Lecture 22

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 22 Class Lecture 18-Thursday 3/28/2013

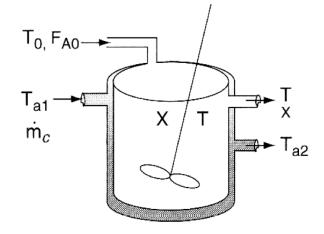
Review of Multiple Steady States (MSS)

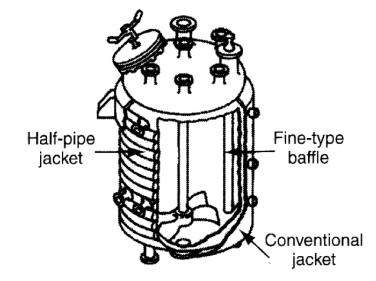
Reactor Safety (Chapter 13)

- Blowout Velocity
- CSTR Explosion
- Batch Reactor Explosion

Review Last Lecture

CSTR with Heat Effects



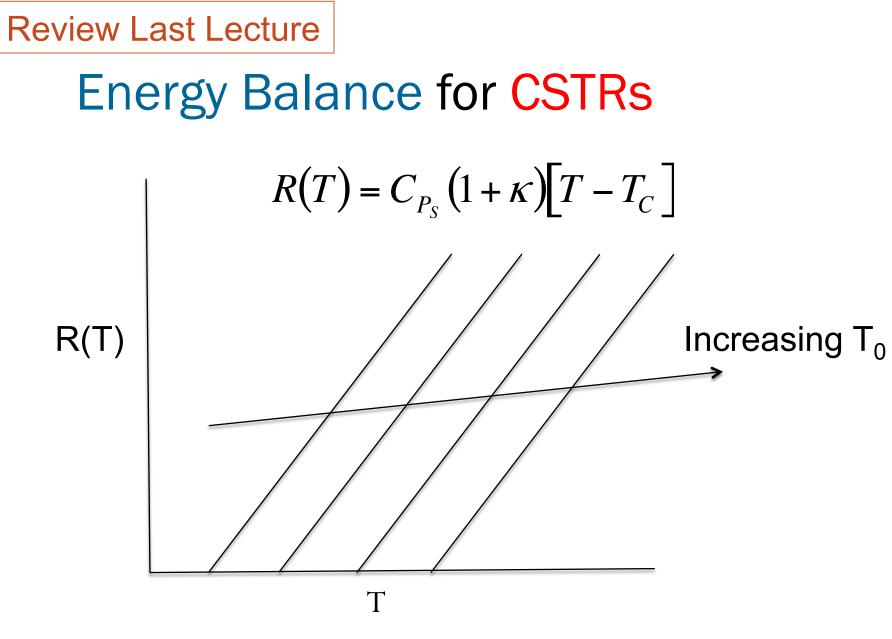


Review Last Lecture

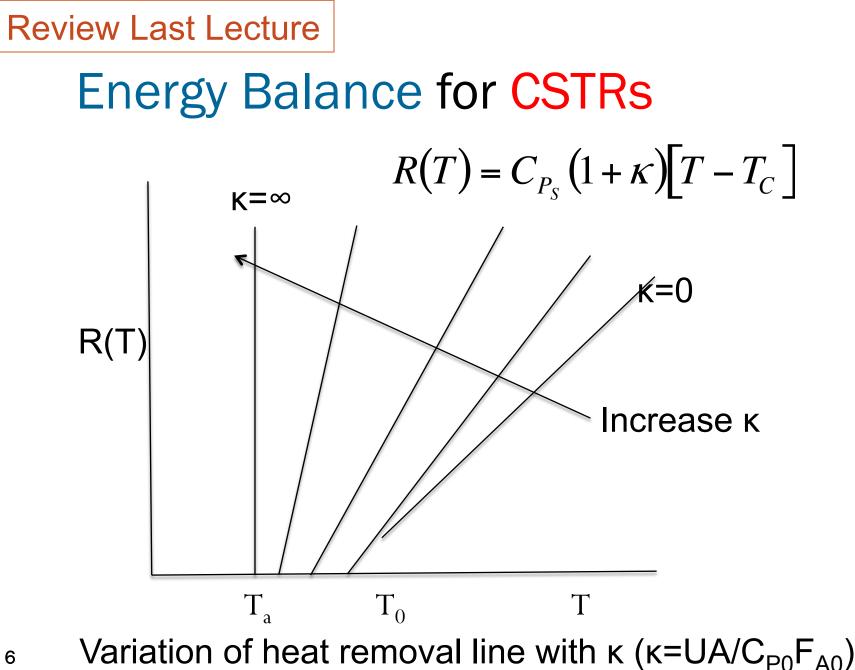
Energy Balance for CSTRs

$$\frac{dT}{dt} = \frac{F_{A0}}{\sum N_i C_{P_i}} \left[G(T) - R(T) \right]$$
