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L23-1 

Dead Zone 

Review: Nonideal Flow in a CSTR 
•  Ideal CSTR: uniform reactant concentration throughout the vessel 
•  Real stirred tank 

• Relatively high reactant concentration at the feed entrance 
• Relatively low concentration in the stagnant regions, called dead 

zones (usually corners and behind baffles)  

Short Circuiting 

Dead Zone 
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Review: Nonideal Flow in a PBR 
•  Ideal plug flow reactor: all reactant and product molecules at any given 

axial position move at same rate in the direction of the bulk fluid flow 
• Real plug flow reactor: fluid velocity profiles, turbulent mixing, & 

molecular diffusion cause molecules to move with changing speeds and 
in different directions  

channeling 

Dead zones 
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RTD is experimentally determined by injecting an inert “tracer” at t=0 and 
measuring the tracer concentration C(t) at exit as a function of time 

Review: Residence Time Distribution 
RTD ≡ E(t) ≡ “residence time distribution” function 

RTD describes the amount of time molecules have spent in the reactor 

( ) ( )
( )∞

Δ
= = =

∫0

C t tracer conc at exit between t & t+ t RTD E t
sum of  tracer conc at exit for infinite timeC t dt

Measurement of RTD 

↑ 
Pulse injection 

↓ 
Detection 

Reactor X C(t) 
C curve 

t 

Fraction of material leaving reactor that has 
been inside reactor for a time between t1 & t2 

( )t2
t1
E t dt= ∫

( )
0
E t dt 1

∞
=∫

E(t)=0 for t<0 since no tracer can exit before it enters 
E(t)≥0 for t>0 since mass fractions are always positive 
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t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

A pulse of tracer was injected into a reactor, and the effluent concentration as 
a function of time is in the graph below.  Construct a figure of C(t) & E(t) and 
calculate the fraction of material that spent between 3 & 6 min in the reactor  
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Plot C vs time: To tabulate E(t): divide C(t) by the total area under 
the C(t) curve, which must be numerically evaluated 
as shown below:  

( )
∞ ⋅

→→ = +
⋅ ⋅

=∫ 3 3
0

3
g min2.6g min4 g minC t dt 50

m m
7.

m
4

( ) ( ) ( )
∞
∫ ∫+∫=

1 14

100

0

0
C t dt C t dtC t dt

( ) ( )Δ
= + +∫

X2
0 1 2

X0

tf x dx f 4f f
3

( ) ( )−
Δ

= + + + + + +∫
XN

0 1 2 3 4 N 1 N
X0

tf x dx f 4f 2f 4f 2f ... 4f f
3
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t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

A pulse of tracer was injected into a reactor, and the effluent concentration as 
a function of time is in the graph below.  Construct a figure of C(t) & E(t) and 
calculate the fraction of material that spent between 3 & 6 min in the reactor  

Tabulate E(t): divide 
C(t) by the total area 
under the C(t) curve: 

( ) 3
0

g minC t dt 50
m

∞ ⋅
=∫

( ) ( )

( )
0

C t
E t

C t dt
∞

=

∫

( )0
0E t 0
50

= = ( )1
1E t 0.02
50

= =

( )2
5E t 0.1
50

= =

t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

( )3
8E t 0.16
50

= =

Plot E(t): 
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t 

E(t) 

τ	 t 

E(t) 

t 

E(t) 

τ	
Nearly 

ideal PFR 
Nearly ideal 

CSTR 
PBR with 

channeling & 
dead zones 

t 

E(t) 

CSTR with 
dead zones 

40	

( )
t

0
F(t) E t dt= ∫

t (min) 

F(t) 

0.8	 80% of the molecules 
spend 40 min or less in 
the reactor 

( )
( )
( )

F t 0 when t<0
F t 0 when t 0
F 1

=

≥ ≥

∞ =

( ) ( )
t

1 F t E t dt
∞

− = ∫

F(t)=fraction of effluent in the reactor less for than time t 

Review: RTD Profiles & Cum RTD 
Function F(t) 
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L23-7 

F(t) = fraction of effluent that has been in the reactor for less than time t 

Review: Relationship between E & F 

E(t)= Fraction of material leaving reactor that was inside for a time between t1 & t2 

( )
t

0
F(t) E t dt= ∫

( ) ( )

