## Review: Nonideal Flow in a CSTR

L23-1

- Ideal CSTR: uniform reactant concentration throughout the vessel
- Real stirred tank
  - Relatively high reactant concentration at the feed entrance
  - Relatively low concentration in the stagnant regions, called dead zones (usually corners and behind baffles)



## Review: Nonideal Flow in a PBR

- Ideal plug flow reactor: all reactant and product molecules at any given axial position move at same rate in the direction of the bulk fluid flow
- <u>Real plug flow reactor</u>: fluid velocity profiles, turbulent mixing, & molecular diffusion cause molecules to move with changing speeds and in different directions



٦.

### **Review: Residence Time Distribution**

RTD  $\equiv$  E(t)  $\equiv$  "residence time distribution" function

RTD describes the amount of time molecules have spent in the reactor

RTD is experimentally determined by injecting an inert "tracer" at t=0 and measuring the tracer concentration C(t) at exit as a function of time



 $\int_{0}^{\infty} E(t)dt = 1$  E(t)=0 for t<0 since no tracer can exit before it enters  $E(t)\geq0 \text{ for } t>0 \text{ since mass fractions are always positive}$ 

Fraction of material leaving reactor that has been inside reactor for a time between  $t_1 \& t_2 = \int_{t_1}^{t_2} E(t) dt$ 

A pulse of tracer was injected into a reactor, and the effluent concentration as a function of time is in the graph below. Construct a figure of C(t) & E(t) and calculate the fraction of material that spent between 3 & 6 min in the reactor

| t<br>min               | 0 | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9   | 10  | 12  | 14 |
|------------------------|---|---|---|---|----|---|---|---|---|-----|-----|-----|----|
| C g/<br>m <sup>3</sup> | 0 | 1 | 5 | 8 | 10 | 8 | 6 | 4 | 3 | 2.2 | 1.5 | 0.6 | 0  |

To tabulate E(t): divide C(t) by the total area under Plot C vs time: the C(t) curve, which must be numerically evaluated 12 as shown below: 10  $\int_{0}^{\infty} C(t) dt = \int_{0}^{10} C(t) dt + \int_{10}^{14} C(t) dt$ **C(t) (g/m**<sup>3</sup>) C t 9 8  $\int_{3}^{X_{N}} f(x) dx = \frac{\Delta t}{3} (f_{0} + 4f_{1} + 2f_{2} + 4f_{3} + 2f_{4} \dots + 4f_{N-1} + f_{N})$ 2 0  $\int_{X_2}^{X_2} f(x) dx = \frac{\Delta t}{3} (f_0 + 4f_1 + f_2)$ 8 10 12 14 2 6 0 4 t (min)  $\rightarrow \rightarrow \int_{0}^{\infty} C(t) dt = 47.4 \frac{g \cdot \min}{m^3} + 2.6 \frac{g \cdot \min}{m^3} = 50 \frac{g \cdot \min}{m^3}$ 

A pulse of tracer was injected into a reactor, and the effluent concentration as a function of time is in the graph below. Construct a figure of C(t) & E(t) and calculate the fraction of material that spent between 3 & 6 min in the reactor

| t<br>min               | 0 | 1    | 2   | 3    | 4   | 5    | 6    | 7    | 8    | 9     | 10   | 12    | 14 |
|------------------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|----|
| C g/<br>m <sup>3</sup> | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0  |
| E(t)                   | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0  |





## Review: Relationship between E & F

F(t) = fraction of effluent that has been in the reactor for less than time t



E(t)= Fraction of material leaving reactor that was inside for a time between  $t_1 \& t_2$ Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

## Review: Mean Residence Time, t<sub>m</sub>

- For an ideal reactor, the space time  $\tau$  is defined as V/ $v_0$
- The mean residence time  $t_m$  is equal to  $\tau$  in either ideal or nonideal reactors

$$t_{m} = \frac{\int_{0}^{\infty} tE(t)dt}{\int_{0}^{\infty} E(t)dt} = \int_{0}^{\infty} tE(t)dt = \tau \qquad \frac{V}{v_{0}} = \tau = t_{m}$$

By calculating t<sub>m</sub>, the reactor V can be determined from a tracer experiment

The spread of the distribution (variance):  $\sigma^2 = \int_0^\infty (t - t_m)^2 E(t) dt$ 

Space time  $\tau$  and mean residence time  $t_m$  would be equal if the following two conditions are satisfied:

- No density change
- No backmixing

## In practical reactors the above two may not be valid, hence there will be a difference between them

## Significance of Mixing

- RTD provides information on how long material has been in the reactor
  RTD does not provide information about the exchange of matter within the reactor (i.e., mixing)!
  - For a 1<sup>st</sup> order reaction:

$$\frac{\mathrm{dX}}{\mathrm{dt}} = \mathrm{k}\left(1 - \mathrm{X}\right)$$

- Concentration does not affect the rate of conversion, so RTD is sufficient to predict conversion
- •But concentration does affect conversion in higher order reactions, so we need to know the degree of mixing in the reactor
- •<u>Macromixing</u>: produces a distribution of residence times without specifying how molecules of different age encounter each other and are distributed inside of the reactor
- •<u>Micromixing</u>: describes how molecules of different residence time encounter each other in the reactor

