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L22-1 

Review: Simultaneous Internal 
Diffusion & External Diffusion 

CAb CAs 

C(r) 

At steady-state: transport of reactants from bulk 
fluid to external catalyst surface is equal to net rate 
of reactant consumption in/on the pellet 

Molar rate of mass transfer from bulk fluid to 
external surface: ( )A Ar cM W a V= Δ

molar flux 
external surface area per unit reactor volume 

reactor volume 

This molar rate of mass transfer to surface is equal to net rxn rate on & in pellet! 

( )A AM r external area  internal areaʹ′ʹ′= − +

Goal: Derive a new rate eq that accounts for internal & external diffusion 
•  -r’A is a function of reactant concentration 
•  Reactant conc is affected by internal & external diffusion 
•  Express reactant conc in terms of diffusion-related constants & variables 
→Use mole balance  

Extn 
 diff Intern 

 diff 



Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. 

L22-2 Review: Basic Molar Balance at 
Spherical Pellet Surface 

= 

Flux: 
bulk to 

external  
surface 

Actual rxn 
rate per 
unit total 
S.A. 

External 
S.A.  x 

ac: external surface area per reactor volume (m2/m3) 
ΔV: reactor volume (m3)           φ: porosity of bed (void fraction) 
-r’’A: rate of reaction per unit surface area (mol/m2·s) 
-r’A: mol/g cat·s    -rA: mol/volume·s 
Sa: surface area of catalyst per unit mass of catalyst (m2/g cat) 
ρb: bulk density, catalyst mass/ reactor volume ρb=ρc(1-φ) 

x external + 
internal S.A. 

( )A Ar c A c a br RM W a V r a V S Vρ=
ʹ′ʹ′= Δ = − Δ + Δ

For a 1st order reaction, simplifies to: 

( )A Ar c c Ab As c A a br RM W a k C C a r S ρ=
ʹ′ʹ′→ = → − = −

A A a A A c A A a c

n n a n n c n n a c

r ' r '' S     r r '      r r '' S
k ' k '' S            k k '         k k '' S

ρ ρ

ρ ρ

− = − − = − − = −

= = − =per mass cat→ 
per surface 

area 

per 
volume 

1 c c Ab
A

c c 1 a b

k k a Cr
k a k S
η

η ρ
ʹ′ʹ′→→ − =

+
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L22-3 

Remember, the internal effectiveness factor is based on CAs 

actual overall rate of reaction
rate of rxn if entire interior surface were exposed to the external surface conditions

η =

The overall effectiveness factor is based on CAb:  

actual overall rate of reaction
rate of reaction if entire interior surface were ex bulp kos coed to nditth ne io s

Ω =

1 Ab

1 a

1

b c c

Ab

k C
1 k S a

k
k

C

η
η ρ

→
+

Ω =

Review: Effectiveness Factors 

( )Ab Ar r ''ʹ′ʹ′→ Ω − = −

A

Ab

r
rʹ′ʹ′−

Ω =
ʹ′ʹ′−

1 a b c c1 k S k a
η

η ρ
→Ω =

+

Put into design eq to account for internal & external diffusion 

Omega 
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Review: Reaction Rate Variation vs 
Reactor Conditions 

Type of Limitation 
Variation of Reaction Rate with: 

Superficial velocity Particle size Temperature 

External U1/2 dp
-3/2 Linear 

Internal Independent dp
-1 Exponential 

Surface reaction Independent Independent Exponential 

1 2 1 3
pAB AB

A c c
p p AB

UdD Dr ' k Sh k 2 0.6
d d D

µ ρ
µ ρ

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− ∝ = → = + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
External diffusion 

Surface reaction      -r’A=kCA 

Internal diffusion A r As ar k C Sʹ′− = η c 1 a c 1 a
2 c 1 a e e

e

k S k S3 R coth R 1k S D DR
D

⎛ ⎞⎛ ⎞ρ ρ
η = −⎜ ⎟⎜ ⎟⎜ ⎟ρ ⎝ ⎠⎝ ⎠
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L22-5 

L22: Nonideal Flow & Reactor Design 
• So far, the reactors we have considered ideal flow patterns 

•  Residence time of all molecules are identical 
•  Perfectly mixed CSTRs & batch reactors 
•  No radial diffusion in a PFR/PBR 

• Goal: mathematically describe non-ideal flow and solve design 
problems for reactors with nonideal flow 

•  Identify possible deviations 
• Measurement of residence time distribution 
• Models for mixing 
• Calculation of exit conversion in real reactors 
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Dead Zone 

Nonideal Flow in a CSTR 
•  Ideal CSTR: uniform reactant concentration throughout the vessel 
•  Real stirred tank 

• Relatively high reactant concentration at the feed entrance 
• Relatively low concentration in the stagnant regions, called dead 

zones (usually corners and behind baffles)  

Short Circuiting 

Dead Zone 



Slides courtesy of Prof M L Kraft, Chemical & Biomolecular Engr Dept, University of Illinois at Urbana-Champaign. 