( )
0

C t
E t

C t dt
∞

=

∫
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L23-8 

Review: Mean Residence Time, tm 
•  For an ideal reactor, the space time τ is defined as V/υ0 
•  The mean residence time tm is equal toτ in either ideal or nonideal 

reactors 

( )
( )

( )0
m 0

0

tE t dt
t tE t dt

E t dt
τ

∞
∞

∞
∫

= = =∫
∫

m
0

V tτ
υ

= =

( ) ( )22
m0 t t E t dtσ ∞= −∫

By calculating tm, the reactor V can be determined from a tracer experiment 

The spread of the distribution (variance): 

Space time τ and mean residence time tm would be equal if the following 
two conditions are satisfied: 

•  No density change 
•  No backmixing 

In practical reactors the above two may not be valid, hence there will be a 
difference between them 
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L23-9 

Significance of Mixing 
• RTD provides information on how long material has been in the reactor 
• RTD does not provide information about the exchange of matter within the 
reactor (i.e., mixing)! 

• For a 1st order reaction: ( )dX k 1 X
dt

= −

• Concentration does not affect the rate of conversion, so RTD is sufficient 
to predict conversion 

• But concentration does affect conversion in higher order reactions, so we 
need to know the degree of mixing in the reactor  

• Macromixing: produces a distribution of residence times without specifying 
how molecules of different age encounter each other and are distributed 
inside of the reactor 

 
• Micromixing: describes how molecules of different residence time 
encounter each other in the reactor 
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L23-10 

Quality of Mixing 
• RTDs alone are not sufficient to determine reactor performance 
• Quality of mixing is also required 
Goal: use RTD and micromixing models to predict conversion in real reactors 

2 Extremes of Fluid Mixing 
Maximum mixedness: molecules are 
free to move anywhere, like a 
microfluid.  This is the extreme case 
of early mixing 
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L23-11 

Quality of Mixing 
• RTDs alone are not sufficient to determine reactor performance 
• Quality of mixing is also required 
Goal: use RTD and micromixing models to predict conversion in real reactors 

2 Extremes of Fluid Mixing 
Complete segregation: molecules of 
a given age do not mix with other 
globules.  This is the extreme case of 
late mixing 

Maximum mixedness: molecules are 
free to move anywhere, like a 
microfluid.  This is the extreme case 
of early mixing 
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L23-12 

•  Flow is visualized in the form of globules 
•  Each globule consists of molecules of the same residence time 
•  Different globules have different residence times 
•  No interaction/mixing between different globules 

Complete Segregation Model 

Mixing of different 
‘age groups’ at the 
last possible 
moment 

( ) ( )jA A j jX X t E t t= Δ∑

The mean conversion is the average conversion of the various globules in 
the exit stream: 

Conversion achieved after 
spending time tj in the reactor 

Fraction of globules that spend 
between tj and tj + Δt in the reactor 

( ) ( )t 0
A A

0
X X t E t dt

∞Δ →⎯⎯⎯⎯→ = ∫
XA(t) is from the batch 
reactor design equation 
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L23-13 

Complete Segregation Example 
First order reaction, A→Products 

A
A0 A
dXN r V
dt

= −Batch reactor 
design equation: 

A
A0 A
dXN kC V
dt

→ =

( )A
A0 A0 A
dXN kC 1 X V
dt

→ = − ( )A
A0 A0 A
dXN kN 1 X
dt

→ = −

( )A
A

dX k 1 X
dt

→ = − ( ) kt
AX t 1 e−→ = −

To compute conversion for a reaction with a 1st order rxn and complete 
segregation, insert E(t) from tracer experiment and XA(t) from batch reactor 
design equation into:   

( ) ( )A A
0

X X t E t dt
∞

= ∫ & integrate  
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L23-14 

Maximum Mixedness Model 
In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially 
with the other fluid already in the reactor. Like a PFR with side entrances, 
where each entrance port creates a new residence time: 

λ +Δλ	

λ → 0	

V = 0 V = V0 
λ: time it takes for fluid to move from a particular point to end of the reactor 

υ0 

υ0E(λ)Δλ: Volumetric flow rate of fluid fed into side ports of reactor in interval 
between λ + Δλ & λ 
Volumetric flow rate of fluid fed to reactor at λ: ( ) ( ) ( )0 0E d 1 Fλυ λ υ λ λ υ λ∞= = −⎡ ⎤∫ ⎣ ⎦

0E( )υ λ λΔ

λ λυ +Δ

Volume of fluid with life expectancy between λ + Δλ & λ: ( )0V 1 Fυ λ λΔ = − Δ⎡ ⎤⎣ ⎦

υ(λ): volumetric flow rate at λ, = flow that entered at λ+Δλ plus what entered 
through the sides

fraction of effluent in reactor for less than time t 

λ →∞	

λ 	

λυ



Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. 