## **Quality of Mixing**

- •RTDs alone are not sufficient to determine reactor performance
- •Quality of mixing is also required
- Goal: use RTD and micromixing models to predict conversion in real reactors

2 Extremes of Fluid Mixing

Maximum mixedness: molecules are free to move anywhere, like a microfluid. This is the extreme case of early mixing

Gases and ordinary not very viscous liquids



## **Quality of Mixing**

- RTDs alone are not sufficient to determine reactor performance
  Quality of mixing is also required
- Goal: use RTD and micromixing models to predict conversion in real reactors

2 Extremes of Fluid Mixing

Maximum mixedness: molecules are free to move anywhere, like a microfluid. This is the extreme case of early mixing

> Gases and ordinary not very viscous liquids

<u>Complete segregation</u>: molecules of a given age do not mix with other globules. This is the extreme case of late mixing

> Noncoalescing droplets Solid particles Very viscous liquids



## **Complete Segregation Model**



- Flow is visualized in the form of globules
- Each globule consists of molecules of the same residence time
- Different globules have different residence times
- No interaction/mixing between different globules

The mean conversion is the average conversion of the various globules in the exit stream:  $\overline{X}_A = \sum_i X_A(t_i) E(t_i) \Delta t$ 

Conversion achieved after spending time t<sub>i</sub> in the reactor

$$\xrightarrow{\Delta t \to 0} \overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt$$

Fraction of globules that spend between  $t_i$  and  $t_i + \Delta t$  in the reactor

X<sub>A</sub>(t) is from the *batch reactor* design equation

## **Complete Segregation Example**

First order reaction, A→Products

$$\begin{array}{ll} \mbox{Batch reactor} & N_{A0} \frac{dX_A}{dt} = -r_A V & \rightarrow N_{A0} \frac{dX_A}{dt} = kC_A V \\ \mbox{$\rightarrow$} N_{A0} \frac{dX_A}{dt} = kC_{A0} \left(1 - X_A\right) V & \rightarrow N_{A0} \frac{dX_A}{dt} = kN_{A0} \left(1 - X_A\right) \\ \mbox{$\rightarrow$} \frac{dX_A}{dt} = k \left(1 - X_A\right) & \rightarrow X_A \left(t\right) = 1 - e^{-kt} \end{array}$$

To compute conversion for a reaction with a 1<sup>st</sup> order rxn and complete segregation, insert E(t) from tracer experiment and  $X_A(t)$  from batch reactor design equation into:

$$\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt$$
 & integrate

## Maximum Mixedness Model

In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially with the other fluid already in the reactor. Like a PFR with side entrances, where each entrance port creates a new residence time:



 $\lambda$ : time it takes for fluid to move from a particular point to end of the reactor  $\upsilon(\lambda)$ : volumetric flow rate at  $\lambda$ , = flow that entered at  $\lambda + \Delta \lambda$  plus what entered through the sides

 $\upsilon_0 E(\lambda) \Delta \lambda$ : Volumetric flow rate of fluid fed into side ports of reactor in interval between  $\lambda + \Delta \lambda \& \lambda$ 

Volumetric flow rate of fluid fed to reactor at  $\lambda$ :  $v(\lambda) = v_0 \int_{\lambda}^{\infty} E(\lambda) d\lambda = v_0 [1 - F(\lambda)]$ fraction of effluent in reactor for less than time t

Volume of fluid with life expectancy between  $\lambda + \Delta \lambda \& \lambda$ :  $\Delta V = v_0 [1 - F(\lambda)] \Delta \lambda$ Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

## Maximum Mixedness & Polymath

Mole balance on A gives:  $\frac{dX_A}{d\lambda} = \frac{r_A}{C_{A0}} + \frac{E(\lambda)}{1 - F(\lambda)} X_A$ Inst be specified fraction of effluent in reactor for less than time t

•E(t) must be specified

• Often it is an expression that fits the experimental data

•2 curves, one on the increasing side, and a second for the decreasing side

• Use the IF function to specify which E is used when



Also need to replace  $\lambda$  because Polymath cannot calculate as  $\lambda$  gets smaller

 $z = \overline{T} - \lambda$  where  $\overline{T}$  is the longest time measured

$$\frac{dX_A}{dz} = -\frac{r_A}{C_{A0}} - \frac{E(\overline{T} - z)}{1 - F(\overline{T} - z)} X_A \quad \text{Note that the sign on} \\ \text{each term changes}$$

## Review: Nonideal Flow & Reactor Designal PBRs

 Relatively high reactant conc at entrance

 Relatively low conc in stagnant regions, called dead zones (corners & behind baffles)



 fluid velocity profiles, turbulent mixing, & molecular diffusion cause molecules to move at varying speeds & directions



