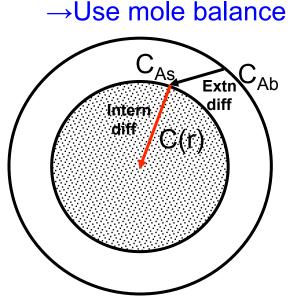
Review: Simultaneous Internal Diffusion & External Diffusion

Goal: Derive a new rate eq that accounts for internal & external diffusion

- -r'_A is a function of reactant concentration
- Reactant conc is affected by internal & external diffusion
- Express reactant conc in terms of diffusion-related constants & variables



At steady-state: transport of reactants from bulk fluid to external catalyst surface is equal to net rate of reactant consumption in/on the pellet

Molar rate of mass transfer from bulk fluid to external surface: $M_A = W_{Ar}(a_c)\Delta V$

molar flux

reactor volume

external surface area per unit reactor volume

This molar rate of mass transfer to surface is equal to net rxn rate on & in pellet! $M_A = -r'_A$ (external area + internal area)

L22-2 **Review: Basic Molar Balance at Spherical Pellet Surface** $\begin{bmatrix} Flux: \\ bulk to \\ external \\ surface \end{bmatrix} \times \begin{bmatrix} External \\ S.A. \end{bmatrix} = \begin{bmatrix} Actual rxn \\ rate per \\ unit total \\ S.A. \end{bmatrix} \times \begin{bmatrix} external + \\ internal S.A. \end{bmatrix}$ $M_A = W_{Ar}|_{r=P} a_c \Delta V = -r_A'' (a_c \Delta V + S_a \rho_b \Delta V)$ a_c : external surface area per reactor volume (m²/m³) ΔV : reactor volume (m³) ϕ : porosity of bed (void fraction) -r"_A: rate of reaction per unit surface area (mol/m²·s) -r'_Δ: mol/g cat⋅s -r_A: mol/volume·s S_a: surface area of catalyst per unit mass of catalyst (m²/g cat) $\rho_{\rm b}$: bulk density, catalyst mass/ reactor volume $\rho_{\rm b} = \rho_{\rm c} (1-\phi)$ per volume $-r'_A = -r''_A S_a - r_A = -r'_A \rho_C$ $-r_A = -r''_A S_a \rho_C$ per surface per mass cat $\rightarrow k'_n = k''_n S_a$ $k'_n = -k'_n \rho_C$ $k_n = k''_n S_a \rho_C$ area volume For a 1st order reaction, simplifies to: $\rightarrow M_{A} = W_{Ar}|_{r=R} a_{c} \rightarrow k_{c} (C_{Ab} - C_{As}) a_{c} = -r_{A}'' S_{a} \rho_{b} \rightarrow -r_{A}'' = \frac{\eta \kappa_{1} \kappa_{c} a_{c} C_{Ab}}{\kappa_{c} a_{c} + \eta \kappa_{c} S_{c} \rho_{c}}$

Review: Effectiveness Factors

Remember, the internal effectiveness factor is based on CAs

actual overall rate of reaction

 $\eta = \frac{1}{1}$ rate of rxn if entire interior surface were exposed to the external surface conditions

The **overall** effectiveness factor is based on C_{Ab}:

 $\Omega = \frac{\Omega}{rate of reaction}$ $\Omega = \frac{\Omega}{rate of reaction if entire interior surface were exposed to the bulk conditions}$

$$\Omega = \frac{-r_{A}''}{-r_{Ab}''} \qquad \Rightarrow \Omega = \frac{\frac{\eta k_1 S_{Ab}}{1 + \eta k_1 S_a \rho_b / k_c a_c}}{\frac{\kappa_1 S_a \rho_b / k_c a_c}{k_1 S_{Ab}}} \qquad \Rightarrow \Omega = \frac{\eta}{1 + \eta k_1 S_a \rho_b / k_c a_c}$$

 $\rightarrow \Omega(-r''_{Ab}) = -r''_{A}$ Put into design eq to account for internal & external diffusion