L23-15 

Maximum Mixedness & Polymath 

Also need to replace λ because Polymath cannot calculate as λ gets smaller 

( )
( )

A A
A

A0

EdX r X
d C 1 F

λ
λ λ

= +
−

• E(t) must be specified   
• Often it is an expression that fits the experimental data 
• 2 curves, one on the increasing side, and a second for the decreasing 
side 
• Use the IF function to specify which E is used when 

E 

t 

E1 E2 

z T    where T is the longest time measuredλ= −

( )
( )

A A
A

A0

E T zdX r X
dz C 1 F T z

−
= − −

− −
Note that the sign on 
each term changes 

Mole balance on 
A gives: 

fraction of effluent in reactor for less than time t 

residence time distribution function 

See section 13.8 
in book 
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Review: Nonideal Flow & Reactor 
Design Real CSTRs 

• Relatively high reactant conc at 
entrance 

• Relatively low conc in stagnant 
regions, called dead zones 
(corners & behind baffles)  

Dead Zone 

Dead Zone 

Short Circuiting 

Real PBRs 
•   fluid velocity profiles, turbulent 

mixing, & molecular diffusion 
cause molecules to move at 
varying speeds & directions  

channeling 

Dead zones 

Goal: mathematically describe non-ideal flow and solve design problems 
for reactors with nonideal flow 
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RTD is experimentally determined by injecting an inert “tracer” at t=0 and 
measuring the tracer concentration C(t) at exit as a function of time 

Residence Time Distribution (RTD) RTD ≡ E(t) ≡ “residence time distribution” function 
RTD describes the amount of time molecules have spent in the reactor 

( ) ( )
( )0

C t tracer conc at exit between t & t+ t E t
sum of  tracer conc at exit for infinite timeC t dt∞

Δ
= =
∫

Measurement of RTD 

↑ 
Pulse injection 

↓ 
Detection 

Reactor X C(t) 
The C curve 

t 

Fraction of material leaving reactor that has 
been inside reactor for a time between t1 & t2 

( )t2
t1
E t dt= ∫

( )
0
E t dt 1

∞
=∫

E(t)=0 for t<0 since no fluid can exit before it enters 
E(t)≥0 for t>0 since mass fractions are always positive 
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t 

E(t) 

τ	 t 

E(t) 

t 

E(t) 

τ	

Nearly 
ideal PFR 

Nearly ideal 
CSTR 

PBR with 
dead zones 

t 

E(t) 

CSTR with 
dead zones 

The fraction of the exit stream that has resided in the reactor for a period 
of time shorter than a given value t: 

( ) ( )

( ) ( )

t
0

t

E t dt F t

E t dt 1 F t∞

=∫

= −∫

F(t) is a cumulative distribution function 

40	

0.8	
80% of the molecules 
spend 40 min or less in 
the reactor 

( )
( )
( )

F t 0 when t<0
F t 0 when t 0
F 1

=

≥ ≥

∞ =

Nice multiple 
choice 
question 
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L22-19 

Review: Mean Residence Time, tm 
•  For an ideal reactor, the space time τ is defined as V/υ0 
•  The mean residence time tm is equal to τ in either ideal or nonideal 

reactors 

 

( )
( )

( )0
m 0

0

tE t dt
t tE t dt

E t dt
τ

∞
∞

∞
∫

= = =∫
∫

m
0

V tτ
υ

= =

( ) ( )22
m0 t t E t dtσ ∞= −∫

By calculating tm, the reactor V can be determined from a tracer experiment 

The spread of the distribution (variance): 

Space time τ and mean residence time tm would be equal if the following 
two conditions are satisfied: 

