Lecture 26

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 26
 Class Lecture 22

Course Information
Materials on Ctools

Review of 342 Mass Transfer Without Reaction
Diffusion and Fick's Law
Mass Transfer Coefficient
Drug Delivery Patches
Robert The Worrier

P14-2 ${ }_{\text {B }}$

$$
\begin{gathered}
\mathbf{W}_{\mathrm{A}}=\mathbf{J}_{\mathrm{A}}+C_{\mathrm{A}} \mathbf{U} \\
\mathbf{U}=\sum y_{i} \mathbf{U}_{i}
\end{gathered}
$$

Binary System

$$
\begin{gathered}
\mathbf{W}_{\mathrm{A}}=C_{\mathrm{A}} \mathbf{U}_{\mathrm{A}} \text { and } \mathbf{W}_{\mathrm{B}}=C_{\mathrm{B}} \mathbf{U}_{\mathrm{B}} \\
\mathbf{U}=y_{\mathrm{A}} \mathbf{U}_{\mathrm{A}}+y_{\mathrm{B}} \mathbf{U}_{\mathrm{B}}
\end{gathered}
$$

Multiply and divide by

$$
\begin{gathered}
\mathbf{U}=\left[\frac{C_{A} \mathbf{U}_{\mathrm{A}}+C_{\mathrm{B}} \mathbf{U}_{\mathrm{B}}}{C}\right]=\frac{\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}}{C} \\
C_{A} \mathbf{U}=C_{A} \frac{\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}}{C}=y_{\mathrm{A}}\left[\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}\right] \\
\mathbf{W}_{\mathrm{A}}=\mathbf{J}_{\mathrm{A}}+y_{\mathrm{A}}\left(\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}\right)
\end{gathered}
$$

1. For equal molar counter diffusion

$$
\begin{gathered}
\mathbf{W}_{\mathrm{A}}=\mathbf{J}_{\mathrm{A}}+y_{\mathrm{A}}\left(\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}\right) \\
\mathbf{J}_{\mathrm{A}}=-D_{\mathrm{AB}} \nabla C_{\mathrm{A}} \\
\left(\mathbf{W}_{\mathrm{A}}=-\mathbf{W}_{\mathrm{A}}\right) \\
\mathbf{W}_{\mathrm{A}}=-D_{\mathrm{AB}} \nabla C_{\mathrm{A}}
\end{gathered}
$$

$$
\mathbf{W}_{\mathrm{A}}=\mathbf{J}_{\mathrm{A}}+y_{\mathrm{A}}\left(\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}\right)
$$
 2. Diffusion through a stagnant film,

3. For dilute concentration

$$
\mathbf{W}_{\mathrm{A}}=\mathbf{J}_{\mathrm{A}}+y_{\mathrm{A}}\left(\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}\right)
$$

2. Diffusion through a stagnant film, $W_{B}=0$

$$
\begin{gathered}
\mathbf{J}_{\mathrm{A}}=-D_{\mathrm{AB}} \nabla C_{\mathrm{A}} \\
\mathbf{W}_{\mathrm{A}}=-D_{\mathrm{AB}} \nabla C_{\mathrm{A}}+y_{\mathrm{A}} \mathbf{W}_{\mathrm{A}} \\
\mathbf{W}_{\mathrm{A}}=-\frac{D_{\mathrm{AB}}}{1-y_{\mathrm{A}}} \nabla C_{\mathrm{A}}
\end{gathered}
$$

3. For dilute concentration

$$
\mathbf{W}_{\mathrm{A}}=\mathbf{J}_{\mathrm{A}}+y_{\mathrm{A}}\left(\mathbf{W}_{\mathrm{A}}+\mathbf{W}_{\mathrm{B}}\right)
$$

2. Diffusion through a stagnant film, $\mathrm{W}_{\mathrm{B}}=0$

$$
\begin{gathered}
\mathbf{w}_{\mathrm{A}}=-D_{\mathrm{AB}} \nabla C_{\mathrm{A}}+y_{\mathrm{A}} \mathbf{W}_{\mathrm{A}} \\
\mathbf{W}_{\mathrm{A}}=-\frac{D_{\mathrm{AB}}}{1-y_{\mathrm{A}}} \nabla C_{\mathrm{A}}
\end{gathered}
$$