$$G(T) = \left(r_A V \right) \left[\Delta H_{Rx} \right]$$
$$R(T) = C_{P_s} \left(1 + \kappa \right) \left[T - T_C \right]$$

$$\kappa = \frac{UA}{F_{A0}C_{P0}} \qquad T_C = \frac{T_0 + \kappa T_a}{1 + \kappa}$$

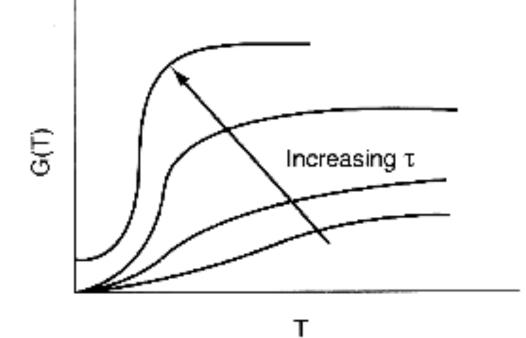


Variation of heat removal line with inlet temperature.



Review Last Lecture

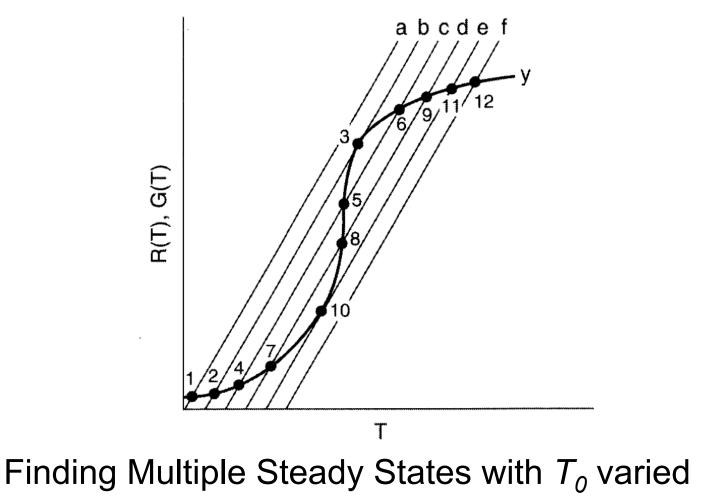
Multiple Steady States (MSS)



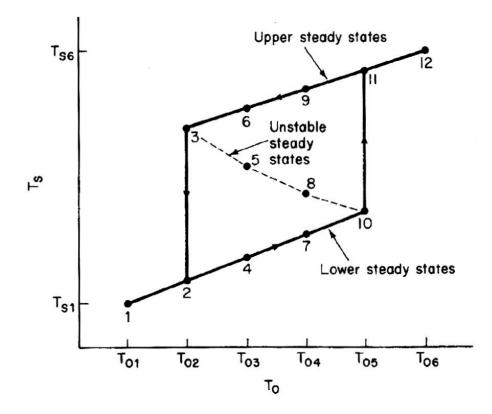
Variation of heat generation curve with space-time.