•  No density change 
•  No backmixing 

In practical reactors the above two may not be valid, hence there will be a 
difference between them 
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•  Flow is visualized in the form of globules 
•  Each globule consists of molecules of the same residence time 
•  Different globules have different residence times 
•  No interaction/mixing between different globules 

Review: Complete Segregation 
Model 

Mixing of different 
‘age groups’ at the 
last possible 
moment 

( ) ( )jA A j jX X t E t t= Δ∑

The mean conversion is the average conversion of the various globules in 
the exit stream: 

Conversion achieved after 
spending time tj in the reactor 

Fraction of globules that spend 
between tj and tj + Δt in the reactor 

( ) ( )t 0
A A

0
X X t E t dt

∞Δ →⎯⎯⎯⎯→ = ∫
XA(t) is from the batch 
reactor design equation 
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L22-21 

Review: Maximum Mixedness Model 
In a PFR: as soon as the fluid enters the reactor, it is completely mixed radially 
with the other fluid already in the reactor. Like a PFR with side entrances, 
where each entrance port creates a new residence time: 

λ +Δλ	

λ → 0	

V = 0 V = V0 
λ: time it takes for fluid to move from a particular point to end of the reactor 

υ0 

υ0E(λ)Δλ: Volumetric flow rate of fluid fed into side ports of reactor in interval 
between λ + Δλ & λ 
Volumetric flow rate of fluid fed to reactor at λ: ( ) ( ) ( )0 0E d 1 Fλυ λ υ λ λ υ λ∞= = −⎡ ⎤∫ ⎣ ⎦

0E( )υ λ λΔ

λ λυ +Δ

Volume of fluid with life expectancy between λ + Δλ & λ: ( )0V 1 Fυ λ λΔ = − Δ⎡ ⎤⎣ ⎦

υ(λ): volumetric flow rate at λ, = flow that entered at λ+Δλ plus what entered 
through the sides

fraction of effluent that in reactor for less than time t 

λ →∞	

λ 	

λυ
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,             
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for (1) an ideal PFR and (2) for the complete segregation model.   

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 
Start with PFR design eq & see how far can we get: 

A A

A0

dX r
dV F

−
=

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,          
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for (1) an ideal PFR and (2) for the complete segregation model.   

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

2
A A B

A0 0

dX kC C
dV C υ

→ = ( )A A0 AC C 1 X= − ( )B B0 AC C 1 X= −

( )32
A0 B0 AA

A0 0

kC C 1 XdX
dV C υ

−
→ =

( )

2X VA B0A
3

00 0A

kCdX dV
1 X υ

→ =∫ ∫
−

Get like terms 
together & integrate 

( )

XA 2
B0

2
0A 0

kC1 V
2 1 X υ

⎤
→ =⎥

⎥− ⎦ ( )
 2
B02

A

1 1 2kC
1 X

τ→ − =
−

A 2
B0

1X 1
2kC 1τ

→ = −
+
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,             
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for (1) an ideal PFR and (2) for the complete segregation model.   

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

How do we 
determine τ? 

For an ideal reactor, τ = tm 
( )m 0 tE tt dt∞= ∫

Use numerical method 
to determine tm: 

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 
t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0 

( ) ( ) ( )
10 14

m
0 0 10

t tE t dt tE t dt tE t dt
∞

= = +∫ ∫ ∫

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

10

0

0 4 0.02 2 0.2 4 0.48 2 0.8 4 0.81tE t dt 4.57
3 2 0.72 4 0.56 2 0.48 4 0.396 0.3

+ + + + +⎡ ⎤
= =∫ ⎢ ⎥

+ + + + +⎣ ⎦

( ) ( )
14

10

2tE t dt 0.3 4 0.144 0 0.584
3

= + + =⎡ ⎤∫ ⎣ ⎦ mt 4.57 0.584 5.15min→ = + =

A 2
B0

1X 1
2kC 1τ

= −
+
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for (1) an ideal PFR and (2) for the complete segregation model.   

CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 
t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0 

For an ideal PFR reactor, τ = tm 

A,PFRX 0.40=

( )
= −

⎛ ⎞⎛ ⎞ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⋅⎝ ⎠

A,PFR 22

2

1X 1
L mol2 176 0.0313 5.15min 1

Lmol min

mt 5.15min τ= =( )m 0t tE t dt∞= ∫
A 2

B0

1X 1
2kC 1τ

= −
+
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

Segregation model: ( ) ( )A A
0

X X t E t dt
∞

= ∫ XA(t) is from batch reactor design eq 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

Numerical method 
1.  Solve batch reactor design equation to determine eq for XA 
2.  Determine XA for each time 
3.  Use numerical methods to determine X̄  A 

Polymath Method 
1.  Use batch reactor design equation to find eq for XA 
2.  Use Polymath polynomial curve fitting to find equation for E(t) 
3.  Use Polymath to determine X̄  A 
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( )
2

B02
A

1 1 2kC t
1 X

→ − =
−

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

Segregation model: ( ) ( )A A
0

X X t E t dt
∞

= ∫ XA(t) is from batch reactor design eq 

A
A0 A
dXN r V
dt

= − ( )A0 A0
32A

B0 A
dX k C 1
t

C
d

N VX→ = −

Batch design eq: 

Stoichiometry: 

( )A A0 AC C 1 X= −

( )B B0 AC C 1 X= −

A0 A0N C V=

( )32A
B0 A

dX kC 1 X
dt

→ = −

( )

X tA 2A
B03

0 0A

dX kC dt
1 X

→ =∫ ∫
−

A 2
B0

1X 1
1 2kC t

→ = −
+

( )

XA
2

B02
A 0

1 kC t
2 1 X

⎤
→ =⎥

⎥− ⎦2
A A Br kC C− =

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 
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Segregation model: 

( ) ( )A A
0

X X t E t dt
∞

= ∫ A 2
B0

1X 1
1 2kC t

= −
+

Numerical method 
( ) ( )A 0 1

1X 1 0
1 0.3429min 0−

= − =
+

( ) ( )A 1 1
1X 1 0.137

1 0.3429min 1min−
= − =

+

1
11

1 0.3429min t−
= −

+

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

XA 

Plug in each t & solve 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

XA 0 0.137 0.23 0.298 0.35 0.39 0.428 0.458 0.483 0.505 0.525 0.558 0.585 

Segregation 
model: ( ) ( )A A

0
X X t E t dt

∞
= ∫ A 2

B0

1X 1
1 2kC t

= −
+

Numerical method 

1
11

1 0.3429min t−
= −

+

( ) ( ) ( ) ( ) ( ) ( )
∞

= = +∫ ∫∫A A
140

A
10

1
A

00
X t E t d X t E t dX X t E t dt tt

( ) ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )

+ + +⎡ ⎤
⎢ ⎥

= + + + +∫ ⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

10
A

0

0 4 0.137 0.02 2 0.23 0.1 4 0.298 0.16
1X t E t dt 2 0.35 0.2 4 0.39 0.16 2 0.428 0.12 4 0.458 0.08
3

2 0.483 0.06 4 0.505 0.044 0.525 0.03

( ) ( ) =∫
10

A
0
X t E t dt 0.35

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

XA 0 0.137 0.23 0.298 0.35 0.39 0.428 0.458 0.483 0.505 0.525 0.558 0.585 

Segregation 
model: ( ) ( )A A

0
X X t E t dt

∞
= ∫ A 2

B0

1X 1
1 2kC t

= −
+

Numerical method 

1
11

1 0.3429min t−
= −

+

( ) ( ) ( ) ( )
∞

= = + ∫∫
14

A
10

A A
0

0. X t E t dtX X t E t d 5t 3

( ) ( ) ( )( ) ( )( ) ( )= + + =⎡ ⎤∫ ⎣ ⎦
14

A
10

2X t E t dt 0.525 0.03 4 0.558 0.012 0.585 0 0.0425
3

( ) ( )
∞

= = + → =∫A A A
0

0. 0.04X X t E t dt X35 0.39

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

XA 0 0.137 0.23 0.298 0.35 0.39 0.428 0.458 0.483 0.505 0.525 0.558 0.585 

Alternative approach: segregation model by Polymath: 

( ) ( )A A
0

X X t E t dt
∞

= ∫ A 2
B0

1X 1
1 2kC t

= −
+

CB0=0.0313 

k=176  Need an equation for E(t) 

Use Polymath to fit the E(t) vs t data in the table to a polynomial 

( ) ( )A
A

dX X t E t
dt

=

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 
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time E(t) 

