Review: Nonideal Flow in a CSTR

- Ideal CSTR: uniform reactant concentration throughout the vessel
- Real stirred tank
- Relatively high reactant concentration at the feed entrance
- Relatively low concentration in the stagnant regions, called dead zones (usually corners and behind baffles)

Review: Nonideal Flow in a PBR

- Ideal plug flow reactor: all reactant and product molecules at any given axial position move at same rate in the direction of the bulk fluid flow
- Real plug flow reactor: fluid velocity profiles, turbulent mixing, \& molecular diffusion cause molecules to move with changing speeds and in different directions

Review: Residence Time Distribution

RTD $\equiv \mathrm{E}(\mathrm{t}) \equiv$ "residence time distribution" function
RTD describes the amount of time molecules have spent in the reactor RTD is experimentally determined by injecting an inert "tracer" at $t=0$ and measuring the tracer concentration $\mathrm{C}(\mathrm{t})$ at exit as a function of time

$$
\operatorname{RTD}=\mathrm{E}(\mathrm{t})=\frac{\mathrm{C}(\mathrm{t})}{\int_{0}^{\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}}=\frac{\text { tracer conc at exit between } \mathrm{t} \& \mathrm{t}+\Delta \mathrm{t}}{\text { sum of tracer conc at exit for infinite time }}
$$

$$
\begin{array}{ll}
\int_{0}^{\infty} E(t) d t=1 & E(t)=0 \text { for } t<0 \text { since no tracer can exit before it enters } \\
E(t) \geq 0 \text { for } t>0 \text { since mass fractions are always positive }
\end{array}
$$

Fraction of material leaving reactor that has
been inside reactor for a time between $t_{1} \& t_{2}$ $\int_{t_{1}}^{t_{2}} E(t) d t$

A pulse of tracer was injected into a reactor, and the effluent concentration as a function of time is in the graph below. Construct a figure of $C(t) \& E(t)$ and calculate the fraction of material that spent between $3 \& 6 \mathrm{~min}$ in the reactor

| t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| min | 0

Plot C vs time:

To tabulate $\mathrm{E}(\mathrm{t})$: divide $\mathrm{C}(\mathrm{t})$ by the total area under the $\mathrm{C}(\mathrm{t})$ curve, which must be numerically evaluated as shown below:

$$
\int_{0}^{\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}=\int_{0}^{10} \mathrm{C}(\mathrm{t}) \mathrm{dt}+\int_{10}^{14} \mathrm{C}(\mathrm{t}) \mathrm{dt}
$$

$$
\int_{X_{0}}^{x_{N}} f(x) d x=\frac{\Delta t}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+2 f_{4} \ldots+4 f_{N-1}+f_{N}\right)
$$

$$
\int_{x_{0}}^{x_{2}} f(x) d x=\frac{\Delta t}{3}\left(f_{0}+4 f_{1}+f_{2}\right)
$$

$$
\rightarrow \rightarrow \int_{0}^{\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}=47.4 \frac{\mathrm{~g} \cdot \mathrm{~min}}{\mathrm{~m}^{3}}+2.6 \frac{\mathrm{~g} \cdot \mathrm{~min}}{\mathrm{~m}^{3}}=50 \frac{\mathrm{~g} \cdot \mathrm{~min}}{\mathrm{~m}^{3}}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

A pulse of tracer was injected into a reactor, and the effluent concentration as a function of time is in the graph below. Construct a figure of $C(t) \& E(t)$ and calculate the fraction of material that spent between $3 \& 6 \mathrm{~min}$ in the reactor

t	0	1	2	3	4	5	6	7	8	9	10	12	14
min	0	1											
$\mathrm{Cg} /$ m^{3}	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0

$$
\int_{0}^{\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}=50 \frac{\mathrm{~g} \cdot \mathrm{~min}}{\mathrm{~m}^{3}}
$$

Plot $\mathrm{E}(\mathrm{t})$:
Tabulate E(t): divide $\mathrm{C}(\mathrm{t})$ by the total area under the $\mathrm{C}(\mathrm{t})$ curve:

$$
\begin{array}{ll}
E\left(t_{0}\right)=\frac{0}{50}=0 & E\left(t_{1}\right)=\frac{1}{50}=0.02 \\
E\left(t_{2}\right)=\frac{5}{50}=0.1 & E\left(t_{3}\right)=\frac{8}{50}=0.16
\end{array}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Review: RTD Profiles \& Cum RTD Function $\mathrm{F}(\mathrm{t})$

Nearly ideal PFR

Nearly ideal CSTR
$E(t)$

CSTR with dead zones

$$
F(t)=\int_{0}^{t} E(t) d t
$$

$F(t)=$ fraction of effluent in the reactor less for than time t
$F(t)=0$ when $t<0$

$$
F(t)=0 \text { when } t<0
$$

$$
F(t) \geq 0 \text { when } t \geq 0
$$

$F(t) \geq 0$ when $t \geq 0$
$F(\infty)=1$

$$
F(\infty)=1
$$

$$
1-F(t)=\int_{t}^{\infty} E(t) d t
$$

Review: Relationship between E \& F

$F(t)=$ fraction of effluent that has been in the reactor for less than time t

$E(t)=$ Fraction of material leaving reactor that was inside for a time between $t_{1} \& t_{2}$ Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Review: Mean Residence Time, t_{m}

- For an ideal reactor, the space time τ is defined as V / v_{0}
- The mean residence time t_{m} is equal to τ in either ideal or nonideal reactors

$$
\mathrm{t}_{\mathrm{m}}=\frac{\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}}{\int_{0}^{\infty} \mathrm{E}(\mathrm{t}) \mathrm{dt}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\tau \quad \frac{\mathrm{V}}{v_{0}}=\tau=\mathrm{t}_{\mathrm{m}}
$$

By calculating t_{m}, the reactor V can be determined from a tracer experiment
The spread of the distribution (variance): $\quad \sigma^{2}=\int_{0}^{\infty}\left(\mathrm{t}-\mathrm{t}_{\mathrm{m}}\right)^{2} \mathrm{E}(\mathrm{t}) \mathrm{dt}$
Space time τ and mean residence time t_{m} would be equal if the following two conditions are satisfied:

- No density change
- No backmixing

In practical reactors the above two may not be valid, hence there will be a difference between them

Significance of Mixing

-RTD provides information on how long material has been in the reactor
-RTD does not provide information about the exchange of matter within the reactor (i.e., mixing)!
-For a $1^{\text {st }}$ order reaction: $\quad \frac{\mathrm{dX}}{\mathrm{dt}}=\mathrm{k}(1-\mathrm{X})$

- Concentration does not affect the rate of conversion, so RTD is sufficient to predict conversion
-But concentration does affect conversion in higher order reactions, so we need to know the degree of mixing in the reactor
- Macromixing: produces a distribution of residence times without specifying how molecules of different age encounter each other and are distributed inside of the reactor
- Micromixing: describes how molecules of different residence time encounter each other in the reactor

Quality of Mixing

-RTDs alone are not sufficient to determine reactor performance
-Quality of mixing is also required
Goal: use RTD and micromixing models to predict conversion in real reactors

2 Extremes of Fluid Mixing

Maximum mixedness: molecules are
free to move anywhere, like a microfluid. This is the extreme case of early mixing