Goal: mathematically describe non-ideal flow and solve design problems for reactors with nonideal flow

## Residence Time Distribution (RTD)

RTD describes the amount of time molecules have spent in the reactor

RTD is experimentally determined by injecting an inert "tracer" at t=0 and measuring the tracer concentration C(t) at exit as a function of time



 $\int_{0}^{\infty} E(t) dt = 1$  E(t)=0 for t<0 since no fluid can exit before it enters  $E(t)\geq0 \text{ for } t>0 \text{ since mass fractions are always positive}$ 

Fraction of material leaving reactor that has been inside reactor for a time between  $t_1 \& t_2 = \int_{t_1}^{t_2} E(t) dt$ 



The fraction of the exit stream that has resided in the reactor for a period of time shorter than a given value *t*:



## Review: Mean Residence Time, t<sub>m</sub>

- For an ideal reactor, the space time  $\tau$  is defined as  $V/v_0$
- The mean residence time  $t_m$  is equal to  $\tau$  in either ideal or nonideal reactors

$$t_{m} = \frac{\int_{0}^{\infty} tE(t)dt}{\int_{0}^{\infty} E(t)dt} = \int_{0}^{\infty} tE(t)dt = \tau \qquad \frac{V}{v_{0}} = \tau = t_{m}$$

By calculating t<sub>m</sub>, the reactor V can be determined from a tracer experiment

The spread of the distribution (variance):  $\sigma^2 = \int_0^\infty (t - t_m)^2 E(t) dt$ 

Space time  $\tau$  and mean residence time  $t_m$  would be equal if the following two conditions are satisfied:

- No density change
- No backmixing

## In practical reactors the above two may not be valid, hence there will be a difference between them

# Review: Complete Segregation

Mixing of different 'age groups' at the last possible moment

- Flow is visualized in the form of globules
- Each globule consists of molecules of the same residence time
- Different globules have different residence times
- No interaction/mixing between different globules

The mean conversion is the average conversion of the various globules in the exit stream:  $\overline{X}_{A} = \sum_{i} X_{A}(t_{i}) E(t_{i}) \Delta t$ 

Conversion achieved after spending time  $t_j$  in the reactor

$$\xrightarrow{\Delta t \to 0} \overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt$$

Fraction of globules that spend between  $t_i$  and  $t_i + \Delta t$  in the reactor

X<sub>A</sub>(t) is from the *batch reactor* design equation

## **Review: Maximum Mixedness Model**

L22-21

In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially with the other fluid already in the reactor. Like a PFR with side entrances, where each entrance port creates a new residence time:



 $\lambda$ : time it takes for fluid to move from a particular point to end of the reactor  $\upsilon(\lambda)$ : volumetric flow rate at  $\lambda$ , = flow that entered at  $\lambda + \Delta \lambda$  plus what entered through the sides

 $\upsilon_0 E(\lambda) \Delta \lambda$ : Volumetric flow rate of fluid fed into side ports of reactor in interval between  $\lambda + \Delta \lambda \& \lambda$ 

Volumetric flow rate of fluid fed to reactor at  $\lambda$ :  $v(\lambda) = v_0 \int_{\lambda}^{\infty} E(\lambda) d\lambda = v_0 [1 - F(\lambda)]$ fraction of effluent that in reactor for less than time t

Volume of fluid with life expectancy between  $\lambda + \Delta \lambda \& \lambda$ :  $\Delta V = v_0 [1 - F(\lambda)] \Delta \lambda$ Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

| t min      | 0 | 1    | 2   | 3    | 4   | 5    | 6    | 7    | 8    | 9     | 10   | 12    | 14 |
|------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|----|
| C g/<br>m³ | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0  |
| E(t)       | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0  |

| t min                  | 0 | 1    | 2   | 3    | 4   | 5    | 6    | 7    | 8    | 9     | 10   | 12    | 14 |
|------------------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|----|
| C g/<br>m <sup>3</sup> | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0  |
| E(t)                   | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0  |

Start with PFR design eq & see how far can we get:

$$\frac{dX_{A}}{dV} = \frac{-r_{A}}{F_{A0}} \longrightarrow \frac{dX_{A}}{dV} = \frac{kC_{A}C_{B}^{2}}{C_{A0}v_{0}} \qquad C_{A} = C_{A0}(1-X_{A}) \qquad C_{B} = C_{B0}(1-X_{A})$$
$$\rightarrow \frac{dX_{A}}{dV} = \frac{kC_{A0}C_{B0}^{2}(1-X_{A})^{3}}{C_{A0}v_{0}} \qquad \text{Get like terms together & integrate} \rightarrow \int_{0}^{X_{A}} \frac{dX_{A}}{(1-X_{A})^{3}} = \int_{0}^{V} \frac{kC_{B0}^{2}}{v_{0}} dV$$
$$\rightarrow \frac{1}{2(1-X_{A})^{2}} \Big|_{0}^{X_{A}} = \frac{kC_{B0}^{2}}{v_{0}} \lor \rightarrow \frac{1}{(1-X_{A})^{2}} - 1 = 2kC_{B0}^{2}\tau \rightarrow X_{A} = 1 - \sqrt{\frac{1}{2kC_{B0}^{2}\tau + 1}}$$