E(t) = 0 at t=0 

Gave best fit 

Model: C02= a1*C01 + a2*C01^2 + a3*C01^3 + a4*C01^4 

Final Equation: E= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 8.63E-6*t4 

a1=0.0889237 
a2= -0.0157181 
a3= 0.0007926 
a4= -8.63E-06 

For the irreversible, liquid-
phase,  nonelementary rxn A

+B→C+D,  -rA=kCACB
2 

Calculate the XA using the 
complete segregation model 

using Polymath 
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A+B→C+D 
-rA=kCACB

2 

Complete segregation model by Polymath 

AX 0.36=Segregation model by Polymath: 
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

Maximum mixedness model: ( )
( )

A A
A

A0

EdX r X
d C 1 F

λ
λ λ

= +
−

λ=time

Polymath cannot solve because λ→0 (needs to increase) 

( )32
A A0 B0 Ar kC C 1 X− = − A0 B0C C 0.0313mol L= =

2

2
Lk 176

mol min
=

⋅

Substitute λ for z, where z=T̅-λ where T̅=longest time interval (14 min) 

( )
( )

A A
A

A0

E T zdX r X
dz C 1 F T z

⎛ ⎞−
= − +⎜ ⎟⎜ ⎟− −⎝ ⎠

( )dF E T z
dz

= − −

dF E
dλ

=

E must be in terms of T̅-z.  
Since T̅-z=λ & λ=t, simply 
substitute λ for t 

E(λ)= 0.0889237*λ-0.0157181*λ2 + 0.0007926*λ3 – 8.63E-6*λ4 

F(λ) is a cumulative distribution function 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase,  nonelementary rxn A+B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 
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Maximum Mixedness Model, nonelementary reaction A+B→C+D 
 -rA=kCACB

2 

( )
( )

A A
A

A0

E T zdX r X
dz C 1 F T z

⎛ ⎞−
= − +⎜ ⎟⎜ ⎟− −⎝ ⎠

( )dF E T z
dz

= − −

Eq for E describes RTD function only on 
interval t= 0 to 14 minutes, otherwise E=0 

Denominator 
cannot = 0 

z T T zλ λ= − → = −

XA, maximum mixedness = 0.347 
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquid-
phase,  nonelementary rxn A+B→C+D, -rA=kCACB

2 will be carried out in this reactor. 
Calculate the conversion for the complete segregation model under adiabatic conditions 
with T0= 288K, CA0=CB0=0.0313 mol/L,  k=176 L2/mol2·min at 320K, ΔH°RX=-40000 cal/
mol, E/R =3600K, CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K 

Polymath eqs for segregation model: ( ) ( )A
A

dX X t E t
dt

=

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 
8.63E-6*t4 Express k as 

function of T: ( )
2

2
L 1 1k T 176 exp 3600K

320K Tmol min
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⋅

( )32A
B0 A

dX kC 1 X
dt

= −

Need equations from energy balance.  For adiabatic operation: 

( )
n

RX R A i p 0 A P Rii 1
n

i p A Pii 1

H T X C T X C T
T

C X C

=

=

⎡ ⎤−Δ + Θ + Δ∑⎣ ⎦
=

⎡ ⎤
Θ + Δ∑⎢ ⎥

⎣ ⎦

o
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquid-
phase,  nonelementary rxn A+B→C+D, -rA=kCACB

2 will be carried out in this reactor. 
Calculate the conversion for the complete segregation model under adiabatic conditions 
with T0= 288K, CA0=CB0=0.0313 mol/L,  k=176 L2/mol2·min at 320K, ΔH°RX=-40000 cal/
mol, E/R =3600K, CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K 

Energy balance for 
adiabatic operation: 

( )p
cal calC 30 30 20 20 20

mol K mol K
Δ = + − − =

⋅ ⋅

( )
n

RX R A i p 0 A P Rii 1
n

i p A Pii 1

H T X C T X C T
T

C X C

=

=

⎡ ⎤−Δ + Θ + Δ∑⎣ ⎦
=

⎡ ⎤
Θ + Δ∑⎢ ⎥

⎣ ⎦

o

A

A

cal cal1702 X 576
mol molT

cal cal2 X
mol K mol K

+
→ =

⎛ ⎞+ ⎜ ⎟⋅ ⋅⎝ ⎠

n
i p p Pi A Bi 1

calC C C 40
mol K=

Θ = + =∑
⋅

( ) ( )A
A

dX X t E t
dt

=

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 8.63E-6*t4 

( )32A
B0 A

dX kC 1 X
dt

= −

( )
2

2
L 1 1k T 176 exp 3600K

320K Tmol min
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⋅

Not zero! 
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Segregation model, adiabatic operation, nonelementary reaction kinetics 