Gases and ordinary not very viscous
liquids

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Quality of Mixing

-RTDs alone are not sufficient to determine reactor performance
-Quality of mixing is also required
Goal: use RTD and micromixing models to predict conversion in real reactors

2 Extremes of Fluid Mixing

Maximum mixedness: molecules are free to move anywhere, like a microfluid. This is the extreme case of early mixing

Complete segregation: molecules of a given age do not mix with other globules. This is the extreme case of late mixing

Noncoalescing droplets
Solid particles
Very viscous liquids

Complete Segregation Model

Mixing of different 'age groups' at the last possible moment

- Flow is visualized in the form of globules
- Each globule consists of molecules of the same residence time
- Different globules have different residence times
- No interaction/mixing between different globules

The mean conversion is the average conversion of the various globules in the exit stream:

$$
\mathrm{X}_{\mathrm{A}}=\sum \mathrm{X}_{\mathrm{A}}\left(\mathrm{t}_{\mathrm{j}}, \mathrm{E}\left(\mathrm{t}_{\mathrm{j}}\right) \Delta \mathrm{t}\right.
$$

Conversion achieved after spending time t_{j} in the reactor

$$
\xrightarrow{\Delta t \rightarrow 0} \bar{X}_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t
$$

Fraction of globules that spend between t_{j} and $t_{j}+\Delta t$ in the reactor
$X_{A}(t)$ is from the batch reactor design equation

Complete Segregation Example

First order reaction, $\mathrm{A} \rightarrow$ Products
Batch reactor design equation:

$$
\mathrm{N}_{\mathrm{A} 0} \frac{\mathrm{dX}}{\mathrm{~A}} \mathrm{dt}=-\mathrm{r}_{\mathrm{A}} \mathrm{~V} \quad \rightarrow \mathrm{~N}_{\mathrm{A} 0} \frac{\mathrm{dX}}{\mathrm{~A}} \mathrm{dt}=\mathrm{kC}_{\mathrm{A}} \mathrm{~V}
$$

$$
\rightarrow \mathrm{N}_{\mathrm{AO}} \frac{\mathrm{dX}}{\mathrm{~A}} \mathrm{dt}=\mathrm{kC}_{\mathrm{A} O}\left(1-\mathrm{X}_{\mathrm{A}}\right) \mathrm{V} \quad \rightarrow \mathrm{~N}_{\mathrm{A} O} \frac{\mathrm{dX}}{\mathrm{~A}} \mathrm{dt}=\mathrm{kN} \mathrm{~N}_{\mathrm{A} O}\left(1-\mathrm{X}_{\mathrm{A}}\right)
$$

$$
\rightarrow \frac{d X_{A}}{d t}=k\left(1-X_{A}\right) \quad \rightarrow X_{A}(t)=1-e^{-k t}
$$

To compute conversion for a reaction with a $1^{\text {st }}$ order rxn and complete segregation, insert $E(t)$ from tracer experiment and $X_{A}(t)$ from batch reactor design equation into:

$$
\bar{X}_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t \quad \& \text { integrate }
$$

Maximum Mixedness Model

In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially with the other fluid already in the reactor. Like a PFR with side entrances, where each entrance port creates a new residence time:

λ : time it takes for fluid to move from a particular point to end of the reactor $v(\lambda)$: volumetric flow rate at $\lambda,=$ flow that entered at $\lambda+\Delta \lambda$ plus what entered through the sides
$v_{0} \mathrm{E}(\lambda) \Delta \lambda$: Volumetric flow rate of fluid fed into side ports of reactor in interval between $\lambda+\Delta \lambda \& \lambda$
Volumetric flow rate of fluid fed to reactor at $\lambda: v(\lambda)=v_{0} \int_{\lambda}^{\infty} \mathrm{E}(\lambda) \mathrm{d} \lambda=v_{0}[1-\mathrm{F}(\lambda)]$ fraction of effluent in reactor for less than time t
Volume of fluid with life expectancy between $\lambda+\Delta \lambda \& \lambda: \Delta \mathrm{V}=v_{0}[1-\mathrm{F}(\lambda)] \Delta \lambda$ Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Maximum Mixedness \& Polymath

Mole balance on A gives:

$$
\frac{d X_{A}}{d \lambda}=\frac{r_{A}}{C_{A 0}}+\frac{E(\lambda)}{1-F(\lambda)} X_{A}
$$

-E(t) must be specified fraction of effluent in reactor for less than time t

- Often it is an expression that fits the experimental data
- 2 curves, one on the increasing side, and a second for the decreasing side
- Use the IF function to specify which E is used when

See section 13.8 in book

Also need to replace λ because Polymath cannot calculate as λ gets smaller $z=\bar{T}-\lambda$ where \bar{T} is the longest time measured

$$
\frac{d X_{A}}{d z}=-\frac{r_{A}}{C_{A 0}}-\frac{E(\bar{T}-z)}{1-F(\bar{T}-z)} X_{A} \quad \begin{aligned}
& \text { Note that the sign on } \\
& \text { each term changes }
\end{aligned}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Review: Nonideal Flow \& Reactor

Real CSTRs

- Relatively high reactant conc at entrance
- Relatively low conc in stagnant regions, called dead zones
(corners \& behind baffles)

- fluid velocity profiles, turbulent mixing, \& molecular diffusion cause molecules to move at varying speeds \& directions

Goal: mathematically describe non-ideal flow and solve design problems for reactors with nonideal flow

Resideñcep=Time Distribution.(RTD)

RTD describes the amount of time molecules have spent in the reactor RTD is experimentally determined by injecting an inert "tracer" at $t=0$ and measuring the tracer concentration $\mathrm{C}(\mathrm{t})$ at exit as a function of time

$$
E(t)=\frac{C(t)}{\int_{0}^{\infty} C(t) d t}=\frac{\text { tracer conc at exit between } t \& t+\Delta t}{\text { sum of tracer conc at exit for infinite time }}
$$

$$
\begin{array}{ll}
\int_{0}^{\infty} E(t) d t=1 & E(t)=0 \text { for } t<0 \text { since no fluid can exit before it enters } \\
E(t) \geq 0 \text { for } t>0 \text { since mass fractions are always positive }
\end{array}
$$

$\begin{aligned} & \text { Fraction of material leaving reactor that has } \\ & \text { been inside reactor for a time between } t_{1} \& t_{2}\end{aligned}=\int_{t_{1}}^{t_{2}} E(t) d t$

The fraction of the exit stream that has resided in the reactor for a period of time shorter than a given value t :
$F(t)$ is a cumulative distribution function

$$
\begin{aligned}
& \int_{0}^{\mathrm{t}} \mathrm{E}(\mathrm{t}) \mathrm{dt}=\mathrm{F}(\mathrm{t}) \\
& \int_{\mathrm{t}}^{\infty} \mathrm{E}(\mathrm{t}) \mathrm{dt}=1-\mathrm{F}(\mathrm{t}) \\
& \mathrm{F}(\mathrm{t})=0 \text { when } \mathrm{t}<0 \\
& \mathrm{~F}(\mathrm{t}) \geq 0 \text { when } \mathrm{t} \geq 0 \\
& \mathrm{~F}(\infty)=1
\end{aligned}
$$