Review Last Lecture

Multiple Steady States (MSS)



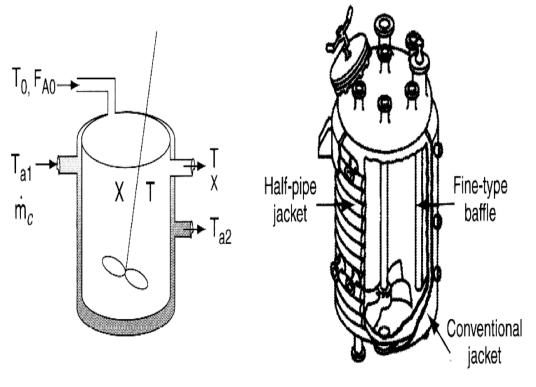
Multiple Steady States (MSS)



Temperature ignition-extinction curve

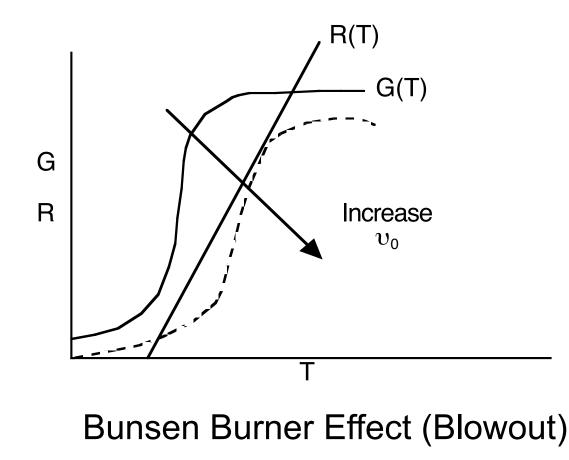
Review Last Lecture

Multiple Steady States (MSS)



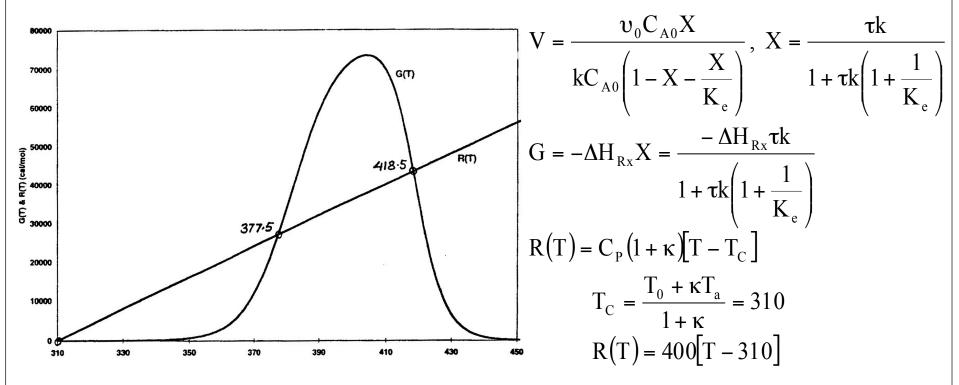
Bunsen Burner Effect (Blowout)

Multiple Steady States (MSS)



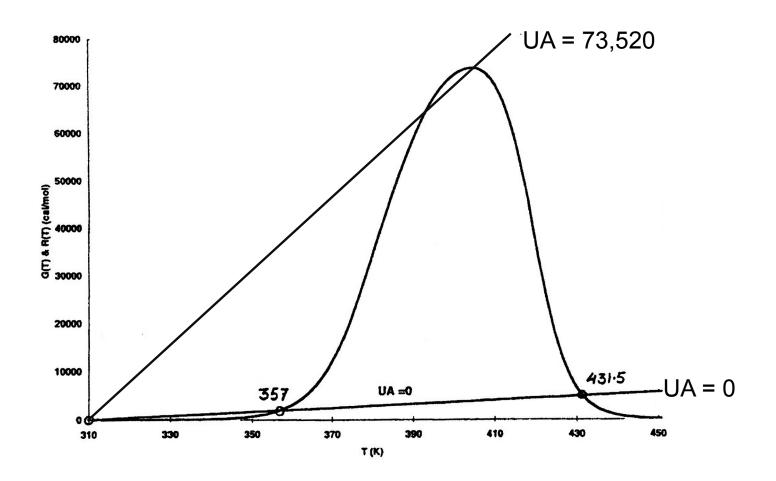
Reversible Reaction Gas Flow in a PBR with Heat Effects