AX 0.93=

A+B→C+D  
 -rA=kCACB

2 
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The following slides show how the same problem would be solved and 
the solutions would differ if the reaction rate was still -rA=kCACB

2 but the 
reaction was instead elementary: A+2B→C+D 

 
These slides may be provided as an extra example problem that the 

students may study on there own if time does not permit doing it in class. 
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

Start with PFR design eq 
& see how far can we get: 

A A

A0

dX r
dV F

−
=

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,            
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor. Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

2
A A B

A0 0

dX kC C
dV C υ

→ =

( )A A0 AC C 1 X= −

( )( )22
A0 B0 A AA

A0

kC C 1 X 1 2XdX
d Cτ

− −
→ = ( )( )22A

B0 A A
dX kC 1 X 1 2X
dτ

→ = − −

Could solve with Polymath if we knew the value of τ 

CB0 = 0.0313 k = 0.0313 

( )b B B0 A
b 2= = C C 1 2X
a 1

ν → = −

2
A A B

A0

dX kC C
d Cτ

→ =
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor. Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

How do we 
determine τ? 

For an ideal reactor, τ = tm 
( )m 0t tE t dt∞= ∫

Use numerical method 
to determine tm: 

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 
t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0 

( ) ( ) ( )
10 14

m
0 0 10

t tE t dt tE t dt tE t dt
∞

= = +∫ ∫ ∫

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

10

0

0 4 0.02 2 0.2 4 0.48 2 0.8 4 0.81tE t dt 4.57
3 2 0.72 4 0.56 2 0.48 4 0.396 0.3

+ + + + +⎡ ⎤
= =∫ ⎢ ⎥

+ + + + +⎣ ⎦

( ) ( )
14

10

2tE t dt 0.3 4 0.144 0 0.584
3

= + + =⎡ ⎤∫ ⎣ ⎦ mt 4.57 0.584 5.15min→ = + =

( )( )22A
B0 A A

dX kC 1 X 1 2X
dτ

= − −
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor. Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 
t*E(t) 0 0.02 0.2 0.48 0.8 0.8 0.72 0.56 0.48 0.396 0.3 0.144 0 

mt 5.15min τ= =

For an ideal reactor, τ = tm 
( )m 0t tE t dt∞= ∫

A,PFRX 0.29=

( )( )22A
B0 A A

dX kC 1 X 1 2X
dτ

= − −

Final XA 
corresponds to 
τ=5.15 min 
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( ) ( )A
A

dX X t E t
dt

→ =

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

( ) ( )A A
0

X X t E t dt
∞

= ∫
XA(t) is from 

batch reactor 
design eq 

A
A0 A
dXN r V
dt

= −

2
A A Br kC C− =

( )( )22A
A0 B0 A AA0
dXN k C 1 X 1 2X
dt

C V→ = − −
Batch reactor 
design eq: 

Stoichiometry: 

( )A A0 AC C 1 X= −

( )B B0 AC C 1 2X= −

A0 A0N C V=

( )( )22A
B0 A A

dX kC 1 X 1 2X
dt

→ = − −

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,               
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor. Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L & k=176 L2/mol2·min at 320K 

CB0=0.0313 k=176  
Best-fit polynomial line 
for E(t) vs t calculated 
by Polymath (slide 19) 

Segregation model 
with Polymath: 

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 8.63E-6*t4 
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Segregation model, isothermal operation, elementary rxn: A+2B→C+D 

A,segX 0.27=
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

Maximum mixedness model: 

For a pulse tracer expt, the effluent concentration C(t) & RTD function E(t) are given  
in the table below.  The irreversible, liquid-phase, elementary rxn A+2B→C+D,                
-rA=kCACB

2 will be carried out isothermally at 320K in this reactor.  Calculate the 
conversion for an ideal PFR, the complete segregation model and maximum mixedness 
model.  CA0=CB0=0.0313 mol/L &  k=176 L2/mol2·min at 320K 