Review: Reaction Rate Variation vs Reactor Conditions

External diffusion $-r'_A \propto k_c = \frac{D_{AB}}{d_p} Sh \rightarrow k_c = \frac{D_{AB}}{d_p} \left(2 + 0.6 \left(\frac{Ud_p}{\mu/\rho} \right)^{1/2} \left(\frac{\mu/\rho}{D_{AB}} \right)^{1/3} \right)$

Internal diffusion $-r'_{A} = \eta k_r C_{As} S_a$ $\eta = \frac{3}{R^2 \frac{\rho_c k_1 S_a}{D_e}} \left(R \sqrt{\frac{\rho_c k_1 S_a}{D_e}} \coth \left(R \sqrt{\frac{\rho_c k_1 S_a}{D_e}} \right) - 1 \right)$

Surface reaction $-r'_{A}=kC_{A}$

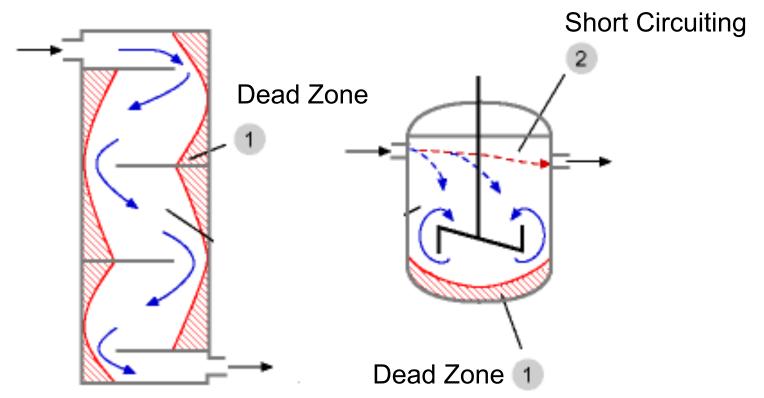
Type of Limitation	Variation of Reaction Rate with:								
Type of Limitation	Superficial velocity	Particle size	Temperature						
External	U ^{1/2}	d _p -3/2	Linear						
Internal	Independent	d _p -1	Exponential						
Surface reaction	Independent	Independent	Exponential						

L22: Nonideal Flow & Reactor Design

- •So far, the reactors we have considered ideal flow patterns
 - Residence time of all molecules are identical
 - Perfectly mixed CSTRs & batch reactors
 - No radial diffusion in a PFR/PBR
- Goal: mathematically describe non-ideal flow and solve design problems for reactors with nonideal flow
 - Identify possible deviations
 - Measurement of residence time distribution
 - Models for mixing
 - Calculation of exit conversion in real reactors

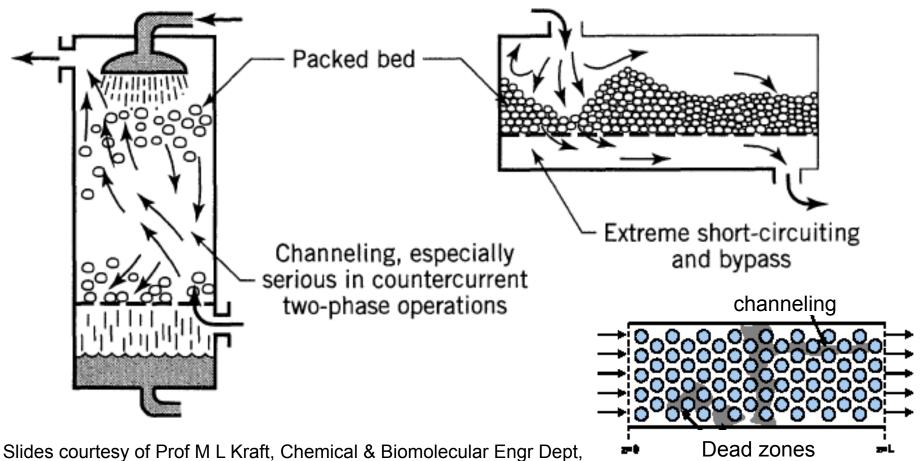
Nonideal Flow in a CSTR

- Ideal CSTR: uniform reactant concentration throughout the vessel
- Real stirred tank
 - Relatively high reactant concentration at the feed entrance
 - Relatively low concentration in the stagnant regions, called dead zones (usually corners and behind baffles)