L22-7 

Nonideal Flow in a PBR 
•  Ideal plug flow reactor: all reactant and product molecules at any given 

axial position move at same rate in the direction of the bulk fluid flow 
• Real plug flow reactor: fluid velocity profiles, turbulent mixing, & 

molecular diffusion cause molecules to move with changing speeds and 
in different directions  

channeling 

Dead zones 
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L22-8 

Measurement of RTD 

• RTD is measured experimentally by injecting an inert “tracer” at t=0 and 
measuring the tracer concentration C(t) at the exit as a function of time 

• Tracer should be easy to detect & have physical properties similar to the 
reactant 

Residence Time Distribution (RTD) 
Flow through a reactor is characterized by: 

1. The amount of time molecules spend in the reactor, called the RTD 
2. Quality of mixing  

RTD ≡ E(t) ≡ “residence time distribution” function 

Pulse injection Detection 

(PBR or PFR) This plot would 
have the same 
shape as the 
pulse injection 
if the reactor 
had perfect 
plug flow 
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L22-10 

Calculation of RTD 
• RTD ≡ E(t) ≡ “residence time distribution” function 
• RTD describes the amount of time molecules have 

spent in the reactor 

( ) ( )

( )
0

C t tracer concentration at reactor exit between time t and t+ t E t
sum of  tracer concentration at exit for an infinite time

C t dt
∞

Δ
= =

∫

C(t) 

The C curve 

t 

Fraction of material leaving the 
reactor that has resided in the 
reactor for a time between t1 & t2 

( )
t2

t1
E t dt= ∫

( )
0
E t dt 1

∞
=∫

E(t)=0 for t<0 since no fluid can exit before it enters 
E(t)≥0 for t>0 since mass fractions are always positive 

Fraction of fluid element in the exit stream with age less than t1 is: ( )
t1

0
E t dt∫
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t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

A pulse of tracer was injected into a reactor, and the effluent concentration as 
a function of time is in the graph below.  Construct a figure of C(t) & E(t) and 
calculate the fraction of material that spent between 3 & 6 min in the reactor  

0 
2 
4 
6 
8 

10 
12 

0 2 4 6 8 10 12 14 

C
(t)

 (g
/m

3 )
 

t (min) 

Plot C vs time: Tabulate E(t): divide C(t) by the total area under the 
C(t) curve, which must be numerically evaluated  

( ) ( ) ( )
10 14

0 0 10
C t dt C t dt C t dt

∞
= +∫ ∫ ∫

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

10

0

0 4 1 2 5 4 8 2 10 4 81C t dt
3 2 6 4 4 2 3 4 2.2 1.5

+ + + + +⎡ ⎤
=∫ ⎢ ⎥

+ + + + +⎣ ⎦

( ) ( )
XN

0 1 2 3 4 N 1 N
X0

tf x dx f 4f 2f 4f 2f ... 4f f
3 −
Δ

= + + + + + +∫

( )
10

3
0

g minC t dt 47.4
m
⋅

→ =∫
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t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

A pulse of tracer was injected into a reactor, and the effluent concentration as 
a function of time is in the graph below.  Construct a figure of C(t) & E(t) and 
calculate the fraction of material that spent between 3 & 6 min in the reactor  

0 
2 
4 
6 
8 

10 
12 

0 2 4 6 8 10 12 14 

C
(t)

 (g
/m

3 )
 

t (min) 

Plot C vs time: Tabulate E(t): divide C(t) by the total area under the 
C(t) curve, which must be numerically evaluated  

( ) 3 3 3
0

g min g min g minC t dt 47.4 2.6 50
m m m

∞ ⋅ ⋅ ⋅
→ = + =∫

( ) ( )
14

10

2C t dt 1.5 4 0.6 0 2.6
3

= + + =⎡ ⎤∫ ⎣ ⎦

( ) ( )
X2

0 1 2
X0

tf x dx f 4f f
3
Δ

= + +∫

( ) ( ) ( )
10 14

0 0 10
C t dt C t dt C t dt

∞
= +∫ ∫ ∫
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t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

A pulse of tracer was injected into a reactor, and the effluent concentration as 
a function of time is in the graph below.  Construct a figure of C(t) & E(t) and 
calculate the fraction of material that spent between 3 & 6 min in the reactor  

Tabulate E(t): divide 
C(t) by the total area 
under the C(t) curve: 

( ) 3
0

g minC t dt 50
m

∞ ⋅
=∫

( ) ( )