80% of the molecules spend 40 min or less in the reactor

Review: Mean Residence Time, t_{m}

- For an ideal reactor, the space time τ is defined as V / v_{0}
- The mean residence time t_{m} is equal to τ in either ideal or nonideal reactors

$$
\mathrm{t}_{\mathrm{m}}=\frac{\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}}{\int_{0}^{\infty} \mathrm{E}(\mathrm{t}) \mathrm{dt}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\tau \quad \frac{\mathrm{V}}{v_{0}}=\tau=\mathrm{t}_{\mathrm{m}}
$$

By calculating t_{m}, the reactor V can be determined from a tracer experiment
The spread of the distribution (variance): $\quad \sigma^{2}=\int_{0}^{\infty}\left(\mathrm{t}-\mathrm{t}_{\mathrm{m}}\right)^{2} \mathrm{E}(\mathrm{t}) \mathrm{dt}$
Space time τ and mean residence time t_{m} would be equal if the following two conditions are satisfied:

- No density change
- No backmixing

In practical reactors the above two may not be valid, hence there will be a difference between them

Review: Complete Segregation

- Flow is visualized in the form of globules
- Each globule consists of molecules of the same residence time
- Different globules have different residence times
- No interaction/mixing between different globules

The mean conversion is the average conversion of the various globules in the exit stream:

$$
\mathrm{X}_{\mathrm{A}}=\sum \mathrm{X}_{\mathrm{A}}\left(\mathrm{t}_{\mathrm{j}}, \mathrm{E}\left(\mathrm{t}_{\mathrm{j}}\right) \Delta \mathrm{t}\right.
$$

Conversion achieved after spending time t_{j} in the reactor

$$
\xrightarrow{\Delta t \rightarrow 0} \bar{X}_{A}=\int_{0}^{\infty} X_{A}(\mathrm{t}) \mathrm{E}(\mathrm{t}) \mathrm{dt}
$$

Fraction of globules that spend between t_{j} and $t_{j}+\Delta t$ in the reactor
$X_{A}(t)$ is from the batch reactor design equation

Review: Maximum Mixedness Model

In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially with the other fluid already in the reactor. Like a PFR with side entrances, where each entrance port creates a new residence time:

λ : time it takes for fluid to move from a particular point to end of the reactor $v(\lambda)$: volumetric flow rate at $\lambda,=$ flow that entered at $\lambda+\Delta \lambda$ plus what entered through the sides
$v_{0} \mathrm{E}(\lambda) \Delta \lambda$: Volumetric flow rate of fluid fed into side ports of reactor in interval between $\lambda+\Delta \lambda \& \lambda$
Volumetric flow rate of fluid fed to reactor at $\lambda: v(\lambda)=v_{0} \int_{\lambda}^{\infty} \mathrm{E}(\lambda) \mathrm{d} \lambda=v_{0}[1-\mathrm{F}(\lambda)]$ fraction of effluent that in reactor for less than time t
Volume of fluid with life expectancy between $\lambda+\Delta \lambda \& \lambda: \Delta \mathrm{V}=v_{0}[1-\mathrm{F}(\lambda)] \Delta \lambda$ Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary rxn $A+B \rightarrow C+D$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for (1) an ideal PFR and (2) for the complete segregation model. $\mathrm{C}_{\mathrm{AO}}=\mathrm{C}_{\mathrm{BO}}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\underset{\mathrm{m}^{3}}{ }$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for (1) an ideal PFR and (2) for the complete segregation model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} /$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{~m}^{3}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0

Start with PFR design eq \& see how far can we get:

$$
\begin{aligned}
& \frac{d X_{A}}{d V}=\frac{-r_{A}}{F_{A 0}} \rightarrow \frac{d X_{A}}{d V}=\frac{\mathrm{kC}_{A} C_{B}^{2}}{C_{A 0} v_{0}} \quad C_{A}=C_{A O}\left(1-X_{A}\right) \quad C_{B}=C_{B O}\left(1-X_{A}\right) \\
& \rightarrow \frac{d X_{A}}{d V}=\frac{k C_{A Q} C_{B 0}^{2}\left(1-X_{A}\right)^{3}}{G_{A Q} v_{0}} \text { Get like terms } \\
& \text { together \& integrate } \rightarrow \int_{0}^{X_{A}} \frac{d X_{A}}{\left(1-X_{A}\right)^{3}}=\int_{0}^{V_{k C_{B 0}}^{2}} \frac{v_{0}}{d V} \\
&\left.\frac{1}{2\left(1-X_{A}\right)^{2}}\right]_{0}^{X_{A}}=\frac{k C_{B 0}^{2}}{v_{0}} V \rightarrow \frac{1}{\left(1-X_{A}\right)^{2}}-1=2 \mathrm{kC}_{B 0}^{2} \tau \rightarrow X_{A}=1-\sqrt{\frac{1}{2 k C_{B O}^{2} \tau+1}}
\end{aligned}
$$

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for (1) an ideal PFR and (2) for the complete segregation model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} \mathrm{g} /$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{~m}^{3}$	0	1											
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
$\mathrm{t}^{*} \mathrm{E}(\mathrm{t})$	0	0.02	0.2	0.48	0.8	0.8	0.72	0.56	0.48	0.396	0.3	0.144	0

$\mathrm{X}_{\mathrm{A}}=1-\sqrt{\frac{1}{2 \mathrm{k} \mathrm{C}_{\mathrm{B} 0}{ }^{2} \tau+1}}$
Use numerical method to determine t_{m} : How do we For an ideal reactor, $\tau=t_{m}$ determine $\tau ? \quad \mathrm{t}_{\mathrm{m}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}$

$$
\mathrm{t}_{\mathrm{m}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}
$$

$$
\mathrm{t}_{\mathrm{m}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\int_{0}^{10} \mathrm{tE}(\mathrm{t}) \mathrm{dt}+\int_{10}^{14} \mathrm{tE}(\mathrm{t}) \mathrm{dt}
$$

$$
\int_{0}^{10} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\frac{1}{3}\left[\begin{array}{l}
0+4(0.02)+2(0.2)+4(0.48)+2(0.8)+4(0.8) \\
+2(0.72)+4(0.56)+2(0.48)+4(0.396)+0.3
\end{array}\right]=4.57
$$

$\int_{10}^{14} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\frac{2}{3}[0.3+4(0.144)+0]=0.584 \quad \rightarrow \mathrm{t}_{\mathrm{m}}=4.57+0.584=5.15 \mathrm{~min}$
Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for (1) an ideal PFR and (2) for the complete segregation model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} \mathrm{g} /$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{~m}^{3}$													

$$
\mathrm{X}_{\mathrm{A}}=1-\sqrt{\frac{1}{2 \mathrm{kC}_{\mathrm{B} 0}{ }^{2} \tau+1}}
$$

For an ideal PFR reactor, $\tau=t_{m}$

$$
\mathrm{t}_{\mathrm{m}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt} \quad \mathrm{t}_{\mathrm{m}}=5.15 \mathrm{~min}=\tau
$$

$$
\begin{gathered}
X_{\mathrm{A}, \mathrm{PFR}}=1-\sqrt{\frac{1}{2\left(176 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \mathrm{~min}}\right)\left(0.0313 \frac{\mathrm{~mol}}{\mathrm{~L}}\right)^{2}(5.15 \mathrm{~min})+1}} \\
\mathrm{X}_{\mathrm{A}, \mathrm{PFR}}=0.40
\end{gathered}
$$