 $\mathsf{A} \leftrightarrow \mathsf{B}$



Reversible Reaction Gas Flow in a PBR with Heat Effects

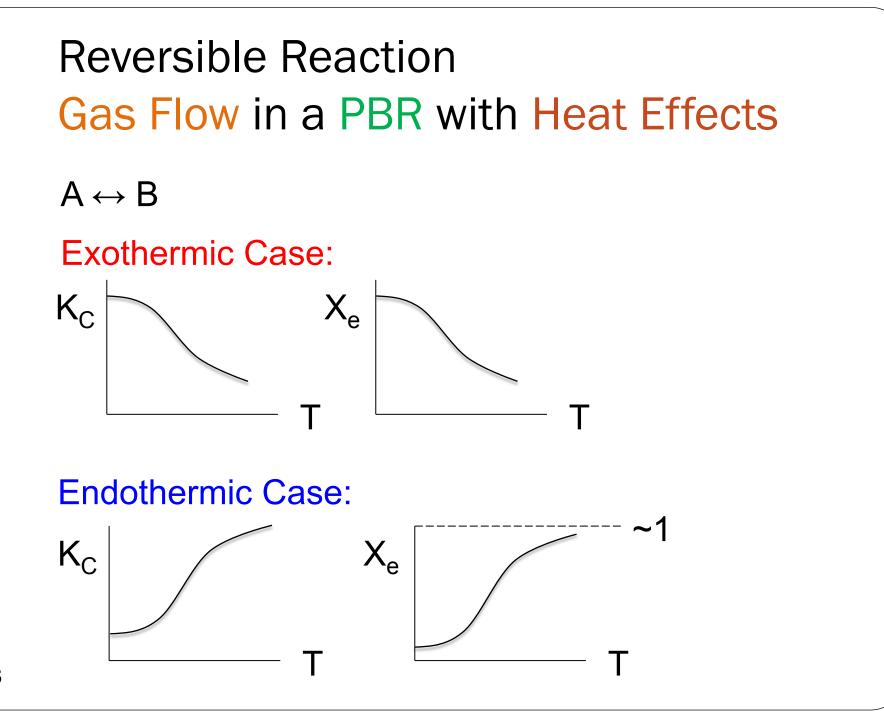
 $A \leftrightarrow B$



Reversible Reaction Gas Flow in a PBR with Heat Effects

 $A \leftrightarrow B$

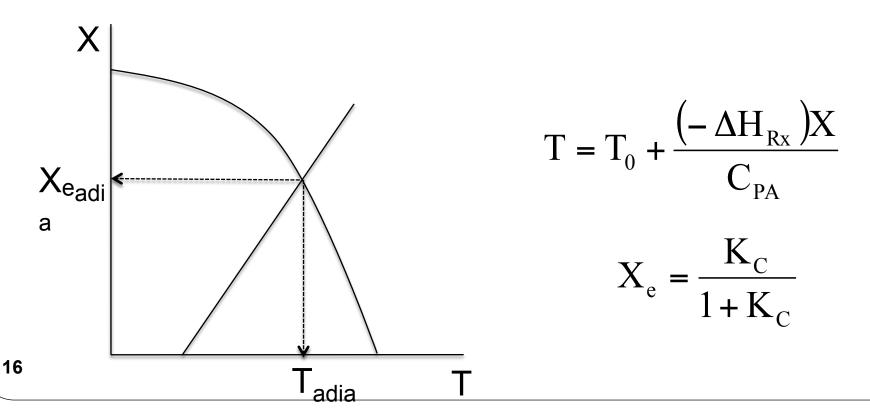
$$K_{C} = \frac{C_{Be}}{C_{Ae}} = \frac{C_{A0}X_{e}pT_{0}/T}{C_{A0}(1 - X_{e})pT_{0}/T}$$
(8) $X_{e} = \frac{K_{C}}{1 + K_{C}}$