3. For dilute concentration

$$
\begin{gathered}
y_{\mathrm{A}} \ll 1 \\
\mathbf{W}_{\mathrm{A}}=-D_{\mathrm{AB}} \nabla C_{\mathrm{A}}
\end{gathered}
$$

Table 14-2. Diffusivity Relationships for Gases, Liquids, and Solids

	Order of Magnitude	
Phase	$\mathrm{cm}^{2} / \mathrm{s} \quad \mathrm{m}^{2} / \mathrm{s}$	Temperature and Pressure Dependences ${ }^{\mathrm{a}}$
Gas		

Gas:			
$\mathrm{D}_{\mathrm{AB}} \underbrace{\text { Bulk }}$	10^{-1}	10^{-5}	$D_{\mathrm{AB}}\left(T_{2}, P_{2}\right)=D_{\mathrm{AB}}\left(T_{1}, P_{1}\right) \frac{P_{1}}{P_{2}}\left(\frac{T_{2}}{T_{1}}\right)^{1.75}$
Knudsen	10^{-2}	10^{-6}	$D_{\mathrm{A}}\left(T_{2}\right)=D_{\mathrm{A}}\left(T_{1}\right)\left(\frac{T_{2}}{T_{1}}\right)^{1 / 2}$

Liquid	10^{-5}	10^{-9}	$D_{\mathrm{AB}}\left(T_{2}\right)=D_{\mathrm{AB}}\left(T_{1}\right) \frac{\mu_{1}}{\mu_{2}}\left(\frac{T_{2}}{T_{1}}\right)$
T	Solid	10^{-9}	10^{-13}

${ }^{\mathrm{a}} \mu_{1}, \mu_{2}$, liquid viscosities at temperatures T_{1} and T_{2}, respectively; E_{D}, diffusion activation energy.

Mass Transfer Coefficient

Figure 14-1 Boundary layer around the surface of a catalyst pellet.

$$
\left.W_{A z} A_{c}\right|_{z}-\left.W_{A z} A_{c}\right|_{z+\Delta z}+0=0
$$

Divid by $A_{c} \Delta z$

$$
\begin{gathered}
-\left[\frac{\left.W_{A z}\right|_{z+\Delta z}-W_{A z}}{\Delta z}\right]=0 \\
\frac{d W_{A z}}{d z}=0
\end{gathered}
$$

Concentration profile $C_{A}=C_{A s}+\left(C_{A b}-C_{A s}\right) \frac{z}{\delta}$
Figure 14-2 Concentration profile for EMCD in stagnant film model.

$$
W_{A z}=-D_{A B} \frac{d C_{A}}{d z}=\frac{D_{A B}}{\delta}\left(C_{A 0}-C_{A s}\right)
$$

$$
\begin{equation*}
k_{\mathrm{c}}=\frac{D_{\mathrm{AB}}}{\delta} \tag{14-27}
\end{equation*}
$$

Concentration profile $C_{A}=C_{A s}+\left(C_{A b}-C_{A s}\right) \frac{z}{\delta}$
Figure 14-2 Concentration profile for EMCD in stagnant film model.

$$
\begin{gather*}
W_{A}=-D_{A B} \frac{d C_{A}}{d z}=\frac{D_{A B}}{\delta}\left(C_{A 0}-C_{A s}\right) \\
k_{\mathrm{c}}=\frac{D_{\mathrm{AB}}}{\delta} \tag{14-27}
\end{gather*}
$$

$$
\begin{equation*}
W_{A z}=k_{c}\left(C_{A b}-C_{A s}\right) \tag{14-28}
\end{equation*}
$$

Concentration profile $C_{A}=C_{A s}+\left(C_{A b}-C_{A s}\right) \frac{z}{\delta}$
Figure 14-2 Concentration profile for EMCD in stagnant film model.

$$
\begin{gather*}
W_{A}=-D_{A B} \frac{d C_{A}}{d z}=\frac{D_{A B}}{\delta}\left(C_{A 0}-C_{A s}\right) \\
k_{\mathrm{c}}=\frac{D_{\mathrm{AB}}}{\delta} \tag{14-27}\\
W_{A z}=k_{c}\left(C_{A b}-C_{A s}\right) \tag{14-28}\\
W_{\mathrm{A} z}=\text { Flux }=\frac{\text { Driving force }}{\text { Resistance }}=\frac{C_{\mathrm{A} b}-C_{\mathrm{As}}}{\left(1 / k_{\mathrm{c}}\right)}
\end{gather*}
$$