Nonideal Flow in a PBR

- Ideal plug flow reactor: all reactant and product molecules at any given axial position move at same rate in the direction of the bulk fluid flow
- Real plug flow reactor: fluid velocity profiles, turbulent mixing, & molecular diffusion cause molecules to move with changing speeds and in different directions



٦.

Residence Time Distribution (RTD)

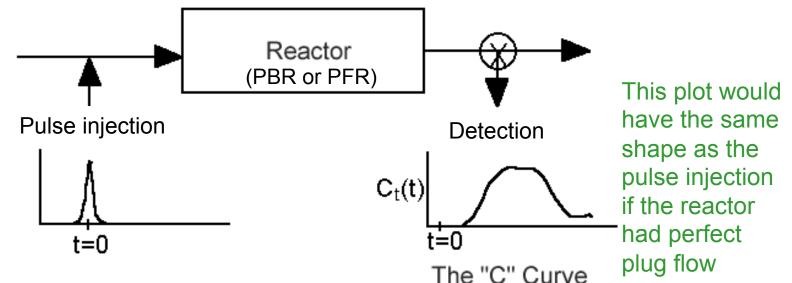
Flow through a reactor is characterized by:

- 1. The amount of time molecules spend in the reactor, called the RTD
- 2. Quality of mixing

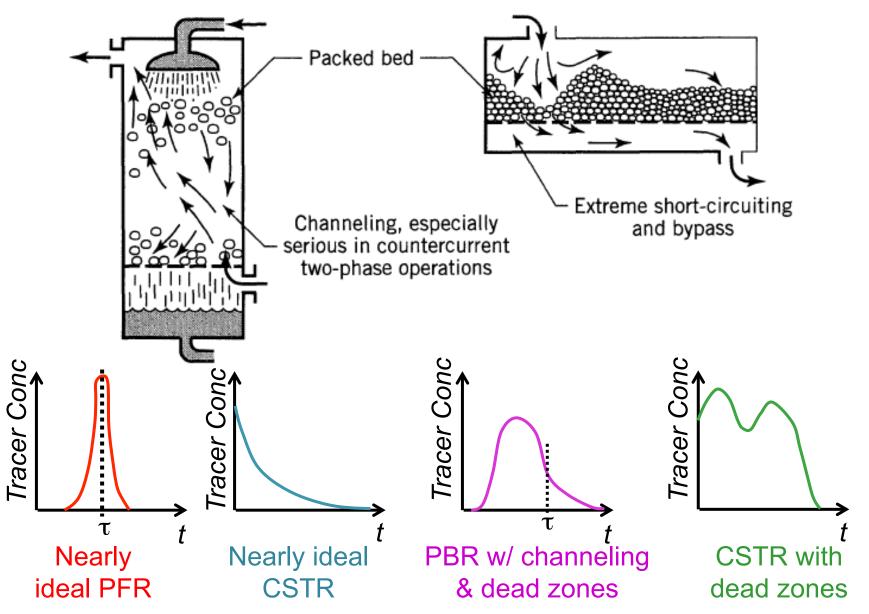
RTD \equiv E(t) \equiv "residence time distribution" function

- RTD is measured experimentally by injecting an inert "tracer" at t=0 and measuring the tracer concentration C(t) at the exit as a function of time
- Tracer should be easy to detect & have physical properties similar to the reactant