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} \mathrm{g} /$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{~m}^{3}$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
$\mathrm{E}(\mathrm{t})$	0	0.0	0										

Segregation model: $X_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t X_{A}(t)$ is from batch reactor design eq

Numerical method

1. Solve batch reactor design equation to determine eq for X_{A}
2. Determine X_{A} for each time
3. Use numerical methods to determine \bar{X}_{A}

Polymath Method

1. Use batch reactor design equation to find eq for X_{A}
2. Use Polymath polynomial curve fitting to find equation for $E(t)$
3. Use Polymath to determine \bar{X}_{A}

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
Cg / g													
m^{3}													

$$
\begin{aligned}
& \text { Batch design eq: } \\
& \mathrm{N}_{\mathrm{A} 0} \frac{\mathrm{dX}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{A} 0} \mathrm{~V}}{\mathrm{dt}}=-\mathrm{r}_{\mathrm{A}} \mathrm{~V} \rightarrow \mathrm{~N}_{\mathrm{A} 0} \frac{\mathrm{dX}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{kC}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{B} 0}^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)^{3} \mathrm{~V} \rightarrow \frac{\mathrm{dX}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{kC}_{\mathrm{B} 0}^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stoichiometry: } \\
& -\mathrm{r}_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}^{2} \\
& \mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} 0}\left(1-\mathrm{X}_{\mathrm{A}}\right) \\
& \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\mathrm{B} 0}\left(1-\mathrm{X}_{\mathrm{A}}\right)
\end{aligned} \rightarrow \int_{0}^{\mathrm{X}_{\mathrm{A}}} \frac{\mathrm{dX}_{A}}{\left(1-\mathrm{X}_{\mathrm{A}}\right)^{3}}=\int_{0}^{\mathrm{t}} \mathrm{k} \mathrm{C}_{\mathrm{B} 0}{ }^{2} \mathrm{dt} \rightarrow \frac{1}{\left.2\left(1-\mathrm{X}_{\mathrm{A}}\right)^{2}\right]_{0}^{\mathrm{X}_{\mathrm{A}}}=\mathrm{kC}_{\mathrm{B} 0}{ }^{2} \mathrm{t}}
$$

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{BO}}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
C g/ m^{3}	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
X_{A}													

Segregation model:

$$
X_{A}=\int_{0} X_{A}(t) E(t) d t
$$

$$
X_{A}=1-\sqrt{\frac{1}{1+2 \mathrm{kC}_{B 0}^{2} \mathrm{t}}}=1-\sqrt{\frac{1}{1+0.3429 \mathrm{~min}^{-1} \mathrm{t}}}
$$

Plug in each $t \&$ solve
Numerical method

$$
\begin{aligned}
& \text { od } \mathrm{X}_{\mathrm{A}(0)}=1-\sqrt{\frac{1}{1+0.3429 \mathrm{~min}^{-1}(0)}}=0 \\
& \mathrm{X}_{\mathrm{A}(1)}=1-\sqrt{\frac{1}{1+0.3429 \mathrm{~min}^{-1}(1 \mathrm{~min})}}=0.137
\end{aligned}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} /$ m^{3}	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
X_{A}	0	0.137	0.23	0.298	0.35	0.39	0.428	0.458	0.483	0.505	0.525	0.558	0.585
Segregation model:													
$\bar{X}_{\mathrm{A}}=\int_{0}^{\infty} \mathrm{X}_{\mathrm{A}}(\mathrm{t}) \mathrm{E}(\mathrm{t}) \mathrm{dt}$	$\mathrm{X}_{\mathrm{A}}=1-\sqrt{\frac{1}{1+2 \mathrm{kC}_{\mathrm{B} 0}{ }^{2} \mathrm{t}}}=1-\sqrt{\frac{1}{1+0.3429 \mathrm{~min}^{-1} \mathrm{t}}}$												

Numerical method $\quad X_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t=\int_{0}^{10} X_{A}(t) E(t) d t+\int_{10}^{14} X_{A}(t) E(t) d t$
$\int_{0}^{10} X_{A}(t) E(t) d t=\frac{1}{3}\left[\begin{array}{l}0+4(0.137)(0.02)+2(0.23)(0.1)+4(0.298)(0.16) \\ +2(0.35)(0.2)+4(0.39)(0.16)+2(0.428)(0.12)+4(0.458)(0.08) \\ +2(0.483)(0.06)+4(0.505)(0.044)+0.525(0.03)\end{array}\right]$
10
$\int_{0} X_{A}(t) E(t) d t=0.35$
Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{BO}}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} /$ m^{3}	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
X_{A}	0	0.137	0.23	0.298	0.35	0.39	0.428	0.458	0.483	0.505	0.525	0.558	0.585
Segregation model:													
$\bar{X}_{\mathrm{A}}=\int_{0}^{\infty} \mathrm{X}_{\mathrm{A}}(\mathrm{t}) \mathrm{E}(\mathrm{t}) \mathrm{dt}$	$\mathrm{X}_{\mathrm{A}}=1-\sqrt{\frac{1}{1+2 \mathrm{kC}_{\mathrm{B} 0}{ }^{2} \mathrm{t}}}=1-\sqrt{\frac{1}{1+0.3429 \mathrm{~min}^{-1} \mathrm{t}}}$												

$$
\text { Numerical method } \quad \bar{X}_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t=0.35+\int_{10}^{14} X_{A}(t) E(t) d t
$$

$$
\begin{aligned}
\int_{10}^{14} X_{A}(t) E(t) d t & =\frac{2}{3}[(0.525)(0.03)+4(0.558)(0.012)+(0.585) 0]=0.0425 \\
X_{A} & =\int_{0}^{\infty} X_{A}(t) E(t) d t=0.35+0.04 \rightarrow \bar{X}_{A}=0.39
\end{aligned}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} /$ m^{3}	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
X_{A}	0	0.137	0.23	0.298	0.35	0.39	0.428	0.458	0.483	0.505	0.525	0.558	0.585

Alternative approach: segregation model by Polymath:

$$
X_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t
$$

Need an equation for $E(t)$

$$
X_{A}=1-\sqrt{\frac{1}{1+2 \mathrm{kC}_{\mathrm{BO}}{ }^{2} \mathrm{t}}}
$$

$$
\mathrm{k}=176
$$

$$
C_{B 0}=0.0313
$$

Use Polymath to fit the $E(t)$ vs t data in the table to a polynomial Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For the irreversible, liquidphase, nonelementary rxn A

$$
+B \rightarrow C+D, \quad-r_{A}=k C_{A} C_{B}^{2}
$$

Calculate the X_{A} using the complete segregation model using Polymath

Model: C02 $=\mathrm{a} 1^{*} \mathrm{C} 01+\mathrm{a} 2^{*} \mathrm{C} 01^{\wedge} 2+\mathrm{a} 3^{*} \mathrm{C} 01^{\wedge} 3+\mathrm{a} 4^{*} \mathrm{C} 01^{\wedge} 4$

$$
\begin{aligned}
& \mathrm{a} 1=0.0889237 \\
& \mathrm{a} 2=-0.0157181 \\
& \text { a3 }=0.0007926 \\
& \text { a4 }=-8.63 \mathrm{E}-06
\end{aligned}
$$