$$
\begin{gathered}
\mathrm{Sh}=\frac{k_{c} d_{p}}{D_{\mathrm{AB}}}=\frac{(\mathrm{m} / \mathrm{s})(\mathrm{m})}{\mathrm{m}^{2} / \mathrm{s}} \text { dimensionless } \\
\mathrm{Sc}=\frac{v}{D_{\mathrm{AB}}}=\frac{\mathrm{m}^{2} / \mathrm{s}}{\mathrm{~m}^{2} / \mathrm{s}} \text { dimensionless } \\
\operatorname{Re}=\frac{\rho D U}{\mu}=\frac{\left(g / m^{3}\right)(m)(m / s)}{(g m / s)} \text { dimensionless }
\end{gathered}
$$

Table 14-4. Mass Transfer Correlations

Turbulent flow, mass transfer to pipe wall
Mass transfer to a single sphere
Mass transfer in fluidized beds

Mass transfer to packed beds

$$
\begin{aligned}
& \mathrm{Sh}=.332(\mathrm{Re})^{1 / 2}(\mathrm{Sc})^{1 / 3} \\
& \mathrm{Sh}=2+0.6 \mathrm{Re}^{1 / 2} \mathrm{Sc}^{1 / 3} \\
& \mathrm{Sh}=\mathrm{J}_{\mathrm{D}} \operatorname{Re~Sc} \\
& \phi \mathrm{~J}_{\mathrm{D}}=\frac{0.765}{\mathrm{Re}^{.82}}+\underline{0.365} \\
& \mathrm{Re}^{0.386}
\end{aligned} \begin{aligned}
& \mathrm{Sh}=\mathrm{J}_{\mathrm{D}} \operatorname{Re~Sc}^{1 / 2} \\
& \phi \mathrm{~J}_{\mathrm{D}}=\underline{0.453} \mathrm{Re}^{0.453}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{Sh}^{\prime}=1.0\left(\mathrm{Re}^{\prime}\right)^{1 / 2} \mathrm{Sc}^{1 / 3} \\
{\left[\frac{k_{c} d_{p}}{D_{\mathrm{AB}}}\left(\frac{\phi}{1-\phi}\right) \frac{1}{\gamma}\right]=\left[\frac{U d_{p} \rho}{\mu(1-\phi) \gamma}\right]^{1 / 2}\left(\frac{\mu}{\rho D_{\mathrm{AB}}}\right)^{1 / 3}} \\
J_{D}=\frac{\mathrm{Sh}}{\mathrm{Sc}^{1 / 3} \mathrm{Re}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{\mathrm{Re}}{\phi J_{D}=\frac{0.765}{\mathrm{Re}^{0.82}}+\frac{0.365}{\mathrm{Re}^{0.386}}} \\
k_{c} \propto\left(\frac{D_{\mathrm{AB}}^{2 / 3}}{v^{1 / 6}}\right)\left(\frac{U^{1 / 2}}{d_{p}^{1 / 2}}\right)
\end{gathered}
$$

Figure 14-3 Diffusion to, and reaction on, external surface of pellet.

$$
\begin{aligned}
& -\mathrm{r}_{\mathrm{As}}^{\prime \prime}=k_{r} C_{A s} \\
& W_{A S u r a c e}=-r_{A s}^{\prime \prime}
\end{aligned}
$$

$$
W_{A}=k_{C}\left(C_{A}-C_{A s}\right)=k_{r} C_{A s}
$$

We need to eliminate C_{As}.

$$
C_{\mathrm{A} s}=\frac{k_{c} C_{\mathrm{A}}}{k_{r}+k_{c}}
$$

and the rate of reaction on the surface becomes

$$
W_{\mathrm{A}}=-r_{\mathrm{A} s}^{\prime \prime}=\frac{k_{c} k_{r} C_{\mathrm{A}}}{k_{r}+k_{c}}
$$

One will often find the flux to or from the surface as written in terms of an effective transport coefficient $k_{\text {eff }}$:

$$
W_{A}=-r_{A s}^{\prime \prime}=k_{\mathrm{eff}} C_{A}
$$

Case 1

$$
\begin{gathered}
k_{\mathrm{eff}}=\frac{k_{c} k_{r}}{k_{c}+k_{r}} \\
k_{r}>k_{c} \\
k_{\mathrm{eff}}=k_{c}
\end{gathered}
$$

