}{c}=\frac{r_{D}}{d}
$$

Relative Rates of Reaction

$2 \mathrm{~A}+\mathrm{B} \rightarrow 3 \mathrm{C}$
Given $-r_{A}=10 \frac{\mathrm{~mol}}{\mathrm{dm}^{3} \cdot \mathrm{~s}}$
Then $\frac{r_{A}}{-2}=\frac{r_{B}}{-1}=\frac{r_{C}}{3}$

$$
\begin{aligned}
-r_{\mathbf{B}} & =\frac{-r_{A}}{2}=5 \frac{\mathrm{~mol}}{\mathrm{dm}^{3} \cdot \mathrm{~s}} \\
r_{C} & =\frac{-3}{2} r_{A}=15 \frac{\mathrm{~mol}}{\mathrm{dm}^{3} \cdot \mathrm{~s}}
\end{aligned}
$$

Reversible Elementary Reaction

$$
\begin{aligned}
& \mathrm{A}+2 \mathrm{~B} \underset{\mathrm{k}_{-\mathrm{A}}}{\stackrel{\mathrm{k}_{A}}{\rightleftarrows}} 3 \mathrm{C} \\
& -r_{A}=k_{A} C_{A}^{2} C_{B}-k_{-A} C_{C}^{3}=k_{A}\left[C_{A}^{2} C_{B}-\frac{C_{C}^{3}}{k_{A} / k_{-A}}\right] \\
& =k_{A}\left[C_{A}{ }^{2} C_{B}-\frac{C_{C}^{3}}{K_{e}}\right]
\end{aligned}
$$

Reversible Elementary Reaction

$A+2 B \underset{k_{-A}}{\stackrel{k_{A}}{\rightleftarrows}} 3 C \quad$ Reaction is: First Order in A Second Order in B Overall third Order

$$
\begin{gathered}
{\left[-r_{A}\right]=\frac{\text { moles }}{d m^{3} s} \quad C_{A}=\frac{\text { moles }}{d m^{3}}} \\
{[k]=\left[\frac{-r_{A}}{C_{A} C_{B}^{2}}\right]=\frac{\mathrm{mole} / \mathrm{dm}^{3} / \mathrm{s}}{\left(\text { mole } / \mathrm{dm}^{3}\right)\left(\mathrm{mole} / \mathrm{dm}^{3}\right)^{2}}}
\end{gathered}=\frac{\mathrm{dm}^{6}}{\mathrm{~mole}^{2} \mathrm{~s}} .
$$

A. First-Order Rate Laws

$$
\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \quad-r_{\mathrm{A}}=k C_{\mathrm{C}_{2} \mathrm{H}_{6}}
$$

$$
\begin{equation*}
-r_{\mathrm{A}}=k C_{\mathrm{CH}_{2} \mathrm{OCH}_{2}} \tag{3}
\end{equation*}
$$

$$
\begin{array}{cl}
\mathrm{CH}_{3} \mathrm{COCH}_{3} \longrightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{CH}_{4} & \\
n \mathrm{C}_{4} \mathrm{H}_{10} \rightleftarrows \mathrm{r}_{\mathrm{A}}=k C_{\mathrm{CH}_{3} \mathrm{COCH}_{3}} \\
\hline & \tag{5}\\
\hline
\end{array}
$$

B. Second-Order Rate Laws

(2) $\mathrm{CNBr}+\mathrm{CH}_{3} \mathrm{NH}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{NCNH}_{2}$

$$
\begin{equation*}
-r_{\mathrm{A}}=k C_{\mathrm{CNBr}^{2}} C_{\mathrm{CH}_{3} \mathrm{NH}_{2}} \tag{1}
\end{equation*}
$$

C. Nonelementary Rate Laws
(1) Homogeneous

$$
\mathrm{CH}_{3} \mathrm{CHO} \longrightarrow \mathrm{CH}_{4}+\mathrm{CO}
$$

$$
-r_{\mathrm{CH}_{3} \mathrm{CHO}}=k C_{\mathrm{CH}_{3} \mathrm{CHO}}^{3 / 2}
$$

(2) Heterogeneous
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$

$$
-r_{\mathrm{C}}=\frac{k\left[P_{\mathrm{C}}-P_{\mathrm{B}} P_{\mathrm{P}} / K_{\mathrm{P}}\right]}{1+K_{\mathrm{B}} P_{\mathrm{B}}+K_{\mathrm{C}} P_{\mathrm{C}}}
$$

[^0]
Algorithm

How to find $-r_{A}=f(x)$
Step 1: Rate Law $-r_{A}=g\left(C_{i}\right)$

Step 2: Stoichiometry $\left(C_{i}\right)=h(X)$

Step 3: Combine to get $-r_{A}=f(X)$

Arrhenius Equation

k is the specific reaction rate (constant) and is given by the Arrhenius Equation.
where:

$$
k=A e^{-E / R T}
$$

Arrhenius Equation

where:
$\mathrm{E}=$ Activation energy (cal/mol)
R = Gas constant (cal/mol*K)
T = Temperature (K)
$\mathrm{A}=$ Frequency factor (same units as rate constant k)
(units of A , and k , depend on overall reaction order)

$$
\ln k_{\mathrm{A}}=\ln A-\frac{E}{R}\left(\frac{1}{T}\right) \quad \text { Low }
$$

Activation Energy

Concept 1. Law of Mass Action

The rate of reaction increases with increasing concentration of reactants owing to the corresponding increase in the number of molecular collisions.