Final Equation: $\mathrm{E}=0.0889237^{*} \mathrm{t}-0.0157181^{*} \mathrm{t}^{2}+0.0007926^{\star} t^{3}-8.63 \mathrm{E}-6^{*} \mathrm{t}^{4}$
Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Complete segregation model by Polymath
$A+B \rightarrow C+D$ $-r_{A}=k C_{A} C_{B}^{2}$
(國) Ordinary Differential Equations Solver

Differential Equations: 1 Auxiliary Equations: $4 \checkmark$ Ready for solution

```
\(d(x b a r) / d(t)=E^{*} x\)
cbo \(=0.0313\)
\(\mathrm{k}=176\)
\(\mathrm{x}=1-\left(1 /\left(1+2^{*} \mathrm{k}^{*} \mathrm{cbo}{ }^{\wedge} 2^{*} \mathrm{t}\right)\right)^{\wedge} 0.5\)
\(\mathrm{E}=0.0889237^{\star} \mathrm{t}-0.0157181^{\star} \mathrm{t}^{\wedge} 2+0.000792^{\star} \mathrm{t}^{\wedge} 3-0.00000863^{\star} \mathrm{t}^{\wedge} 4\)
\(\mathrm{t}(0)=0\)
\(\mathrm{xbar}(0)=0\)
\(t(f)=14\)
```

	Variable	Initial value	Minimal value	Maximal value	Final value
1	cbo	0.0313	0.0313	0.0313	0.0313
2	E	0	-0.0082267	0.1527078	0.0059021
3	k	176.	176.	176.	176.
4	t	0	0	14.	14.
5	x	0	0	0.5857681	0.5857681
6	xbar	0	0	0.3700224	0.363242

Segregation model by Polymath: $X_{A}=0.36$
Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, nonelementary $\mathrm{rxn} \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
C g/													
m^{3}													

$$
-\mathrm{r}_{\mathrm{A}}=\mathrm{kC} \mathrm{~A}_{\mathrm{A} O} \mathrm{C}_{\mathrm{B} 0}{ }^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)^{3} \quad \mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \quad \mathrm{k}=176 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \mathrm{~min}}
$$

Polymath cannot solve because $\lambda \rightarrow 0$ (needs to increase)
Substitute λ for z, where $z=\bar{T}-\lambda$ where $\bar{T}=$ longest time interval (14 min)
$\frac{d X_{A}}{d z}=-\left(\frac{r_{A}}{C_{A 0}}+\frac{E(T-z)}{1-F(\bar{T}-z)} X_{A}\right)$

E must be in terms of T-z. Since $\overline{T-z}=\lambda \& \lambda=\mathrm{t}$, simply substitute λ for t

$$
E(\lambda)=0.0889237^{*} \lambda-0.0157181^{*} \lambda^{2}+0.0007926^{*} \lambda^{3}-8.63 E-6^{\star} \lambda^{4}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Maximum Mixedness Model, nonelementary reaction $A+B \rightarrow C+D$
國 Ordinary Differential Equations Solver

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\mathrm{Cbo}=0.0313 \\
\mathrm{k}=176 \\
\mathrm{~d}(\mathrm{~F}) / \mathrm{d}(\mathrm{z})=-\mathrm{E}-\mathrm{d} \mathrm{~d} \\
\mathrm{~d}
\end{array} \mathrm{E}(\mathrm{~T}-\mathrm{Z})
\end{array} \uparrow \text { Denominator } \\
& \mathrm{F}(0)=0.99 \\
& \text { cannot }=0 \\
& \text { E1 }=0.0889237^{*}\left|a \mathrm{am}-0.0157181^{*}\right| \mathrm{am}^{\wedge} 2+0.0007926^{*} \mid \mathrm{lam}^{\wedge} 3-0.00000863^{*} \mathrm{lam}^{\wedge} 4 \\
& \text { lam=14-z } \\
& \mathrm{Z}=\overline{\mathrm{T}}-\lambda \rightarrow \lambda=\overline{\mathrm{T}}-\mathrm{Z} \\
& \mathrm{E}=\text { if((lam>=t1) and }(\text { lam }<=t 2) \text {)then(E1) else(0) } \\
& \mathrm{t} 1=0 \\
& \mathrm{t} 2=14 \\
& z(0)=0 \\
& z(f)=14 \\
& \text { Eq for E describes RTD function only on } \\
& \text { interval } t=0 \text { to } 14 \text { minutes, otherwise } E=0
\end{aligned}
$$

$$
\mathrm{X}_{\mathrm{A}, \text { maximum mixedness }}=0.347
$$

For a pulse tracer expt, $C(t) \& E(t)$ are given in the table below. The irreversible, liquidphase, nonelementary $r \times n A+B \rightarrow C+D,-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with $\mathrm{T}_{0}=288 \mathrm{~K}, \mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L}, \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at $320 \mathrm{~K}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{RX}}=-40000 \mathrm{cal} /$ $\mathrm{mol}, \mathrm{E} / \mathrm{R}=3600 \mathrm{~K}, \mathrm{C}_{\mathrm{PA}}=\mathrm{C}_{\mathrm{PB}}=20 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} \& \mathrm{C}_{\mathrm{PC}}=\mathrm{C}_{\mathrm{PD}}=30 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\begin{gathered} \mathrm{Cg} \\ \mathrm{~m}^{3} \end{gathered}$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
Polymath eqs for segregation model:							$\frac{d X_{A}}{d t}=X_{A}(t) E(t)$			$\frac{\mathrm{dX}}{\mathrm{~A}} \mathrm{dt}=\mathrm{kC}_{\mathrm{BO}}{ }^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)^{3}$			

$E(t)=0.0889237^{*} t-0.0157181^{*} t^{2}+0.0007926^{*} t^{3}-$

8. $63 \mathrm{Ex}-\mathrm{b}^{*}{ }^{* 4}{ }^{4} \mathrm{~s}$ as function of T	$\mathrm{k}(\mathrm{~T})=176 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \min } \exp$	$\left[3600 \mathrm{~K}\left(\frac{1}{320 \mathrm{~K}}-\frac{1}{\mathrm{~T}}\right)\right.$

Need equations from energy balance. For adiabatic operation:

$$
T=\frac{\left[-\Delta H_{R X}^{o}\left(T_{R}\right)\right] X_{A}+\sum_{i=1}^{n} \Theta_{i} C_{p_{i}} T_{0}+X_{A} \Delta C_{P} T_{R}}{\left[\sum_{i=1}^{n} \Theta_{i} C_{p_{i}}+X_{A} \Delta C_{P}\right]}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, $C(t) \& E(t)$ are given in the table below. The irreversible, liquidphase, nonelementary $r \times n A+B \rightarrow C+D,-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with $\mathrm{T}_{0}=288 \mathrm{~K}, \mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L}, \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at $320 \mathrm{~K}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{RX}}=-40000 \mathrm{cal} /$ $\mathrm{mol}, \mathrm{E} / \mathrm{R}=3600 \mathrm{~K}, \mathrm{C}_{\mathrm{PA}}=\mathrm{C}_{\mathrm{PB}}=20 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} \& \mathrm{C}_{\mathrm{PC}}=\mathrm{C}_{\mathrm{PD}}=30 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
Cg / m													
m^{3}													