One will often find the flux to or from the surface as written in terms of an effective transport coefficient $k_{\text {eff }}$:
where

$$
W_{A}=-r_{A s}^{\prime \prime}=k_{\mathrm{eff}} C_{A}
$$

Case 1

$$
\begin{gathered}
k_{c}=0.6\left(\frac{D_{A B}}{d_{p}}\right)\left(\frac{U d_{p}}{v}\right)^{1 / 2}\left(\frac{v}{D_{A B}}\right)^{1 / 2} \\
k_{c} \sim\left(U / d_{p}\right)^{1 / 2} \\
-r_{A s}^{\prime \prime}=k_{c} C_{A}
\end{gathered}
$$

Case 2

One will often find the flux to or from the surface as written in terms of an effective transport coefficient $k_{\text {eff }}$:

$$
W_{A}=-r_{A S}^{\prime \prime}=k_{\mathrm{eff}} C_{A}
$$

where

$$
k_{\mathrm{eff}}=\frac{k_{c} k_{r}}{k_{c}+k_{r}}
$$

Case 1

$$
\begin{gathered}
k_{r}>k_{c} \\
k_{\mathrm{eff}}=k_{c} \\
k_{c}=0.6\left(\frac{D_{A B}}{d_{p}}\right)\left(\frac{U d_{p}}{v}\right)^{1 / 2}\left(\frac{v}{D_{A B}}\right)^{1 / 2} \\
k_{c} \sim\left(U / d_{p}\right)^{1 / 2} \\
-r_{A s}^{\prime \prime}=k_{c} C_{A} \\
k_{r}<k_{c} \\
W_{A}=-r_{A s}^{\prime \prime}=\frac{k_{r} C_{A}}{1+k_{r} / k_{c}} \approx k_{r} C_{A}
\end{gathered}
$$

Case 2

Figure 14-4 Regions of mass transfer-limited and reaction-limited reactions.

Transdermal drug delivery schematic.

Skin Layers

$$
\begin{aligned}
& F_{A(z)}-F_{A(z+\Delta z)}+0=0 \\
& -\frac{A W_{(z+\Sigma)}-A W_{A(z)}}{\Delta z}=0
\end{aligned}
$$

Step 1. Diffusion of A through the Epidermis film, which is stagnant reduces to

$$
\frac{d W_{A z}}{d z}=0
$$

Step 2. Use Fick's law to relate the flux W_{Az} and the concentration gradient

$$
W_{A 1}=-D_{A 1} \frac{d C_{A}}{d z}
$$

Step 3. State the boundary conditions

$$
\begin{array}{ll}
z=0 & C_{A}=C_{A 0} \\
z=\delta_{1} & C_{A}=C_{A_{\delta} 1}
\end{array}
$$

Step 4. Next substitute for W_{Az} and divide by $D_{\mathrm{A} 1}$ to obtain

$$
\frac{d^{2} C_{A}}{d z^{2}}=0
$$

Integrating twice

$$
C_{A}=K_{1} z+K_{2}
$$

Step 4.
Using the boundary conditions we can eliminate the constants K_{1} and K_{2} to obtain the concentration profile

$$
\begin{aligned}
& C_{A}=K_{1} z+K_{2} \\
& \frac{C_{A 0}-C_{A}}{C_{A 0}-C_{A}}=\frac{z}{\delta_{1}}
\end{aligned}
$$

Step 5. Substituting CA we obtain the flux in the Epidermis layer

$$
W_{A 1}=-D_{A 1} \frac{d C_{A}}{d z}=\frac{D_{A 1}}{\delta}\left[C_{A 0}-C_{A 1}\right]
$$

Step 6. Carry out a similar analysis for the Dermis layer starting with

$$
\frac{d^{2} C_{A}}{d z^{2}}=0
$$

We find

$$
z=\delta_{1} \quad C_{A}=C_{A 1}
$$

Substituting

$$
z=\delta_{2} \quad C_{A}=0
$$

Step 7.
At the interface between the Epedermis and Dermisjayer, i.e., at $z=\delta_{1}$

$$
\frac{C_{A 1}-0}{C_{A 1}-0}=\frac{Z}{\delta_{2}}
$$

$$
W_{A 2}=\frac{D_{A 2}}{\delta_{2}} C_{A 1}
$$

Substituting

$$
W_{A 2}=\frac{D_{A 2}}{\delta_{2}} C_{A 1}
$$

Step 7. At the interface between the Epedermis and Dermis layer, i.e., at $z=\delta_{1}$

$$
W_{A 1}=W_{A 2}=W_{A}
$$

Equating Equations (E14-1.5) and (E14-1.6)

$$
\frac{D_{A 1}\left[C_{A 0}-C_{A 1}\right]}{\delta_{1}}=\frac{D_{A 2}}{\delta_{2}} C_{A 1}
$$