( )
( )

A A
A

A0

EdX r X
d C 1 F

λ
λ λ

= +
−

λ=time

Polymath cannot solve 
because λ→0 (must 
increase) 

( )( )22
A A0 B0 A Ar kC C 1 X 1 2X− = − −

A0 B0C C 0.0313mol L= =

2

2
Lk 176

mol min
=

⋅

Substitute λ for z, where z=T̅-λ where T̅=longest time interval (14 min) 

( )
( )

A A
A

A0

E T zdX r X
dz C 1 F T z

⎛ ⎞−
= − +⎜ ⎟⎜ ⎟− −⎝ ⎠

( )dF E T z
dz

= − −

dF E
dλ

=

E must be in terms of T̅-z.  
Since T̅-z=λ & λ=t, simply 
substitute λ for t 

E(λ)= 0.0889237*λ-0.0157181*λ2 + 0.0007926*λ3 – 8.63E-6*λ4 
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Maximum Mixedness Model, elementary reaction A+2B→C+D, -rA=kCACB
2 

( )
( )

A A
A

A0

E T zdX r X
dz C 1 F T z

⎛ ⎞−
= − +⎜ ⎟⎜ ⎟− −⎝ ⎠

( )dF E T z
dz

= − −

Eq for E describes RTD function only on 
interval t= 0 to 14 minutes, otherwise E=0 

Denominator 
cannot = 0 

z T T zλ λ= − → = −

XA, maximum mixedness = 0.25 



Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. 

t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquid-
phase,  elementary rxn A+2B→C+D, -rA=kCACB

2 will be carried out in this reactor. 
Calculate the conversion for the complete segregation model under adiabatic conditions 
with T0= 288K, CA0=CB0=0.0313 mol/L,  k=176 L2/mol2·min at 320K, ΔH°RX=-40000 cal/
mol, E/R =3600K, CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K 

Polymath eqs for 
segregation model: ( ) ( )A

A
dX X t E t
dt

=

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 
8.63E-6*t4 Express k as 

function of T: ( )
2

2
L 1 1k T 176 exp 3600K

320K Tmol min
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⋅

( )( )22A
B0 A A

dX kC 1 X 1 2X
dt

= − −

Need equations from energy balance.  For adiabatic operation: 

( )
n

RX R A i p 0 A P Rii 1
n

i p A Pii 1

H T X C T X C T
T

C X C

=

=

⎡ ⎤−Δ + Θ + Δ∑⎣ ⎦
=

⎡ ⎤
Θ + Δ∑⎢ ⎥

⎣ ⎦

o
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t min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

For a pulse tracer expt, C(t) & E(t) are given in the table below. The irreversible, liquid-
phase,  elementary rxn A+2B→C+D, -rA=kCACB

2 will be carried out in this reactor. 
Calculate the conversion for the complete segregation model under adiabatic conditions 
with T0= 288K, CA0=CB0=0.0313 mol/L,  k=176 L2/mol2·min at 320K, ΔH°RX=-40000 cal/
mol, E/R =3600K, CPA=CPB=20cal/mol·K & CPC=CPD=30 cal/mol·K 

Adiabatic EB: 
( )( )pC 30 30 2 20 20 0Δ = + − − =( )

n
RX R A i p 0 A P Rii 1

n
i p A Pii 1

H T X C T X C T
T

C X C

=

=

⎡ ⎤−Δ + Θ + Δ∑⎣ ⎦
=

⎡ ⎤
Θ + Δ∑⎢ ⎥

⎣ ⎦

o

n
i p p Pi A Bi 1

calC C C 40
mol K=

Θ = + =∑
⋅

( ) ( )A
A

dX X t E t
dt

=

E(t)= 0.0889237*t -0.0157181*t2 + 0.0007926*t3 – 
8.63E-6*t4 

( )( )22A
B0 A A

dX kC 1 X 1 2X
dt

= − −

( )
2

2
L 1 1k T 176 exp 3600K

320K Tmol min
⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⋅

AT 288K 1000X= +
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Segregation model, adiabatic operation, elementary reaction kinetics 

A+2B→C+D  
 -rA=kCACB

2 

XA̅ = 0.50 
Why so much lower 
than before? 

Because B is completely 
consumed by XA=0.5 