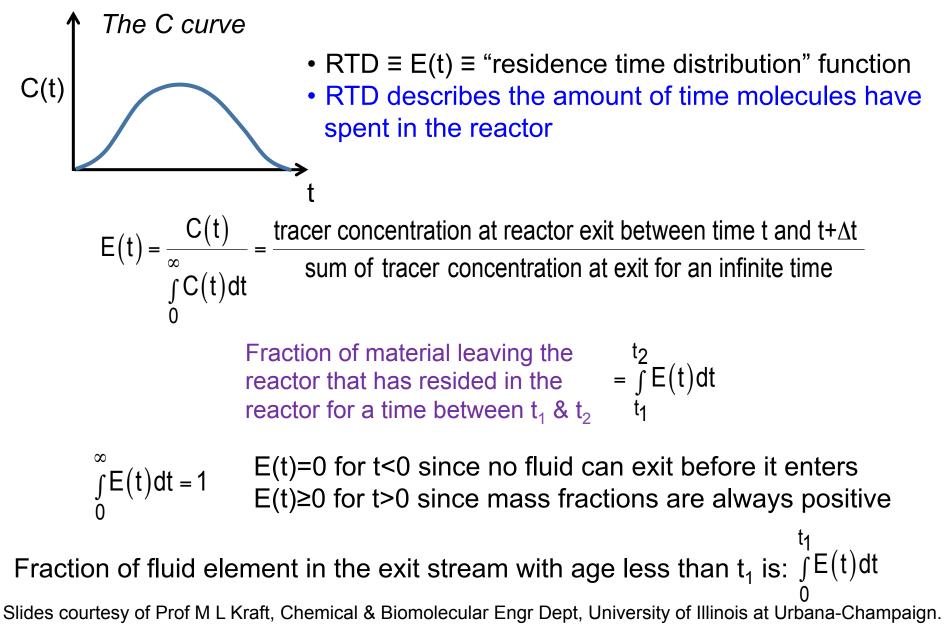
Measurement of RTD



RTD Profiles & Cum RTD Function F(t)



Calculation of RTD



t min	0	1	2	3	4	5	6	7	8	9	10	12	14
C g/ m ³	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Plot C vs time:

2

0

12

10

8

6

2

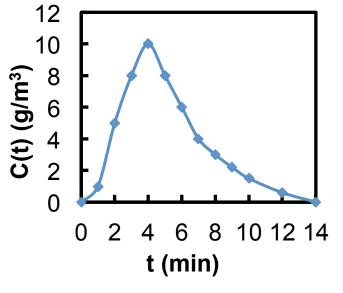
0

C(t) (g/m³)

Tabulate E(t): divide C(t) by the total area under the C(t) curve, which must be numerically evaluated $\int_{0}^{\infty} C(t) dt = \int_{0}^{10} C(t) dt + \int_{10}^{14} C(t) dt$ $\int_{0}^{X_{N}} f(x) dx = \frac{\Delta t}{3} (f_{0} + 4f_{1} + 2f_{2} + 4f_{3} + 2f_{4} \dots + 4f_{N-1} + f_{N})$ $\frac{10}{4 \ 6 \ 8 \ 10 \ 12 \ 14} \int_{0}^{10} C(t) dt = \frac{1}{3} \begin{bmatrix} 0 + 4(1) + 2(5) + 4(8) + 2(10) + 4(8) \\ + 2(6) + 4(4) + 2(3) + 4(2.2) + 1.5 \end{bmatrix}$ t (min) $\rightarrow \int_{0}^{10} C(t) dt = 47.4 \frac{g \cdot \min}{m^3}$

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
C g/ m ³	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Plot C vs time:



Tabulate E(t): divide C(t) by the total area under the C(t) curve, which must be numerically evaluated

$$\int_{0}^{\infty} C(t) dt = \int_{0}^{10} C(t) dt + \int_{10}^{14} C(t) dt$$
$$\sum_{X_{0}}^{X_{2}} f(x) dx = \frac{\Delta t}{3} (f_{0} + 4f_{1} + f_{2})$$

$$\int_{10}^{5} C(t) dt = \frac{2}{3} [1.5 + 4(0.6) + 0] = 2.6$$

 $\rightarrow \int_{0}^{\infty} C(t) dt = 47.4 \frac{g \cdot \min}{m^3} + 2.6 \frac{g \cdot \min}{m^3} = 50 \frac{g \cdot \min}{m^3}$

Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

L22-12

t
min0123456789101214
$$C g/01581086432.21.50.60E(t)00.020.10.160.20.160.120.080.060.0440.030.0120$$

$$\int_{0}^{\infty} C(t) dt = 50 \frac{g \cdot \min}{m^3}$$
Plot E vs time:
Tabulate E(t): divide C(t) dt = $\frac{C(t)}{\sum_{0}^{\infty} C(t) dt}$
Plot E vs time:

$$U(t) = \frac{C(t)}{\sum_{0}^{\infty} C(t) dt}$$

$$U(t) = \frac{0}{50} = 0$$

$$U(t) = \frac{1}{50} = 0.02$$

$$U(t) = \frac{5}{50} = 0.1$$

$$U(t) = \frac{1}{50} = 0.02$$

$$U(t) = \frac{5}{50} = 0.1$$

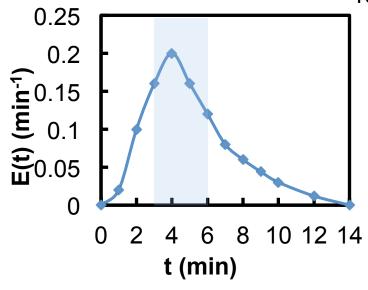
$$U(t) = \frac{1}{50} = 0.02$$

Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.

L22-13

t min	0	1	2	3	4	5	6	7	8	9	10	12	14
C g/ m ³	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
E(t)	0	0.02	0.1	0.16	0.2	0.16	0.12	0.08	0.06	0.044	0.03	0.012	0

E vs time:



Fraction of material that spent between 3 & 6 min in reactor = area under E(t) curve between 3 & 6 min

Evaluate numerically:

$$\int_{X_0}^{X_3} f(x) dx = \frac{3}{8} \Delta t (f_0 + 3f_1 + 3f_2 + f_3)$$

$$\int_{3}^{6} E(t) = \frac{3}{8} (1) (0.16 + 3(0.2) + 3(0.16) + 0.12)$$
$$\rightarrow \int_{3}^{6} E(t) = 0.51$$

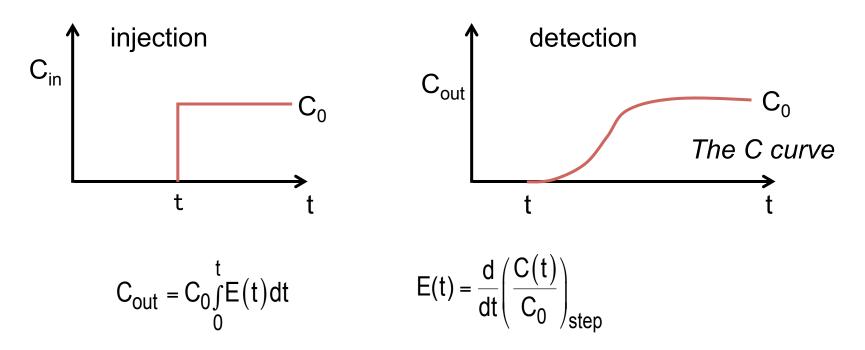
Step-Input to Determine E(t)

Disadvantages of pulse input:

- Injection must be done in a very short time
- Can be inaccurate when the c-curve has a long tail
- Amount of tracer used must be known

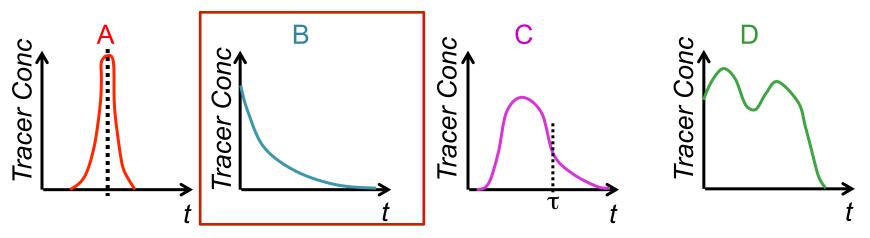
Alternatively, E(t) can be determined using a step input:

• Conc. of tracer is kept constant until outlet conc. = inlet conc.