| t min      |   |      |     |      |     |      |      |      |      |       |      |       |   |
|------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|---|
| C g/<br>m³ | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0 |
| E(t)       | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0 |
| t*E(t)     | 0 | 0.02 | 0.2 | 0.48 | 0.8 | 0.8  | 0.72 | 0.56 | 0.48 | 0.396 | 0.3  | 0.144 | 0 |

$$X_{A} = 1 - \sqrt{\frac{1}{2kC_{B0}^{2}\tau + 1}}$$

How do we determine  $\tau$ ?  $t_m = \int_0^\infty tE(t) dt$ 

Use numerical method  
to determine t<sub>m</sub>:  
$$t_{m}^{0} = \int_{0}^{\infty} tE(t) dt = \int_{0}^{10} tE(t) dt + \int_{10}^{14} tE(t) dt$$
$$\int_{0}^{10} tE(t) dt = \frac{1}{3} \begin{bmatrix} 0 + 4(0.02) + 2(0.2) + 4(0.48) + 2(0.8) + 4(0.8) \\ + 2(0.72) + 4(0.56) + 2(0.48) + 4(0.396) + 0.3 \end{bmatrix} = 4.57$$

 $\int_{10}^{14} tE(t) dt = \frac{2}{3} [0.3 + 4(0.144) + 0] = 0.584 \implies t_m = 4.57 + 0.584 = 5.15 \text{ min}$ Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

| t min                  | 0 | 1    | 2   | 3    | 4   | 5    | 6    | 7    | 8    | 9     | 10   | 12    | 14 |
|------------------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|----|
| C g/<br>m <sup>3</sup> | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0  |
| E(t)                   | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0  |
| t*E(t)                 | 0 | 0.02 | 0.2 | 0.48 | 0.8 | 0.8  | 0.72 | 0.56 | 0.48 | 0.396 | 0.3  | 0.144 | 0  |

$$X_{A} = 1 - \sqrt{\frac{1}{2kC_{B0}^{2}\tau + 1}}$$

For an ideal PFR reactor, 
$$\tau = t_m$$
  
 $t_m = \int_0^\infty tE(t) dt$   $t_m = 5.15 min = \tau$ 

$$X_{A,PFR} = 1 - \sqrt{\frac{1}{2\left(176\frac{L^2}{mol^2 \cdot min}\right)\left(0.0313\frac{mol}{L}\right)^2(5.15min) + 1}}$$
$$X_{A,PFR} = 0.40$$

| t min                  | 0 | 1    | 2   | 3    | 4   | 5    | 6    | 7    | 8    | 9     | 10   | 12    | 14 |
|------------------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|----|
| C g/<br>m <sup>3</sup> | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0  |
| E(t)                   | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0  |

Segregation model:  $\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt X_{A}(t)$  is from *batch reactor* design eq

Numerical method

- 1. Solve batch reactor design equation to determine eq for X<sub>A</sub>
- 2. Determine  $X_A$  for each time
- 3. Use numerical methods to determine  $\overline{X}_A$

### Polymath Method

- 1. Use batch reactor design equation to find eq for  $X_A$
- 2. Use Polymath polynomial curve fitting to find equation for E(t)
- 3. Use Polymath to determine  $\overline{X}_A$

|                        |   |      |     |      |     |      |      |      |      |       |      | 12    |   |
|------------------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|---|
| C g/<br>m <sup>3</sup> | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0 |
| E(t)                   | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0 |
| X <sub>A</sub>         |   |      |     |      |     |      |      |      |      |       |      |       |   |

Segregation model:

$$\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt \qquad X_{A} = 1 - \sqrt{\frac{1}{1 + 2kC_{B0}^{2}t}} = 1 - \sqrt{\frac{1}{1 + 0.3429 \text{min}^{-1}t}}$$

Plug in each t & solve

Numerical method

$$X_{A(0)} = 1 - \sqrt{\frac{1}{1 + 0.3429 \text{min}^{-1}(0)}} = 0$$

$$X_{A(1)} = 1 - \sqrt{\frac{1}{1 + 0.3429 \text{min}^{-1}(1\text{min})}} = 0.137$$

|                        |   |       |      |       |      |      | 6     |       |       |       |       |       |       |
|------------------------|---|-------|------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| C g/<br>m <sup>3</sup> | 0 | 1     | 5    | 8     | 10   | 8    | 6     | 4     | 3     | 2.2   | 1.5   | 0.6   | 0     |
| E(t)                   | 0 | 0.02  | 0.1  | 0.16  | 0.2  | 0.16 | 0.12  | 0.08  | 0.06  | 0.044 | 0.03  | 0.012 | 0     |
| X <sub>A</sub>         | 0 | 0.137 | 0.23 | 0.298 | 0.35 | 0.39 | 0.428 | 0.458 | 0.483 | 0.505 | 0.525 | 0.558 | 0.585 |