Step 7. At the interface between the Epedermis and Dermis layer, i.e., at $z=\delta_{1}$

$$
W_{A 1}=W_{A 2}=W_{A}
$$

Equating Equations (E14-1.5) and (E14-1.6)

$$
\frac{D_{A 1}\left[C_{A 0}-C_{A 1}\right]}{\delta_{1}}=\frac{D_{A 2}}{\delta_{2}} C_{A 1}
$$

Solving for $C_{A 1}$

$$
C_{A 1}=\frac{\frac{D_{A 1}}{} \frac{C_{A 0}}{\delta_{1}}}{\frac{D_{A 1}}{\delta_{1}}+\frac{D_{A 2}}{\delta_{2}}}
$$

Step 7. At the interface between the Epedermis and Dermis layer, i.e., at $z=\delta_{1}$

$$
\begin{aligned}
& W_{A 1}=W_{A 2}=W_{A} \\
& W_{A}=\frac{D_{A 2} \mathrm{C}_{\mathrm{A} 1}}{\delta_{2}}
\end{aligned}
$$

Substituting for $C_{A 1}$ in Equation (E14-1.10)

$$
W_{A}=\frac{C_{A 0}}{\frac{\delta_{2}}{D_{A 2}}+\frac{\delta_{1}}{D_{A 1}}}=\frac{C_{A 0}}{R_{1}+R_{2}}
$$

$$
F_{A}=A_{p} W_{A}=A_{p} \frac{C_{A 0}}{R_{1}+R_{2}}=A_{p} \frac{C_{A 0}}{R}
$$

If we consider there is a resistance to the drug release in the patch, R_{p}, then the total resistance is

$$
\begin{gathered}
R_{T}=R_{p}+R_{1}+R_{2} \\
F_{A}=A_{p} W_{A}=\frac{A_{p} C_{A 0}}{R_{T}}
\end{gathered}
$$

If the resistance in the dermis layer is neglected

$$
F_{A}=A_{p}\left[\frac{D_{A B_{1}}}{\delta_{1}}\right] C_{A p}
$$

$$
\begin{gather*}
{\left[\begin{array}{c}
\text { Molar } \\
\text { rate in }
\end{array}\right]-\left[\begin{array}{c}
\text { Molar } \\
\text { rate out }
\end{array}\right]+\left[\begin{array}{c}
\text { Molar rate of } \\
\text { generation }
\end{array}\right]=\left[\begin{array}{c}
\text { Molar rate of } \\
\text { accumulation }
\end{array}\right]} \\
\left.F_{\mathrm{A} z}\right|_{z}-\left.F_{\mathrm{A} z}\right|_{z+\Delta z}+r_{\mathrm{A}}^{\prime \prime} a_{c}\left(A_{c} \Delta z\right)=0 \tag{14-51}
\end{gather*}
$$

Figure 14-5 Packed-bed reactor.

$$
-\frac{1}{A_{c}}\left(\frac{d F_{A z}}{d z}\right)+r_{A}^{\prime \prime} a_{c}=0
$$

$$
\begin{gathered}
-\frac{1}{A_{c}}\left(\frac{d F_{A z}}{d z}\right)+r_{A}^{\prime \prime} a_{c}=0 \\
F_{A z}=A_{c} W_{A z}=\left(J_{A z}+B_{A z}\right) A_{c} \\
=B_{A z} A_{c}=U C_{A} A_{c} \\
-\frac{U d C_{A}}{d z}+r_{A}^{\prime \prime} a_{c}=0_{c}
\end{gathered}
$$

$$
\begin{gathered}
-U \frac{d C_{\mathrm{A}}}{d z}+r_{\mathrm{A}}^{\prime \prime} a_{c}=0 \\
-r_{A}^{\prime \prime}=W_{A r} \\
-U \frac{d C_{A}}{d z}-k_{c} a_{c}\left(C_{A}-C_{A s}\right)=0 \\
-U \frac{d C_{A}}{d z}-k_{c} a_{c} C_{A}=0
\end{gathered}
$$

$$
\frac{C_{A}}{C_{A 0}}=\exp -\left(\frac{k_{c} a_{c}}{U}\right) z
$$

$$
-r_{A}^{\prime \prime}=k_{c} C_{A}=k_{c} C_{A 0} \exp -\left(\frac{k_{c} a_{c}}{U}\right) z
$$