( )
0

C t
E t

C t dt
∞

=

∫

( )0
0E t 0
50

= = ( )1
1E t 0.02
50

= =

( )2
5E t 0.1
50

= =

t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

( )3
8E t 0.16
50

= =

Plot E vs time: 
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E vs time: 
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t 
min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

A pulse of tracer was injected into a reactor, and the effluent concentration as 
a function of time is in the graph below.  Construct a figure of C(t) & E(t) and 
calculate the fraction of material that spent between 3 & 6 min in the reactor  
t 

min 0 1 2 3 4 5 6 7 8 9 10 12 14 
C g/
m3 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0 

E(t) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0 

Fraction of material that spent between 3 & 6 min in 
reactor = area under E(t) curve between 3 & 6 min   

( ) ( )
X3

0 1 2 3
X0

3f x dx t f 3f 3f f
8

= Δ + + +∫

( ) ( ) ( ) ( )( )
6

3

3E t 1 0.16 3 0.2 3 0.16 0.12
8

= + + +∫

Evaluate numerically: 

( )
6

3
E t 0.51→ =∫
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L22-15 

( )
t

out 0
0

C C E t dt= ∫

Step-Input to Determine E(t) 
Disadvantages of pulse input:  
•  Injection must be done in a very short time 
•   Can be inaccurate when the c-curve has a long tail 
•   Amount of tracer used must be known 

( )
0 step

C tdE(t)
dt C
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Alternatively, E(t) can be determined using a step input:  
• Conc. of tracer is kept constant until outlet conc. =  inlet conc.  

injection detection 

The C curve 

t 

Cin 

t	 t 

Cout 

t 

C0 C0 
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Questions 
1. Which of the following graphs would you expect to see if a pulse 
tracer test were performed on an ideal CSTR?  
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2. Which of the following graphs would you expect to see if a pulse 
tracer test were performed on a PBR that had dead zones?  
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( ) ( )
t

1 F t E t dt
∞

− = ∫

Cumulative RTD Function F(t) 
F(t) = fraction of effluent that has been in the reactor for less than time t 

( )
t

0
F(t) E t dt= ∫

( )
( )
( )

F t 0 when t<0
F t 0 when t 0
F 1

=

≥ ≥

∞ =

t 

F(t) 

80% of the molecules spend 40 
min or less in the reactor 

40	

0.8	
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F(t) = fraction of effluent that has been in the reactor for less than time t 

Relationship between E & F Curves 

E(t)= Fraction of material leaving reactor that was inside for a time between t1 & t2 

( )
t

0
F(t) E t dt= ∫

( ) ( )

( )
0

C t
E t

C t dt
∞

=

∫
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t 

C(t) 

τ	 t 

C(t) 

t 

C(t) 

τ	
Nearly 

ideal PFR 
Nearly ideal 

CSTR 
PBR with 

channeling & 
dead zones 

t 

C(t) 

CSTR with 
dead zones 

40	

( )
t

0
F(t) E t dt= ∫

t (min) 

F(t) 

0.8	 80% of the molecules 
spend 40 min or less in 
the reactor 

( )
( )
( )

F t 0 when t<0
F t 0 when t 0
F 1

=

≥ ≥

∞ =

( ) ( )
t

1 F t E t dt
∞

− = ∫

F(t)=fraction of effluent in the reactor less for than time t 

Boundary Conditions for the  
Cum RTD Function F(t) 
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Mean Residence Time, tm 
•  For an ideal reactor, the space time τ is defined as V/υ0 
•  The mean residence time tm is equal to τ in either ideal or nonideal 

reactors 

( )
( )

( )0
m 0

0

tE t dt
t tE t dt

E t dt
τ

∞
∞

∞
∫

= = =∫
∫

m
0

V tτ
υ

= =

( ) ( )22
m0 t t E t dtσ ∞= −∫

By calculating tm, the reactor V can be determined from a tracer experiment 

The spread of the distribution (variance): 

Space time τ and mean residence time tm would be equal if the following 
two conditions are satisfied: 

•  No density change 
•  No backmixing 

In practical reactors the above two may not be valid, hence there will be a 
difference between them 
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RTD in Ideal Reactors 
All the molecules leaving a PFR have spent ~ the same amount of time in the 
PFR, so the residence time distribution function is: 

( ) ( ) 0E t t    where =Vδ τ τ υ= −

( )
when x 0

x
0 when x 0

δ
∞ =⎧

= ⎨
≠⎩

( )x dx 1δ∞
−∞ =∫ ( ) ( ) ( )g x x dx gδ τ τ∞

−∞ − =∫

The Dirac delta function satisfies: 

( )m
0

t t t dt=δ τ τ
∞

= −∫

Zero everywhere 
but one point 

…but =1 over the 
entire interval 