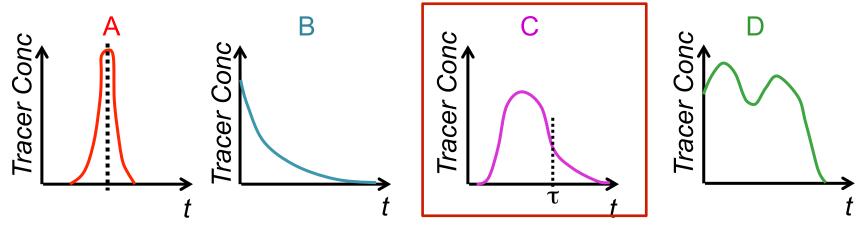


Questions

1. Which of the following graphs would you expect to see if a pulse tracer test were performed on an ideal CSTR?



2. Which of the following graphs would you expect to see if a pulse tracer test were performed on a PBR that had dead zones?



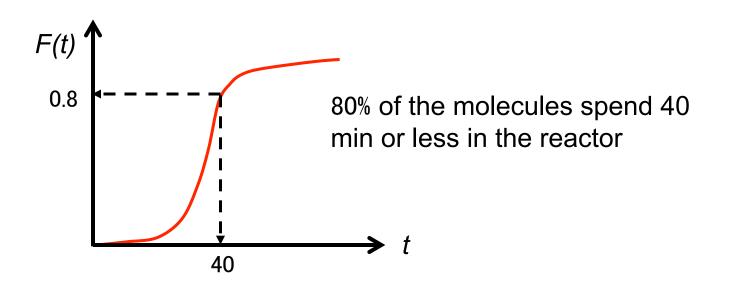
Cumulative RTD Function F(t)

F(t) = fraction of effluent that has been in the reactor for less than time t

$$F(t) = 0 \text{ when } t < 0$$

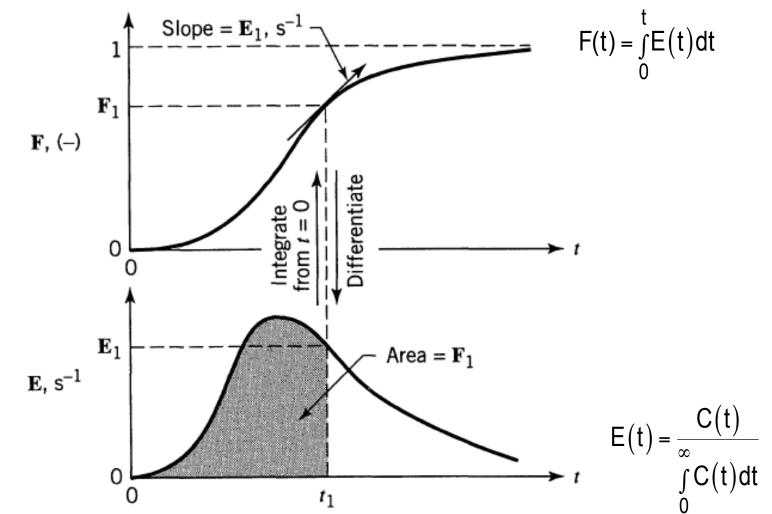
$$F(t) = \int_{0}^{t} E(t) dt \quad F(t) \ge 0 \text{ when } t \ge 0 \quad 1 - F(t) = \int_{t}^{\infty} E(t) dt$$