(a)

(b)

Figure 14-7 Axial concentration (a) and conversion (b) profiles in a packed bed.

$$
X=\frac{C_{A 0}-C_{A L}}{C_{A 0}}=\frac{\text { Moles A Reacted }}{\text { Mole A Fed }}
$$

$$
\ln \frac{1}{1-X}=\frac{k_{c} a_{c}}{U} L
$$

Robert the Worrier

Figure E14-4.1 Series arrangement

Figure E14-4.2 Parallel arrangement.

$$
\begin{gathered}
\ln \frac{1}{1-X}=\frac{k_{c} a_{c}}{U} L \\
\ln \frac{1}{1-X_{2}} \\
\ln \frac{1}{1-X_{1}}=\frac{k_{c 2}}{k_{c 1}}\left(\frac{L_{2}}{L_{1}}\right) \frac{U_{1}}{U_{2}} \\
X_{1}=0.865 \\
X_{2}=?
\end{gathered}
$$

$$
\begin{aligned}
\frac{\ln \frac{1}{1-X_{2}}}{\ln \frac{1}{1-X_{1}}} & =\frac{k_{c 2}}{k_{c 1}}\left(\frac{L_{2}}{L_{1}}\right) \frac{U_{1}}{U_{2}} \\
X_{1} & =0.865 \\
L_{2} & =\frac{1}{2} L_{1} \\
U_{2} & =\frac{1}{2} U_{1} \\
X_{1} & =0.865 \\
X_{2} & =?
\end{aligned}
$$

$$
\begin{gathered}
k_{c} \alpha U^{1 / 2} \\
\frac{k_{c 2}}{k_{c 1}}=\left(\frac{U_{2}}{U_{1}}\right)^{1 / 2} \\
\frac{U_{1}}{U_{2}}\left(\frac{k_{c 2}}{k_{c 1}}\right)=\left(\frac{U_{1}}{U_{2}}\right)^{1 / 2} \\
\ln \frac{1}{1-X_{2}}=\left(\ln \frac{1}{1-X_{1}}\right) \frac{L_{2}}{L_{1}}\left(\frac{U_{1}}{U_{2}}\right)^{1 / 2} \\
=
\end{gathered}
$$

$$
\begin{gathered}
\ln \frac{1}{1-X_{2}}=\left(\ln \frac{1}{1-X_{1}}\right) \frac{L_{2}}{L_{1}}\left(\frac{U_{1}}{U_{2}}\right)^{1 / 2} \\
=\left(\ln \frac{1}{1-0.865}\right)\left[\frac{\frac{1}{2} L_{1}}{L_{1}}\left(\frac{U_{1}}{\frac{1}{2} U_{1}}\right)^{1 / 2}\right] \\
=2.00\left(\frac{1}{2}\right) \sqrt{2}=1.414 \\
X_{2}=0.76
\end{gathered}
$$

One will often find the flux to or from the surface as written in terms of an effective transport coefficient $k_{\text {eff }}$:

$$
W_{\mathrm{A}}=-r_{\mathrm{A} s}^{\prime \prime}=k_{\mathrm{eff}} C_{\mathrm{A}}
$$

where

$$
\begin{gathered}
k_{\mathrm{eff}}=\frac{k_{c} k_{r}}{k_{c}+k_{r}} \\
\mathrm{Sh}=\frac{k_{c} d_{p}}{D_{\mathrm{AB}}}=2+0.6 \mathrm{Re}^{1 / 2} \mathrm{Sc}^{1 / 3} \\
k_{c}=0.6\left(\frac{D_{\mathrm{AB}}}{d_{p}}\right) \mathrm{Re}^{1 / 2} \mathrm{Sc}^{1 / 3} \\
=0.6\left(\frac{D_{\mathrm{AB}}}{d_{p}}\right)\left(\frac{U d_{p}}{v}\right)^{1 / 2}\left(\frac{v}{D_{\mathrm{AB}}}\right)^{1 / 3} \\
k_{c}=0.6 \times \frac{D_{\mathrm{AB}}^{2 / 3}}{v^{1 / 6}} \times \frac{U^{1 / 2}}{d_{p}^{1 / 2}} \\
k_{c}=0.6 \times(\mathrm{Term} 1) \times(\mathrm{Term} 2) \\
\left(U_{2} / U_{1}\right)^{0.5}=2^{0.5}=1.41 \text { or } 41 \% \\
k_{r} \ll k_{c}
\end{gathered}
$$