The rate of disappearance of $\mathrm{A},-\mathrm{r}_{\mathrm{A}}$, depends on temperature and concentration. For many irreversible reactions, it can be written as the product of a reaction rate constant, k_{A}, and a function of the concentrations (activities) of the various species involved in the reaction:

$$
\begin{equation*}
\left.r_{A}=\left[k_{A}(T)\right] f n\left(C_{A}, C_{B} \square\right)\right] \tag{3-2}
\end{equation*}
$$

For example for the elementary reaction

$$
\begin{aligned}
A B+C & \rightleftarrows A+B C \\
r_{A B}=k_{A B} C_{A B} C_{C} & =A_{A B} e^{E / R T} C_{A B} C_{C}
\end{aligned}
$$

$\mathrm{E}=$ Activation Energy, $(\mathrm{kJ} / \mathrm{mol})$

Chapter 3

Collision Theory

Schematic of collision cross section

Why is there an Activation Energy?

We see that for the reaction to occur, the reactants must overcome an energy barrier or activation energy E_{A}. The energy to overcome their barrier comes from the transfer of the kinetic energy from molecular collisions to internal energy (e.g. Vibrational Energy).

1. The molecules need energy to disort or stretch their bonds in order to break them and thus form new bonds
2. As the reacting molecules come close together they must overcome both stearic and electron repulsion forces in order to react.

Activation Energy

Concept 2. Potential Energy Surfaces and Energy Barriers

$$
A B+C \rightleftarrows A \quad B \quad C \rightleftarrows A+B C
$$

As two molecules, say AB and C, approach each other, the potential energy of the system ($A B, C$) increases owing repulsion of the molecules. The reaction coordinate is a measure of progress of the reaction as we go form $A B$ and C to A and $B C$ as shown in Figure 3-2 below.

(a)

(b)

Figure 3-2 Progress along reaction path. (a) Symbolic reaction; (b) Calculated from computational software on the CRE Web site, Chapter 3 Web Module.

Activation Energy

Concept 2. Potential Energy Surfaces and Energy Barriers

The figure below shows a 3-dimensional energy surface and barrier over which the reaction must pass

Figure 3-1 A potential energy surface for the $\mathrm{H}+\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{H}_{2}+\mathrm{CH}_{2} \mathrm{OH}$ from the calculations of Blowers and Masel. The lines in the figure are contours of constant energy. The lines are spaced $5 \mathrm{kcal} / \mathrm{mol}$. Richard I. Masel, Chemical Kinetics and Catalysis, p. 370, Fig.7.6 (Wiley, 2001).

Activation Energy

Concept 2. Potential Energy Surfaces and Energy Barriers

Separated reactants

Figure 3-2 A diagram of the orbital distortions during the reaction

$$
\mathrm{H} \cdot+\mathrm{CH}_{3} \mathrm{CH}_{3} \rightarrow \mathrm{H}_{2}+\mathrm{CH}_{2} \mathrm{CH}_{3} \text {. }
$$

The diagram shows only the interaction with the energy state of ethane (the $\mathrm{C}-\mathrm{H}$ bond). Other molecular orbitals of the ethane also distort. [Courtesy of R. Masel. Chemical Kinetics

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React
The kinetic energy of the molecule must be transferred to potential energy to distort bonds and overcome steric forces in order for the reacting molecules to pass over the energy barrier.
The distribution of velocities of the reacting molecules relative to one another is given by the Boltzmann distribution

$$
f(U, T)=4\left(\frac{m}{2 k_{B} T}\right)^{3 / 2} \exp \left[\frac{m U^{2}}{2 k_{B} T}\right] U^{2}
$$

Where

$$
k_{\mathrm{B}}=\text { Boltzmann's constant }=3.29 \times 10^{-24} \mathrm{cal} / \text { molecule } / \mathrm{K}
$$

$m=$ Reduced mass, g
$U=$ Relative velocity, m / s
$T=$ Absolute Temperature, K
$e=$ Energy $=m U^{2,} \mathrm{kcal} /$ molecule
$E=$ Kinetic energy, $\mathrm{kcal} / \mathrm{mol}$
$f(U, T)=$ Fraction of relative velocities between U and $U+d U$

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React

Distribution of Velocities

We will use the Maxwell-Boltzmann Distribution of Molecular Velocities. For a species of mass m, the Maxwell distribution of velocities (relative velocities) is:

$$
f(U, T) d U=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} e^{-m U^{2} / 2 k_{B} T} U^{2} d U
$$

$f(U, T) d U$ represents the fraction of velocities between U and ($U+d U$).