Segregation 
$$\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt$$
  $X_{A} = 1 - \sqrt{\frac{1}{1 + 2kC_{B0}^{2}t}} = 1 - \sqrt{\frac{1}{1 + 0.3429 \text{min}^{-1}t}}$   
Numerical method  $\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt = \int_{0}^{10} X_{A}(t) E(t) dt + \int_{10}^{14} X_{A}(t) E(t) dt$   
 $\int_{0}^{10} X_{A}(t) E(t) dt = \frac{1}{3} \begin{bmatrix} 0 + 4(0.137)(0.02) + 2(0.23)(0.1) + 4(0.298)(0.16) \\ + 2(0.35)(0.2) + 4(0.39)(0.16) + 2(0.428)(0.12) + 4(0.458)(0.08) \\ + 2(0.483)(0.06) + 4(0.505)(0.044) + 0.525(0.03) \end{bmatrix} = \int_{0}^{10} X_{A}(t) E(t) dt$ 

|                        |   |       |      |       |      |      |       |       |       |       |       | 12    |       |
|------------------------|---|-------|------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| C g/<br>m <sup>3</sup> | 0 | 1     | 5    | 8     | 10   | 8    | 6     | 4     | 3     | 2.2   | 1.5   | 0.6   | 0     |
| E(t)                   | 0 | 0.02  | 0.1  | 0.16  | 0.2  | 0.16 | 0.12  | 0.08  | 0.06  | 0.044 | 0.03  | 0.012 | 0     |
| X <sub>A</sub>         | 0 | 0.137 | 0.23 | 0.298 | 0.35 | 0.39 | 0.428 | 0.458 | 0.483 | 0.505 | 0.525 | 0.558 | 0.585 |

Segregation 
$$\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt$$
  $X_{A} = 1 - \sqrt{\frac{1}{1 + 2kC_{B0}^{2}t}} = 1 - \sqrt{\frac{1}{1 + 0.3429 \text{min}^{-1}t}}$ 

Numerical method 
$$\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt = 0.35 + \int_{10}^{14} X_{A}(t) E(t) dt$$

 $\int_{10}^{14} X_{A}(t) E(t) dt = \frac{2}{3} [(0.525)(0.03) + 4(0.558)(0.012) + (0.585)0] = 0.0425$ 

$$\overline{X}_{A} = \int_{0}^{\infty} X_{A}(t) E(t) dt = 0.35 + 0.04 \rightarrow \overline{X}_{A} = 0.39$$

|                |   | 1     |      |       |      |      |       |       |       |       |       |       |       |
|----------------|---|-------|------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|
| C g/<br>m³     | 0 | 1     | 5    | 8     | 10   | 8    | 6     | 4     | 3     | 2.2   | 1.5   | 0.6   | 0     |
| E(t)           | 0 | 0.02  | 0.1  | 0.16  | 0.2  | 0.16 | 0.12  | 0.08  | 0.06  | 0.044 | 0.03  | 0.012 | 0     |
| X <sub>A</sub> | 0 | 0.137 | 0.23 | 0.298 | 0.35 | 0.39 | 0.428 | 0.458 | 0.483 | 0.505 | 0.525 | 0.558 | 0.585 |

Alternative approach: segregation model by Polymath:



#### Use Polymath to fit the E(t) vs t data in the table to a polynomial

|       | time               | E(t)     |                                               |     |
|-------|--------------------|----------|-----------------------------------------------|-----|
| 🛄 D   | ata Table          |          |                                               |     |
| R002  | 2 : C005 05        | — × ~    | Regression Analysis Graph                     |     |
|       | C01                | C02      | CO 🗘 💌 🛋 🗣 🔽 Graph 🔽 Residuals                | p   |
| 01    | 0                  | 0        |                                               |     |
| 02    | 1                  | 0.02     | ✓ <u>R</u> eport                              |     |
| 03    | 2                  | 0.10     | Linear & Polynomial Multiple linear Nonlinear |     |
| 04    | 3                  | 0.16     | · · · ·                                       | C   |
| 05    | 4                  | 0.20     | Dependent Variable C02 👻                      | C   |
| 06    | 5                  | 0.16     |                                               |     |
| 07    | 6                  | 0.12     | Independent Variable C01                      |     |
| 08    | 7                  | 0.08     | Polynomial Degree 1 Linear                    |     |
| 09    | 8                  | 0.06     | 2                                             |     |
| 10    | 9                  | 0.044    | Gave best                                     | fit |
| 11    | 10                 | 0.03     |                                               |     |
| 12    | 12                 | 0.012    |                                               |     |
| 13    | 14                 | 0        | Through origin $E(t) = 0$ at $t=0$            |     |
| 14    |                    |          | <b>▼</b>                                      |     |
| •     |                    |          | Polynomial                                    |     |
| P13-9 | 3-b-regression.pol | No Title | 1                                             |     |