$$
W_{\mathrm{A}}=-r_{\mathrm{A} s}^{\prime \prime}=\frac{k_{r} C_{\mathrm{A}}}{1+k_{r} / k_{c}} \approx k_{r} C_{\mathrm{A}}
$$

$$
\begin{gathered}
\left.F_{A}\right|_{z}=\left.F_{A}\right|_{z+\Delta z}+r_{A} A_{c} \Delta z=0 \\
\frac{d F_{A}}{d z}+r_{A} A_{c}=0 \\
F_{A z}=A_{c} W_{A z} \\
W_{A z}=-D_{A B} \frac{d C_{A}}{d z}+C_{A} U_{z} \\
F_{A z}=W_{A z} A_{c}=\left[-D_{A B} \frac{d C_{A}}{d z}+C_{A} U_{z}\right] A_{c} \\
\left.D_{A B} \frac{d^{2} C_{A}}{d z^{2}}-U_{z} \frac{d C_{A}}{d z}+r_{A}=0\right]
\end{gathered}
$$

Step 4. Next substitute for W_{Az} and divide by $D_{\mathrm{A} 1}$ to obtain

$$
\frac{d^{2} C_{A}}{d z^{2}}=0
$$

Integrating twice

$$
C_{A}=K_{1} z+K_{2}
$$

using the boundary conditions we can eliminate the constants K_{1} and K_{2} to obtain the concentration profile

$$
\frac{C_{A 0}-C_{A}}{C_{A 0}-C_{A}}=\frac{z}{\delta_{1}}
$$

Step 5. Substituting CA we obtain the flux in the Epidermis layer

$$
W_{A 1}=-D_{A 1} \frac{d C_{A}}{d z}=\frac{D_{A 1}}{\delta}\left[C_{A 0}-C_{A 1}\right]
$$

1. Specify a concentration at a boundary (e.g., $\mathbf{z}=0, C_{\mathrm{A}}=C_{\mathrm{A} 0}$). For an instantaneous reaction at a boundary, the concentration of the reactants at the boundary is taken to be zero (e.g., $C_{\mathrm{A} s}=0$). See Chapter 18 for the more exact and complicated Danckwerts' boundary conditions at $\mathbf{z}=0$ and $\mathbf{z}=\mathrm{L}$.
2. Specify a flux at a boundary.
a. No mass transfer to a boundary,

$$
\begin{equation*}
W_{\mathrm{A}}=0 \tag{14-18}
\end{equation*}
$$

For example, at the wall of a nonreacting pipe. Species A cannot diffuse into the pipe so $\mathrm{W}_{\mathrm{A}}=0$ and then

$$
\begin{equation*}
\frac{d C_{\mathrm{A}}}{d r}=0 \quad \text { at } r=R \tag{14-19}
\end{equation*}
$$

That is, because the diffusivity is finite, the only way the flux can be zero is if the concentration gradient is zero.
b. Set the molar flux to the surface equal to the rate of reaction on the surface,

$$
\begin{equation*}
W_{\mathrm{A}}(\text { surface })=-r_{\mathrm{A}}^{\prime \prime}(\text { surface }) \tag{14-20}
\end{equation*}
$$

c. Set the molar flux to the boundary equal to convective transport across a boundary layer,

$$
\begin{equation*}
W_{\mathrm{A}}(\text { boundary })=k_{c}\left(C_{\mathrm{A} b}-C_{\mathrm{A} s}\right) \tag{14-21}
\end{equation*}
$$

where k_{c} is the mass transfer coefficient and $C_{\mathrm{A} s}$ and $C_{\mathrm{A} b}$ are the surface and bulk concentrations, respectively.
3. Planes of symmetry. When the concentration profile is symmetrical about a plane, the concentration gradient is zero in that plane of symmetry. For example, in the case of radial diffusion in a pipe, at the center of the pipe

$$
\begin{equation*}
\frac{d C_{\mathrm{A}}}{d r}=0 \quad \text { at } r=0 \tag{14-22}
\end{equation*}
$$