Energy balance for $T=\underline{\left[-\Delta H_{R X}^{0}\left(T_{R}\right)\right] X_{A}+\sum_{i=1}^{n} \Theta_{i} C_{p_{i}} T_{0}+X_{A} \Delta C_{P} T_{R}}$ adiabatic operation:

$$
\left\lceil\sum_{i=1}^{n} \Theta_{i} C_{p_{i}}+X_{A} \Delta C_{P}\right\rceil \quad \text { Not zero! }
$$

$$
\sum_{i=1}^{n} \Theta_{i} C_{p_{i}}=C_{P_{A}}+C_{P_{B}}=40 \frac{\mathrm{cal}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \Delta C_{p}=(30+30-20-20) \frac{\mathrm{cal}}{\mathrm{~mol} \cdot \mathrm{~K}}=20 \frac{\downarrow}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\rightarrow \begin{array}{|c|c|}
\hline \mathrm{T}=\frac{1702 \frac{\mathrm{cal}}{\mathrm{~mol}} \mathrm{X}_{\mathrm{A}}+576 \frac{\mathrm{cal}}{\mathrm{~mol}}}{2 \frac{\mathrm{cal}}{\mathrm{~mol} \cdot \mathrm{~K}}+\mathrm{X}_{\mathrm{A}}\left(\frac{\mathrm{cal}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)} & \begin{array}{|c}
\frac{\mathrm{d} \bar{X}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{X}_{\mathrm{A}}(\mathrm{t}) \mathrm{E}(\mathrm{t})
\end{array} \\
\hline \mathrm{k}(\mathrm{~T})=176 \frac{\mathrm{dX}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{LC}_{\mathrm{BO}}{ }^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)^{3} \\
\hline
\end{array}
$$

$$
E(t)=0.0889237^{*} t-0.0157181^{*} t^{2}+0.0007926^{*} t^{3}-8.63 E-6^{*} t^{4}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Segregation model, adiabatic operation, nonelementary reaction kinetics

$$
\begin{aligned}
& A+B \rightarrow C+D \\
& -r_{A}=k C_{A} C_{B}{ }^{2}
\end{aligned}
$$

(國) Ordinary Differential Equations Solver


```
\(\mathrm{d}(\mathrm{Xbar}) / \mathrm{d}(\mathrm{t})=\mathrm{E}^{*} \mathrm{X}\)
\(\mathrm{Xbar}(0)=0\)
\(\mathrm{Cbo}=0.0313\)
\(\mathrm{E}=0.0889237^{\star} t-0.0157181^{*} t^{\wedge} 2+0.000792^{*} \wedge^{\wedge} 3-0.00000863^{*} t^{\wedge} 4\)
\(\mathrm{t}(0)=0\)
\(t(f)=14\)
\(\mathrm{k}=176^{*} \exp \left(3600^{*}(1 / 320-1 / \mathrm{T})\right)\)
\(\mathrm{T}=\left(1702^{*} \mathrm{X}+576\right) /(2+\mathrm{X})\)
\(\mathrm{d}(\mathrm{X}) / \mathrm{d}(\mathrm{t})=\mathrm{k}^{*} \mathrm{Cbo}^{*} \mathrm{Cbo}^{*}(1-\mathrm{X})^{\wedge} 3\)
\(\mathrm{X}(0)=0\)
```

	Variable	Initial value	Minimal value	Maximal value	Final value
1	Cbo	0.0313	0.0313	0.0313	0.0313
2	E	0	-0.0082169	0.15272	0.0059021
3	k	50.42484	50.42484	$1.137 \mathrm{E}+05$	$1.137 \mathrm{E}+05$
4	T	288.	288.	753.3253	753.3253
5	t	0	0	14.	14.
6	X	0	0	0.9810008	0.9810008
7	Xbar	0	0	0.9413546	0.9296179

$$
\bar{X}_{A}=0.93
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

The following slides show how the same problem would be solved and the solutions would differ if the reaction rate was still $-r_{A}=k C_{A} C_{B}{ }^{2}$ but the reaction was instead elementary: $\mathrm{A}+\underline{2 \mathrm{~B}} \rightarrow \mathrm{C}+\mathrm{D}$

These slides may be provided as an extra example problem that the students may study on there own if time does not permit doing it in class.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, elementary $\mathrm{rxn} \mathrm{A}+\underline{2 \mathrm{~B}} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
Cg / m													
m^{3}													

$\begin{aligned} & \text { Start with PFR design eq } \\ & \& \text { see how far can we get: }\end{aligned} \frac{d X_{A}}{d V}=\frac{-r_{A}}{F_{A 0}} \rightarrow \frac{d X_{A}}{d V}=\frac{\mathrm{kC}_{A} C_{B}{ }^{2}}{C_{A 0} v_{0}} \rightarrow \frac{d X_{A}}{d \tau}=\frac{\mathrm{kC}_{A} C_{B}{ }^{2}}{C_{A 0}}$

$$
\begin{array}{r}
\mathrm{C}_{\mathrm{A}}=\mathrm{C}_{\mathrm{A} 0}\left(1-\mathrm{X}_{\mathrm{A}}\right) \quad v_{\mathrm{b}}=\frac{\mathrm{b}}{\mathrm{a}}=\frac{2}{1} \rightarrow \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\mathrm{B} 0}\left(1-2 \mathrm{X}_{\mathrm{A}}\right) \\
\rightarrow \frac{\mathrm{dX}}{\mathrm{~d} \tau}=\frac{\mathrm{kC}}{\mathrm{~A} Q} \mathrm{C}_{\mathrm{B} 0}^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)\left(1-2 \mathrm{X}_{\mathrm{A}}\right)^{2} \\
\mathrm{C}_{\mathrm{A} \theta}
\end{array} \frac{\frac{\mathrm{dX}}{\mathrm{~A}}}{\mathrm{~d} \tau}=\mathrm{kC} \mathrm{C}_{\mathrm{B} 0}^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)\left(1-2 \mathrm{X}_{\mathrm{A}}\right)^{2}-\mathrm{C}=0.0313
$$

Could solve with Polymath if we knew the value of τ
Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, elementary $\mathrm{rxn} \mathrm{A}+2 \mathrm{~B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} /$ m^{3}	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
$\mathrm{t}^{*} \mathrm{E}(\mathrm{t})$	0	0.02	0.2	0.48	0.8	0.8	0.72	0.56	0.48	0.396	0.3	0.144	0

$$
\frac{\mathrm{dX}}{\mathrm{~A}} \mathrm{~d} \tau^{\mathrm{k}} \mathrm{kC}_{\mathrm{B} 0}^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)\left(1-2 \mathrm{X}_{\mathrm{A}}\right)^{2}
$$

How do we For an ideal reactor, $\tau=t_{m}$

$$
\mathrm{t}_{\mathrm{m}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}
$$