For the irreversible, liquidphase, nonelementary rxn A +B $\rightarrow$ C+D, -r<sub>A</sub>=kC<sub>A</sub>C<sub>B</sub><sup>2</sup> Calculate the X<sub>A</sub> using the complete segregation model using Polymath

Model: C02= a1\*C01 + a2\*C01^2 + a3\*C01^3 + a4\*C01^4

a1=0.0889237 a2= -0.0157181 a3= 0.0007926 a4= -8.63E-06

Final Equation: E= 0.0889237\*t -0.0157181\*t<sup>2</sup> + 0.0007926\*t<sup>3</sup> – 8.63E-6\*t<sup>4</sup>

### Complete segregation model by Polymath



|   | Variable | Initial value | Minimal value | Maximal value | Final value |
|---|----------|---------------|---------------|---------------|-------------|
| 1 | cbo      | 0.0313        | 0.0313        | 0.0313        | 0.0313      |
| 2 | E        | 0             | -0.0082267    | 0.1527078     | 0.0059021   |
| 3 | k        | 176.          | 176.          | 176.          | 176.        |
| 4 | t        | 0             | 0             | 14.           | 14.         |
| 5 | x        | 0             | 0             | 0.5857681     | 0.5857681   |
| 6 | xbar     | 0             | 0             | 0.3700224     | 0.363242    |

**Segregation model by Polymath:**  $\overline{X}_{A} = 0.36$ 

### Maximum Mixedness Model, nonelementary reaction A+B $\rightarrow$ C+D



$$X_{A, \text{ maximum mixedness}} = 0.347$$

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquidphase, nonelementary rxn A+B $\rightarrow$ C+D, -r<sub>A</sub>=kC<sub>A</sub>C<sub>B</sub><sup>2</sup> will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with T<sub>0</sub>= 288K, C<sub>A0</sub>=C<sub>B0</sub>=0.0313 mol/L, k=176 L<sup>2</sup>/mol<sup>2</sup>·min at 320K,  $\Delta$ H°<sub>RX</sub>=-40000 cal/ mol, E/R =3600K, C<sub>PA</sub>=C<sub>PB</sub>=20cal/mol·K & C<sub>PC</sub>=C<sub>PD</sub>=30 cal/mol·K

t min0123456789101214
$$\begin{array}{c}C&g/\\m^3\end{array}$$
01581086432.21.50.60E(t)00.020.10.160.20.160.120.080.060.0440.030.0120Polymeth eqs for segregation model: $\left| \frac{dX_A}{dt} = X_A(t)E(t) \right|$  $\left| \frac{dX_A}{dt} = kC_{B0}^2(1-X_A)^3 \right|$ 

 $\mathsf{E}(\mathsf{t}) = 0.0889237^*\mathsf{t} - 0.0157181^*\mathsf{t}^2 + 0.0007926^*\mathsf{t}^3 - 0.0007926^*\mathsf{$ 

B.63E-6\*t<sup>4</sup>  
Express k as  
function of T: 
$$k(T) = 176 \frac{L^2}{mol^2 \cdot min} \exp\left[3600K\left(\frac{1}{320K} - \frac{1}{T}\right)\right]$$

Need equations from energy balance. For adiabatic operation:

$$T = \frac{\left[-\Delta H^{o}_{RX}(T_{R})\right]X_{A} + \sum_{i=1}^{n}\Theta_{i}C_{p_{i}}T_{0} + X_{A}\Delta C_{P}T_{R}}{\left[\sum_{i=1}^{n}\Theta_{i}C_{p_{i}} + X_{A}\Delta C_{P}\right]}$$

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquidphase, nonelementary rxn A+B $\rightarrow$ C+D, -r<sub>A</sub>=kC<sub>A</sub>C<sub>B</sub><sup>2</sup> will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with T<sub>0</sub>= 288K, C<sub>A0</sub>=C<sub>B0</sub>=0.0313 mol/L, k=176 L<sup>2</sup>/mol<sup>2</sup>·min at 320K,  $\Delta$ H°<sub>RX</sub>=-40000 cal/ mol, E/R =3600K, C<sub>PA</sub>=C<sub>PB</sub>=20cal/mol·K & C<sub>PC</sub>=C<sub>PD</sub>=30 cal/mol·K



## Segregation model, adiabatic operation, nonelementary reaction kinetics



|   | Variable | Initial value | <b>Minimal value</b> | Maximal value | Final value |
|---|----------|---------------|----------------------|---------------|-------------|
| 1 | Cbo      | 0.0313        | 0.0313               | 0.0313        | 0.0313      |
| 2 | E        | 0             | -0.0082169           | 0.15272       | 0.0059021   |
| 3 | k        | 50.42484      | 50.42484             | 1.137E+05     | 1.137E+05   |
| 4 | Т        | 288.          | 288.                 | 753.3253      | 753.3253    |
| 5 | t        | 0             | 0                    | 14.           | 14.         |
| 6 | х        | 0             | 0                    | 0.9810008     | 0.9810008   |
| 7 | Xbar     | 0             | 0                    | 0.9413546     | 0.9296179   |

$$\overline{X}_{A} = 0.93$$

The following slides show how the same problem would be solved and the solutions would differ if the reaction rate was still  $-r_A = kC_A C_B^2$  but the reaction was instead elementary:  $A + \underline{2B} \rightarrow C + D$ 