$$F(\infty) = 1$$

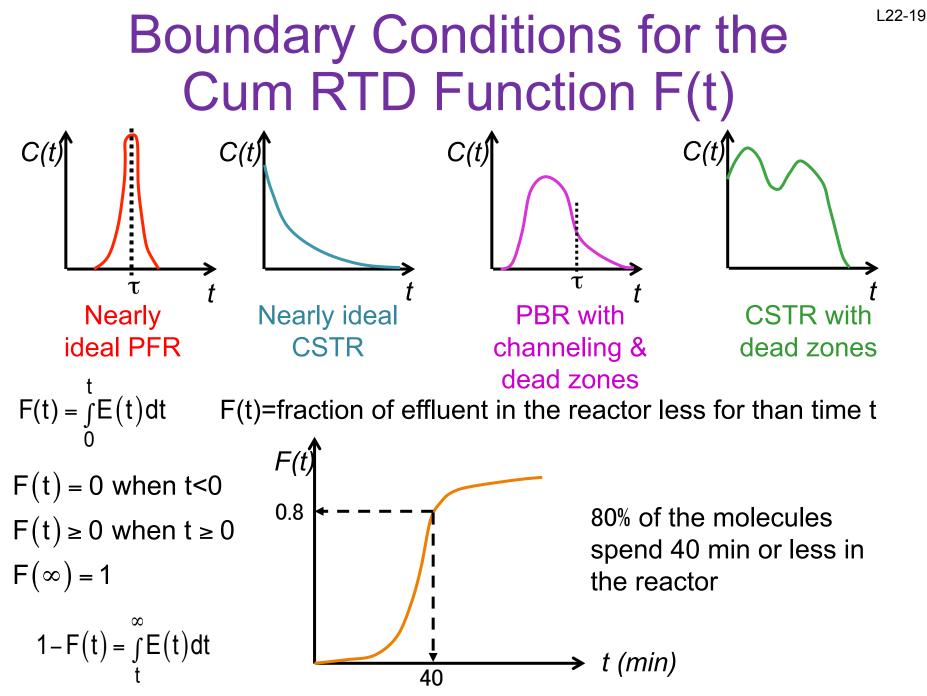


Relationship between E & F Curves

F(t) = fraction of effluent that has been in the reactor for less than time t



E(t)= Fraction of material leaving reactor that was inside for a time between $t_1 \& t_2$ Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign.



Mean Residence Time, t_m

- For an ideal reactor, the space time τ is defined as V/ v_0
- The mean residence time t_m is equal to τ in either ideal or nonideal reactors

$$t_{m} = \frac{\int_{0}^{\infty} tE(t)dt}{\int_{0}^{\infty} E(t)dt} = \int_{0}^{\infty} tE(t)dt = \tau \qquad \frac{V}{v_{0}} = \tau = t_{m}$$

By calculating t_m, the reactor V can be determined from a tracer experiment

The spread of the distribution (variance): $\sigma^2 = \int_0^\infty (t - t_m)^2 E(t) dt$

Space time τ and mean residence time t_m would be equal if the following two conditions are satisfied:

- No density change
- No backmixing

In practical reactors the above two may not be valid, hence there will be a difference between them

RTD in Ideal Reactors

All the molecules leaving a PFR have spent ~ the same amount of time in the PFR, so the residence time distribution function is:

$$\mathsf{E}(\mathsf{t})$$
 = $\delta(\mathsf{t}$ - $au)$ where au = V/ u_0

The Dirac delta function satisfies:

$$\delta(x) = \begin{cases} \infty & \text{when } x = 0 \\ 0 & \text{when } x \neq 0 \end{cases} \qquad \int_{-\infty}^{\infty} \delta(x) dx = 1 \qquad \int_{-\infty}^{\infty} g(x) \delta(x - \tau) dx = g(\tau) \\ \dots but = 1 \text{ over the entire interval} \end{cases}$$

$$t_{m} = \int_{0}^{\infty} t\delta(t-\tau) dt = \tau$$