Use numerical method to determine t_{m} :

$$
\mathrm{t}_{\mathrm{m}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\int_{0}^{10} \mathrm{tE}(\mathrm{t}) \mathrm{dt}+\int_{10}^{14} \mathrm{tE}(\mathrm{t}) \mathrm{dt}
$$

$$
\int_{0}^{10} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\frac{1}{3}\left[\begin{array}{l}
0+4(0.02)+2(0.2)+4(0.48)+2(0.8)+4(0.8) \\
+2(0.72)+4(0.56)+2(0.48)+4(0.396)+0.3
\end{array}\right]=4.57
$$

$$
\int_{10}^{14} \mathrm{tE}(\mathrm{t}) \mathrm{dt}=\frac{2}{3}[0.3+4(0.144)+0]=0.584 \rightarrow \mathrm{t}_{\mathrm{m}}=4.57+0.584=5.15 \mathrm{~min}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, elementary $\mathrm{rxn} \mathrm{A}+\underline{2 B} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{C} \mathbf{g} /$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{~m}^{3}$	0	1											
$\mathrm{E}(\mathrm{t})$	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
$\mathrm{t}^{*} \mathrm{E}(\mathrm{t})$	0	0.02	0.2	0.48	0.8	0.8	0.72	0.56	0.48	0.396	0.3	0.144	0

$$
\frac{\mathrm{dX}}{\mathrm{~A}}, \mathrm{kC}_{\mathrm{B} 0}{ }^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)\left(1-2 \mathrm{X}_{\mathrm{A}}\right)^{2}
$$ For an ideal reactor, $\tau=t_{m}$

$$
\mathrm{t}_{\mathrm{m}}=\int_{0}^{\infty} \mathrm{tE}(\mathrm{t}) \mathrm{dt} \quad \longrightarrow \mathrm{t}_{\mathrm{m}}=5.15 \mathrm{~min}=\tau
$$

Final X_{A}
(凅) Ordinary Differential Equations Solver

Differential Equations: 1 Auxiliary Equations: $2 \vee$ Ready for solution

$$
\mathrm{d}(\mathrm{X}) / \mathrm{d}(\mathrm{t})=\left(\mathrm{k}^{*} \mathrm{Cbo}^{*} \mathrm{Cbo}^{*}(1-\mathrm{X})^{*}\left(1-2^{*} \mathrm{X}\right)^{*}\left(1-2^{*} \mathrm{X}\right)\right)
$$

$$
\begin{aligned}
& \mathrm{X}(0)=0 \\
& \mathrm{k}=176 \\
& \mathrm{Cbo}=0.0313 \\
& \mathrm{t}(0)=0 \\
& \mathrm{t}(\mathrm{f})=5.15 \\
& \hline
\end{aligned}
$$

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, elementary $\mathrm{rxn} \mathrm{A}+\underline{2 \mathrm{~B}} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
Cg / g													
m^{3}													

Segregation model $X_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t \rightarrow \frac{d X_{A}}{d}=X_{A}(t) E(t) \quad X_{A}(t)$ is from with Polymath: $\quad X_{A}=\int_{0}^{\infty} X_{A}(t) E(t) d t \quad \rightarrow \frac{d t}{d t}=X_{A}(t) E(t)$ batch reactor design eq

Segregation model, isothermal operation, elementary rxn: $A+2 B \rightarrow C+D$
(國 Ordinary Differential Equations Solver

Differential Equations: 2 Auxiliary Equations: $3 \checkmark$ Ready for solution

```
d(xbar)/d(t) = E*X
Cbo = 0.0313
k=176
d}(\textrm{X})/\textrm{d}(\textrm{t})=\mp@subsup{\textrm{k}}{}{*}\mp@subsup{\textrm{Cbo}}{}{*}\mp@subsup{\textrm{Cbo}}{}{*}(1-X\mp@subsup{)}{}{*}(1-\mp@subsup{2}{}{*}\textrm{X}\mp@subsup{)}{}{\wedge}
X(0)=0
E = 0.0889237*t-0.0157181* *^2 +0.000792* t^3-0.00000863** t^4
t(0)=0
xbar(0)=0
t(f)=14
```

	Variable	Initial value	Minimal value	Maximal value	Final value
1	Cbo	0.0313	0.0313	0.0313	0.0313
2	E	0	-0.0082238	0.1527	0.0059021
3	k	176.	176.	176.	176.
4	t	0	0	14.	14.
5	X	0	0	0.3865916	0.3865916
6	xbar	0	0	0.274419	0.2698915

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, the effluent concentration $C(t) \& R T D$ function $E(t)$ are given in the table below. The irreversible, liquid-phase, elementary $\mathrm{rxn} \mathrm{A}+\underline{2 \mathrm{~B}} \rightarrow \mathrm{C}+\mathrm{D}$, $-r_{A}=k C_{A} C_{B}{ }^{2}$ will be carried out isothermally at 320 K in this reactor. Calculate the conversion for an ideal PFR, the complete segregation model and maximum mixedness model. $\mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L} \& \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at 320 K

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
C g/													
m^{3}													

Maximum mixedness model: $\frac{\mathrm{dX}}{\mathrm{A}}, \mathrm{r}_{\mathrm{A}}+\frac{\mathrm{E}(\lambda)}{\mathrm{d} \lambda}=\frac{\mathrm{C}_{\mathrm{A} 0}}{1-\mathrm{F}(\lambda)} \quad \lambda=$ time $\quad \frac{\mathrm{dF}}{\mathrm{d} \lambda}=\mathrm{E}$
$\begin{array}{lc}\begin{array}{l}\text { Polymath cannot solve } \\ \text { because } \lambda \rightarrow 0 \text { (must } \\ \text { increase) }\end{array} & -\mathrm{r}_{\mathrm{A}}=\mathrm{kC}_{\mathrm{A} 0} \mathrm{C}_{\mathrm{B} 0}{ }^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)\left(1-2 \mathrm{X}_{\mathrm{A}}\right)^{2} \mathrm{k}=176 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \mathrm{~min}} \\ & \mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L}\end{array}$
Substitute λ for z, where $z=\bar{T}-\lambda$ where $\bar{T}=$ longest time interval (14 min)

$\frac{d X_{A}}{d z}=-\left(\frac{r_{A}}{C_{A 0}}+\frac{E(\bar{T}-z)}{1-F(\bar{T}-z)} X_{A}\right) \quad \frac{d F}{d z}=-E(\bar{T}-z) \quad$| E must be in terms of $\bar{T}-z$. |
| :--- |
| Since $\bar{T}-z=\lambda \& \lambda=t$, simply |
| substitute λ for t |

$$
E(\lambda)=0.0889237^{*} \lambda-0.0157181^{*} \lambda^{2}+0.0007926^{\star} \lambda^{3}-8.63 E-6^{\star} \lambda^{4}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

Maximum Mixedness Model, elementary reaction $A+\underline{2 B} \rightarrow C+D,-r_{A}=k C_{A} C_{B}{ }^{2}$