These slides may be provided as an extra example problem that the students may study on there own if time does not permit doing it in class.

t min0123456789101214
$$\begin{array}{c} C g / \\ m^3 \end{array}$$
01581086432.21.50.60E(t)00.020.10.160.20.160.120.080.060.0440.030.0120

Start with PFR design eq  
& see how far can we get: 
$$\frac{dX_A}{dV} = \frac{-r_A}{F_{A0}} \rightarrow \frac{dX_A}{dV} = \frac{kC_A C_B^2}{C_{A0} v_0} \rightarrow \frac{dX_A}{d\tau} = \frac{kC_A C_B^2}{C_{A0}}$$

$$C_{A} = C_{A0}(1 - X_{A})$$
  $v_{b} = \frac{b}{a} = \frac{2}{1} \rightarrow C_{B} = C_{B0}(1 - 2X_{A})$ 

$$\rightarrow \frac{dX_{A}}{d\tau} = \frac{kC_{A0}C_{B0}^{2}(1-X_{A})(1-2X_{A})^{2}}{C_{A0}} \rightarrow \frac{dX_{A}}{d\tau} = kC_{B0}^{2}(1-X_{A})(1-2X_{A})^{2}}{C_{B0}}$$

$$C_{B0} = 0.0313 \quad k = 0.0313$$

## Could solve with Polymath if we knew the value of $\tau$

| t min      | 0 | 1    | 2   | 3    | 4   | 5    | 6    | 7    | 8    | 9     | 10   | 12    | 14 |
|------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|----|
| C g/<br>m³ | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0  |
| E(t)       | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0  |
| t*E(t)     | 0 | 0.02 | 0.2 | 0.48 | 0.8 | 0.8  | 0.72 | 0.56 | 0.48 | 0.396 | 0.3  | 0.144 | 0  |

$$\frac{dX_{A}}{d\tau} = kC_{B0}^{2} (1 - X_{A}) (1 - 2X_{A})^{2}$$

How do we determine  $\tau$ ? For an ideal reactor,  $\tau = t_m$  $t_m = \int_0^\infty tE(t)dt$ 

Use numerical method to determine t<sub>m</sub>:  $t_{m} = \int_{0}^{\infty} tE(t) dt = \int_{0}^{10} tE(t) dt + \int_{10}^{14} tE(t) dt$  $\int_{0}^{10} tE(t) dt = \frac{1}{3} \begin{bmatrix} 0 + 4(0.02) + 2(0.2) + 4(0.48) + 2(0.8) + 4(0.8) \\ + 2(0.72) + 4(0.56) + 2(0.48) + 4(0.396) + 0.3 \end{bmatrix} = 4.57$ 

 $\int_{10}^{14} tE(t) dt = \frac{2}{3} [0.3 + 4(0.144) + 0] = 0.584 \quad \rightarrow t_{\rm m} = 4.57 + 0.584 = 5.15 \,\text{min}$ 



Segregation model, isothermal operation, elementary rxn:  $A+2B \rightarrow C+D$ 



|   | Variable | Initial value | Minimal value | Maximal value | Final value |
|---|----------|---------------|---------------|---------------|-------------|
| 1 | Cbo      | 0.0313        | 0.0313        | 0.0313        | 0.0313      |
| 2 | E        | 0             | -0.0082238    | 0.1527        | 0.0059021   |
| 3 | k        | 176.          | 176.          | 176.          | 176.        |
| 4 | t        | 0             | 0             | 14.           | 14.         |
| 5 | х        | 0             | 0             | 0.3865916     | 0.3865916   |
| 6 | xbar     | 0             | 0             | 0.274419      | 0.2698915   |

 $X_{A,seg} = 0.27$ 



Substitute  $\lambda$  for z, where  $z=\overline{T}-\lambda$  where  $\overline{T}$ =longest time interval (14 min)

 $\frac{dX_A}{dz} = -\left(\frac{r_A}{C_{A0}} + \frac{E(\overline{T} - z)}{1 - F(\overline{T} - z)}X_A\right) \qquad \frac{dF}{dz} = -E(\overline{T} - z) \qquad \begin{array}{l} \text{E must be in terms of } \overline{T} - z.\\ \text{Since } \overline{T} - z = \lambda & \lambda = t, \text{ simply substitute } \lambda & \text{for } t \\ E(\lambda) = 0.0889237^*\lambda - 0.0157181^*\lambda^2 + 0.0007926^*\lambda^3 - 8.63E - 6^*\lambda^4 \end{array}$ 