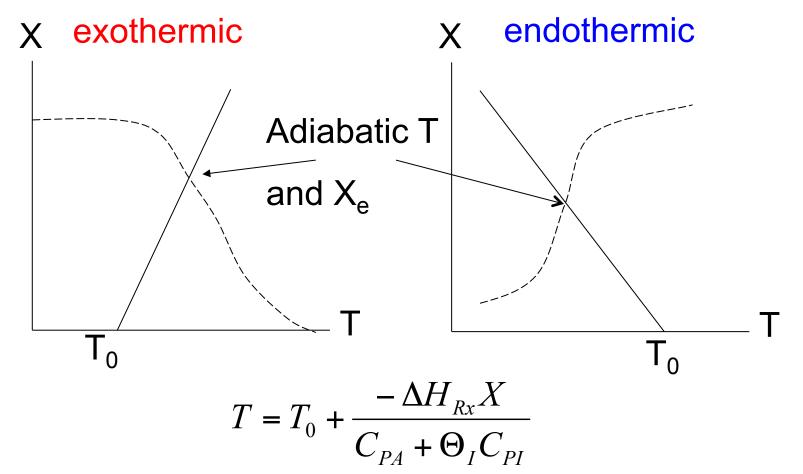
Adiabatic Equilibrium Conversion Conversion on Temperature

Exothermic ΔH is negative

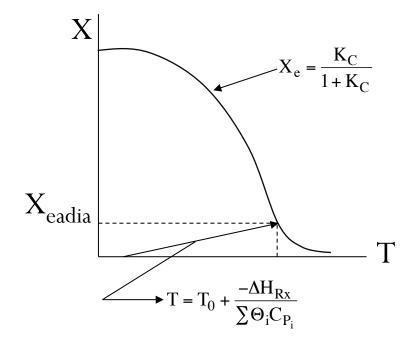
Adiabatic Equilibrium temperature (T_{adia}) and conversion $(X_{e,adia})$



Gas Phase Heat Effects Trends: Adiabatic:

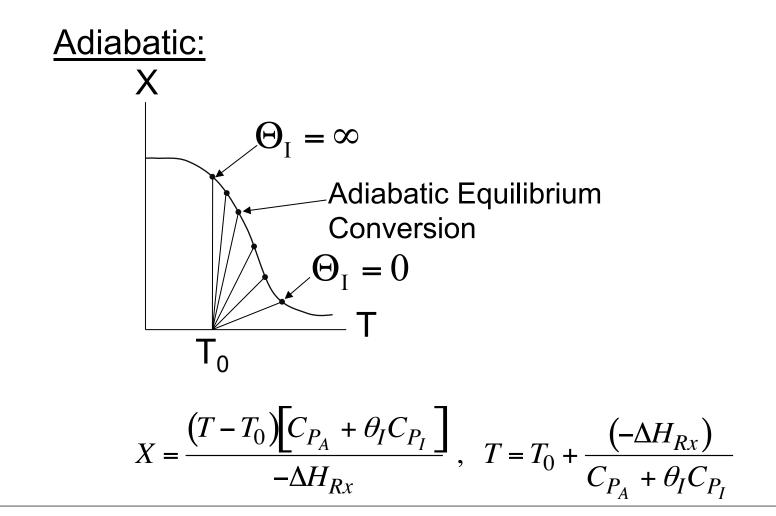


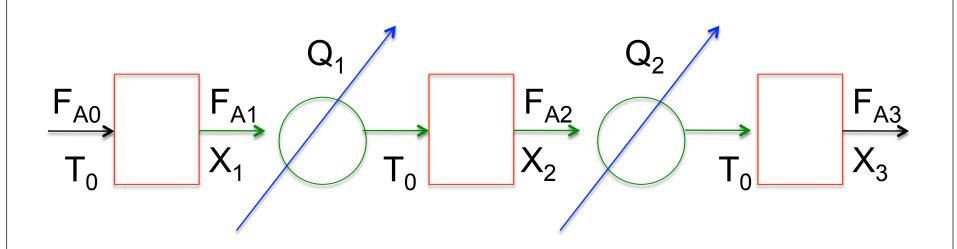
Gas Phase Heat Effects

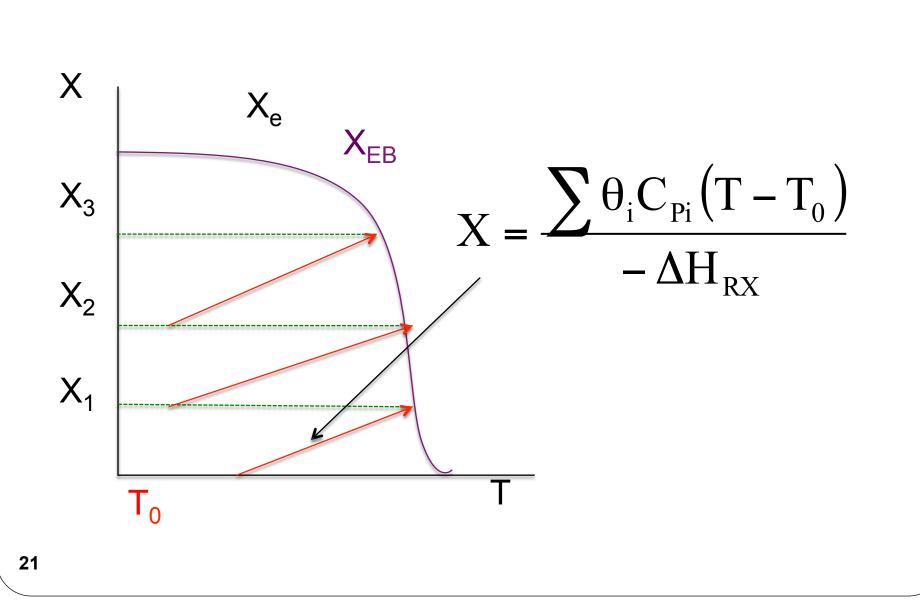


Gas Phase Heat Effects

Effect of adding inerts on adiabatic equilibrium conversion



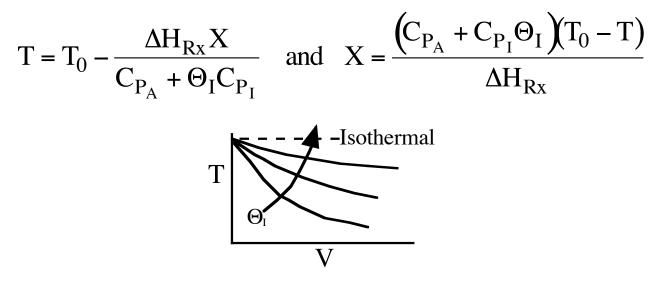




Adiabatic Exothermic Reactions

 $A \longrightarrow B$ $\Delta H_{Rx} = +15 \frac{\text{kcal}}{\text{mol}}$ The heat of reaction for endothermic reaction is positive, i.e.,

Energy Balance :



We want to learn the effects of adding inerts on conversion. How the conversion varies with the amount, i.e., Θ_{I} , depends on <u>what</u> you vary and <u>what</u> you hold constant as you change Θ_{I} .