國 Ordinary Differential Equations Solver

$$
X_{A, \text { maximum mixedness }}=0.25
$$

For a pulse tracer expt, $\mathrm{C}(\mathrm{t}) \& \mathrm{E}(\mathrm{t})$ are given in the table below. The irreversible, liquidphase, elementary $r \times n \mathrm{~A}+\underline{2 \mathrm{~B}} \rightarrow \mathrm{C}+\mathrm{D},-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{A} \mathrm{C}_{B}{ }^{2}$ will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with $\mathrm{T}_{0}=288 \mathrm{~K}, \mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L}, \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at $320 \mathrm{~K}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{RX}}=-40000 \mathrm{cal} /$ $\mathrm{mol}, \mathrm{E} / \mathrm{R}=3600 \mathrm{~K}, \mathrm{C}_{\mathrm{PA}}=\mathrm{C}_{\mathrm{PB}}=20 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} \& \mathrm{C}_{\mathrm{PC}}=\mathrm{C}_{\mathrm{PD}}=30 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\begin{aligned} & \mathrm{C} \text { g/ } \\ & \mathrm{m}^{3} \end{aligned}$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
E(t)	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0
$\begin{aligned} & \text { Polymath eqs for } \\ & \text { segregation model: }\end{aligned} \frac{d X_{A}}{d t}=X_{A}(t) E(t)$							$\frac{\mathrm{dX}}{\mathrm{~A}} \mathrm{dt}=\mathrm{kC}_{\mathrm{B} 0}{ }^{2}\left(1-\mathrm{X}_{\mathrm{A}}\right)\left(1-2 \mathrm{X}_{\mathrm{A}}\right)^{2}$						

$E(t)=0.0889237^{*} t-0.0157181^{*} t^{2}+0.0007926^{*} t^{3}-$
8. $\operatorname{ex} \mathrm{x}$ ㄷ.6 $6^{*+4}{ }^{4} k$ as function of T :

$$
\mathrm{k}(\mathrm{~T})=176 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \min } \exp \left[3600 \mathrm{~K}\left(\frac{1}{320 \mathrm{~K}}-\frac{1}{\mathrm{~T}}\right)\right]
$$

Need equations from energy balance. For adiabatic operation:

$$
T=\frac{\left[-\Delta H_{R X}^{o}\left(T_{R}\right)\right] X_{A}+\sum_{i=1}^{n} \Theta_{i} C_{p_{i}} T_{0}+X_{A} \Delta C_{P} T_{R}}{\left[\sum_{i=1}^{n} \Theta_{i} C_{p_{i}}+X_{A} \Delta C_{P}\right]}
$$

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

For a pulse tracer expt, $C(t) \& E(t)$ are given in the table below. The irreversible, liquidphase, elementary $r \times n \mathrm{~A}+\underline{2 \mathrm{~B}} \rightarrow \mathrm{C}+\mathrm{D},-\mathrm{r}_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{A} \mathrm{C}_{B}{ }^{2}$ will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with $\mathrm{T}_{0}=288 \mathrm{~K}, \mathrm{C}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{B} 0}=0.0313 \mathrm{~mol} / \mathrm{L}, \mathrm{k}=176 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~min}$ at $320 \mathrm{~K}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{RX}}=-40000 \mathrm{cal} /$ $\mathrm{mol}, \mathrm{E} / \mathrm{R}=3600 \mathrm{~K}, \mathrm{C}_{\mathrm{PA}}=\mathrm{C}_{\mathrm{PB}}=20 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K} \& \mathrm{C}_{\mathrm{PC}}=\mathrm{C}_{\mathrm{PD}}=30 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
$\mathrm{Cg} /$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
$\mathrm{~m}^{3}$													

$$
E(t)=0.0889237^{*} t-0.0157181^{*} t^{2}+0.0007926^{*} t^{3}-
$$

Slides courtes $906 B+6 f-6$ ttkraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

$$
\begin{aligned}
& T=\frac{\left[-\Delta H_{R X}^{o}\left(T_{R}\right)\right] X_{A}+\sum_{i=1}^{n} \Theta_{i} C_{p_{i}} T_{0}+X_{A} \Delta C_{P} T_{R}}{\left[\sum_{i=1}^{n} \Theta_{i} C_{p_{i}}+X_{A} \Delta C_{P}\right]} \quad \begin{array}{ll}
\sum_{i=1}^{n} \Theta_{i} C_{p_{i}}=(30+30-2(20)-20)=0 \\
p_{A}+C_{P_{B}}=40 \frac{\mathrm{cal}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array} \\
& \begin{array}{r}
T=288 \mathrm{~K}+1000 \mathrm{X}_{\mathrm{A}} \quad \frac{\mathrm{~d} \overline{\mathrm{X}}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{X}_{\mathrm{A}}(\mathrm{t}) \mathrm{E}(\mathrm{t}) \quad \frac{\mathrm{d} \mathrm{X}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{kC}_{\mathrm{B} 0}{ }^{2}(1- \\
\mathrm{k}(\mathrm{~T})=176 \frac{\mathrm{~L}^{2}}{\mathrm{~mol}^{2} \cdot \min } \exp \left[3600 \mathrm{~K}\left(\frac{1}{320 \mathrm{~K}}-\frac{1}{\mathrm{~T}}\right)\right]
\end{array}
\end{aligned}
$$

Segregation model, adiabatic operation, elementary reaction kinetics

```
\(\mathrm{d}(\mathrm{Xbar}) / \mathrm{d}(\mathrm{t})=\mathrm{E}^{*} \mathrm{X}\)
\(A+2 B \rightarrow C+D\)
\(\operatorname{Xbar}(0)=0\)
Cbo \(=0.0313\)
\(-r_{A}=k C_{A} C_{B}{ }^{2}\)
\(\mathrm{E}=0.0889237^{\star} \mathrm{t}-0.0157181^{\star} \mathrm{t}^{\wedge} 2+0.000792^{\star} \mathrm{t}^{\wedge} 3-0.00000863^{\star} \mathrm{t}^{\wedge} 4\)
\(t(0)=0\)
\(t(f)=14\)
\(\mathrm{k}=176^{*} \exp \left(3600^{*}(1 / 320-1 / \mathrm{T})\right)\)
\(\mathrm{T}=288+1000 * \mathrm{X}\)
\(\mathrm{d}(\mathrm{X}) / \mathrm{d}(\mathrm{t})=\mathrm{k}^{*} \mathrm{Cbo}^{*} \mathrm{Cbo}^{*}(1-\mathrm{X})^{*}\left(1-2^{*} \mathrm{X}\right)^{\wedge} 2\)
\(X(0)=0\)
\(\mathrm{Ca}=\mathrm{Cao}^{*}(1-\mathrm{X})\)
Cao \(=0.0313\)
\(\mathrm{Cb}=\mathrm{Cbo}{ }^{*}\left(1-2^{*} \mathrm{X}\right)\)
```

	Variable	Initial value	Minimal value	Maximal value	Final value	Because B is complete consumed by $X_{A}=0.5$ $\overline{X_{A}}=0.50$ Why so much lower than before?
1	Ca	0.0313	0.0156586	0.0313	0.0156586	
2	Cao	0.0313	0.0313	0.0313	0.0313	
3	Cb	0.0313	1.725E-05	0.0313	1.725E-05	
4	Cbo	0.0313	0.0313	0.0313	0.0313	
5	E	0	-0.0082229	0.1527022	0.0059021	
6	k	50.42484	50.42484	$1.401 \mathrm{E}+05$	$1.401 \mathrm{E}+05$	
7	t	0	0	14.	14.	
8	T	288.	288.	787.7244	787.7244	
9	X	0	0	0.4997244	0.4997244	
10	Xbar	0	0	0.5027919	0.49679	

Slides courtesy of Prof M L Kraft, Chemical \& Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