Maximum Mixedness Model, elementary reaction A+<u>2B</u> $\rightarrow$ C+D, -r<sub>A</sub>=kC<sub>A</sub>C<sub>B</sub><sup>2</sup>



$$X_{A, \text{ maximum mixedness}} = 0.25$$

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquidphase, elementary rxn A+<u>2B</u> $\rightarrow$ C+D, -r<sub>A</sub>=kC<sub>A</sub>C<sub>B</sub><sup>2</sup> will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with T<sub>0</sub>= 288K, C<sub>A0</sub>=C<sub>B0</sub>=0.0313 mol/L, k=176 L<sup>2</sup>/mol<sup>2</sup>·min at 320K,  $\Delta$ H°<sub>RX</sub>=-40000 cal/ mol, E/R =3600K, C<sub>PA</sub>=C<sub>PB</sub>=20cal/mol·K & C<sub>PC</sub>=C<sub>PD</sub>=30 cal/mol·K

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquidphase, elementary rxn A+<u>2B</u> $\rightarrow$ C+D, -r<sub>A</sub>=kC<sub>A</sub>C<sub>B</sub><sup>2</sup> will be carried out in this reactor. Calculate the conversion for the complete segregation model under adiabatic conditions with T<sub>0</sub>= 288K, C<sub>A0</sub>=C<sub>B0</sub>=0.0313 mol/L, k=176 L<sup>2</sup>/mol<sup>2</sup>·min at 320K,  $\Delta$ H°<sub>RX</sub>=-40000 cal/ mol, E/R =3600K, C<sub>PA</sub>=C<sub>PB</sub>=20cal/mol·K & C<sub>PC</sub>=C<sub>PD</sub>=30 cal/mol·K

| t min                  | 0 | 1    | 2   | 3    | 4   | 5    | 6    | 7    | 8    | 9     | 10   | 12    | 14 |
|------------------------|---|------|-----|------|-----|------|------|------|------|-------|------|-------|----|
| C g/<br>m <sup>3</sup> | 0 | 1    | 5   | 8    | 10  | 8    | 6    | 4    | 3    | 2.2   | 1.5  | 0.6   | 0  |
| E(t)                   | 0 | 0.02 | 0.1 | 0.16 | 0.2 | 0.16 | 0.12 | 0.08 | 0.06 | 0.044 | 0.03 | 0.012 | 0  |

$$T = \frac{\left[-\Delta H^{0}_{RX}(T_{R})\right]X_{A} + \sum_{i=1}^{n} \Theta_{i}C_{p_{i}}T_{0} + X_{A}\Delta C_{P}T_{R}}{\left[\sum_{i=1}^{n} \Theta_{i}C_{p_{i}} + X_{A}\Delta C_{P}\right]} \qquad \Delta C_{p} = (30 + 30 - 2(20) - 20) = 0$$

$$\sum_{i=1}^{n} \Theta_{i}C_{p_{i}} = C_{p_{A}} + C_{P_{B}} = 40\frac{cal}{mol \cdot K}$$

$$\frac{T = 288K + 1000X_{A}}{dt} \qquad \frac{d\overline{X}_{A}}{dt} = X_{A}(t)E(t) \qquad \frac{dX_{A}}{dt} = kC_{B0}^{-2}(1 - X_{A})(1 - 2X_{A})^{2}}{k(T) = 176\frac{L^{2}}{mol^{2} \cdot min}exp\left[3600K\left(\frac{1}{320K} - \frac{1}{T}\right)\right]}$$

$$E(t) = 0.0889237^{*}t - 0.0157181^{*}t^{2} + 0.0007926^{*}t^{3} - 1$$

## Segregation model, adiabatic operation, elementary reaction kinetics

 $A+2B\rightarrow C+D$ 

 $-r_{A}=kC_{A}C_{B}^{2}$ 

|    | Variable | <b>Initial value</b> | Minimal value | Maximal value | Final value |                                 |
|----|----------|----------------------|---------------|---------------|-------------|---------------------------------|
| 1  | Ca       | 0.0313               | 0.0156586     | 0.0313        | 0.0156586   |                                 |
| 2  | Cao      | 0.0313               | 0.0313        | 0.0313        | 0.0313      | Deseuse Die somelately          |
| 3  | Cb       | 0.0313               | 1.725E-05     | 0.0313        | 1.725E-05   | Because B is completely         |
| 4  | Cbo      | 0.0313               | 0.0313        | 0.0313        | 0.0313      | consumed by X <sub>A</sub> =0.5 |
| 5  | E        | 0                    | -0.0082229    | 0.1527022     | 0.0059021   |                                 |
| 6  | k        | 50.42484             | 50.42484      | 1.401E+05     | 1.401E+05   |                                 |
| 7  | t        | 0                    | 0             | 14.           | 14.         |                                 |
| 8  | Т        | 288.                 | 288.          | 787.7244      | 787.7244    | $/X_{A} = 0.50$                 |
| 9  | x        | 0                    | 0             | 0.4997244     | 0.4997244   | Why so much lower               |
| 10 | Xbar     | 0                    | 0             | 0.5027919     | 0.49679     | than before?                    |