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React
Distribution of Velocities
A plot of the distribution function, $f(\mathrm{U}, \mathrm{T})$, is shown as a function of U :
$f(U, T)$

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React
Distribution of Velocities
Given $f(U, T) d U=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} e^{-m U^{2} / 2 k_{B} T} U^{2} d U$

Let $\quad E=\frac{1}{2} m U^{2}$
$f(E, T) d E=\frac{2 \pi}{\left(2 \pi k_{B} T\right)^{3 / 2}} E^{1 / 2} e^{\frac{-E}{k_{B} T}} d E$
$f(E, T) d E$ represents the fraction of collisions that have energy between E and ($\mathrm{E}+\mathrm{dE}$)

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React
In terms of energy per mole, E, instead of energy per molecule, e, we have

$$
\begin{equation*}
f(E, T)=2\left(\frac{1}{R T}\right)^{3 / 2} E^{1 / 2} \exp \left[\frac{E}{R T}\right] \tag{3-20}
\end{equation*}
$$

where E is in $(\mathrm{cal} / \mathrm{mol})$ or $(\mathrm{J} / \mathrm{mole}), R$ is in $(\mathrm{cal} / \mathrm{mol} / \mathrm{K})$, and $f(E, T)$ is in $\mathrm{mol} / \mathrm{cal}$.

The distribution function $f(E, T)$ is most easily interpreted by recognizing that $[f(E, T) d E]$ is the fraction of collisions with energies between E and $E+d E$.

$$
\begin{equation*}
f(E, T) d E=2\left(\frac{1}{k_{B} T}\right)^{3 / 2} E^{1 / 2} \exp \left[\frac{E}{k_{B} T}\right] d E \tag{3-21}
\end{equation*}
$$

This distribution is shown as a function of E for two temperatures in the next slide.

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React

$$
\left(\text { Fraction with energies between (0.25) and 0.35) } \frac{\mathrm{kcal}}{\mathrm{~mol}}\right)=\int_{0.25}^{0.35} f(E, T) d E
$$

This fraction is shown by the shaded area in Figure 3-4(a) and is approximated by the average value of $f(E, T)$ at $E=0.3 \mathrm{kcal} / \mathrm{mole}$ is $0.81 \mathrm{~mol} / \mathrm{kcal}$.

$$
f(E, T) d E=f(0.3,300 K) \quad E=\frac{0.81 \mathrm{~mol}}{\mathrm{kcal}}\left(0.35 \frac{\mathrm{kcal}}{\mathrm{~mol}} 0.25 \frac{\mathrm{kcal}}{\mathrm{~mol}}\right)=0.081
$$

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React

Fraction of Molecules with Energy Greater than E_{A}
We can also determine the fraction of collision that have energies greater than a certain value, E_{A}

$$
\begin{equation*}
\left(\text { Fraction of Molecules with } E>E_{A}\right)=F\left(E>E_{A}, T\right)=E_{E_{A}} f(E, T) d E \tag{3-22}
\end{equation*}
$$

For $E_{A}>3 R T$, we can obtain an analytical approximation for the fraction of molecules of collision with energies greater than E_{A} by combining Equations (321) and (3-22) and integrating to get

$$
\begin{equation*}
\binom{\text { Fraction of collision with }}{\text { energies greater than } E_{A}}=F\left(E>E_{A}, T\right) \frac{2}{\sqrt{ }}\left(\frac{E_{A}}{R T}\right)^{1 / 2} \exp \left(\frac{E_{A}}{R T}\right) \tag{3-23}
\end{equation*}
$$

Equation (3-23) is plotted in Figure 4-4(b) as a function of activation energy, E_{A}, as shown in the next slide.

Activation Energy

Concept 3. Fraction of Molecular Collisions That Have Sufficient Energy to React

Fraction of Molecules with Energy Greater than E_{A}
One observes for an activation energy E_{A} of $20 \mathrm{kcal} / \mathrm{mol}$ and a temperature of 300 K the fraction of collisions with energies greater than $20 \mathrm{kcal} / \mathrm{mol}$ is 1.76×10^{-14} while at 600 K , the fraction increases to 2.39×10^{-7}, which is a 7 orders of magnitude difference.

End of Lecture 3

Supplementary Material

Potentials (Morse or Lennard-Jones)

Supplementary Material

One can also view the reaction coordinate as variation of the BC distance for a fixed AC distance:

For a fixed $A C$ distance as B moves away from C the distance of separation of B from $C, r_{B C}$ increases as N moves closer to A. As $r_{B C}$ increases $r_{A B}$ decreases and the $A B$ energy first decreases then increases as the AB molecules become close. Likewise as B moves away from A and towards C similar energy relationships are found. E.g., as B moves towards C from A, the energy first decreases due to attraction then increases due to repulsion of the $A B$ molecules as they come closer together. We now superimpose the potentials for $A B$ and $B C$ to form the following figure:

Reaction Coordinate

The activation energy can be thought of as a barrier to the reaction. One way to view the barrier to a reaction is through the reaction coordinates. These coordinates denote the energy of the system as a function of progress along the reaction path. For the reaction:

$$
A+B C \Leftrightarrow A::: B::: C \rightarrow A B+C
$$

The reaction coordinate is:

Supplementary Material

[^0]: Cumene (C) \longrightarrow Benzene $(\mathrm{B})+$ Propylene (P)