A. First Order Reaction

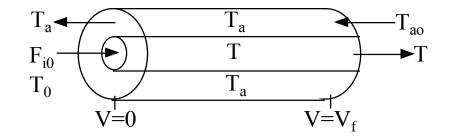
$$\frac{\mathrm{dX}}{\mathrm{dV}} = \frac{-\mathrm{r}_{\mathrm{A}}}{\mathrm{F}_{\mathrm{A0}}}$$

Combining the mole balance, rate law and stoichiometry

$$\frac{\mathrm{dX}}{\mathrm{dV}} = \frac{\mathrm{kC}_{\mathrm{A0}}(1-\mathrm{X})}{\upsilon_0 \mathrm{C}_{\mathrm{A0}}} = \frac{\mathrm{k}}{\upsilon_0} (1-\mathrm{X})$$

Two cases will be considered Case 1 Constant v_0 , volumetric flow rate Case 2: Variable v_0 , volumetric flow rate

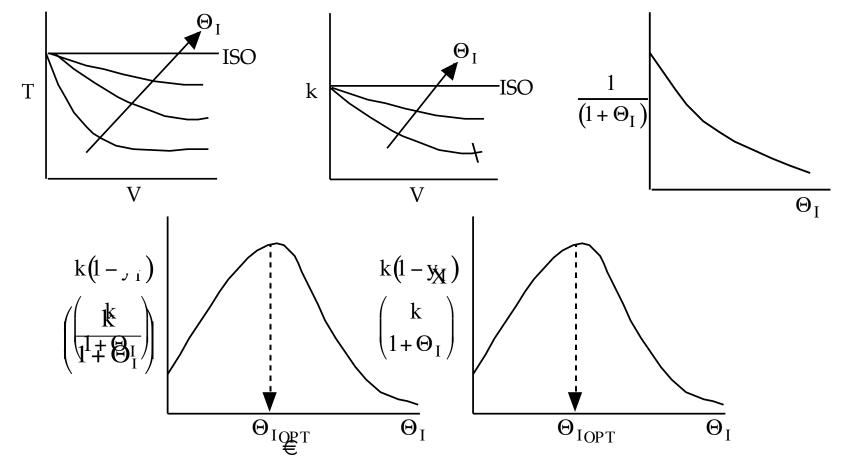
A.1. Liquid Phase Reaction



For Liquids, volumetric flow rates are additive. $\upsilon_0 = \upsilon_{A0} + \upsilon_{I0} = \upsilon_{A0} (1 + \Theta_I)$

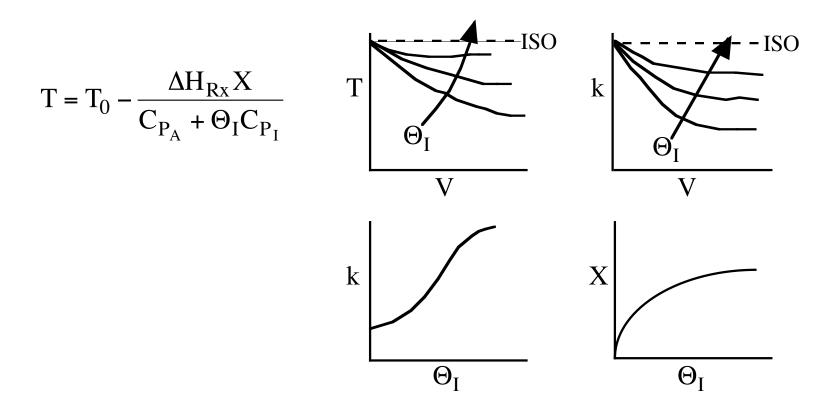
Effect of Adding Inerts to an Endothermic Adiabatic Reaction

What happens when we add Inerts, i.e., vary Theta I??? It all depends what you change and what you hold constant!!!

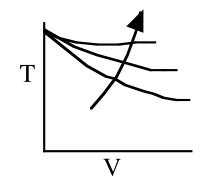


A.1.a. Case 1. Constant v_0

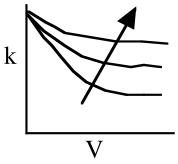
To keep υ_0 constant if we increase the amount of Inerts, i.e., increase Θ_1 we will need to decrease the amount of A entering, i.e., υ_{A0} . So $\Theta_1 \uparrow$ then $\upsilon_{A0} \downarrow$

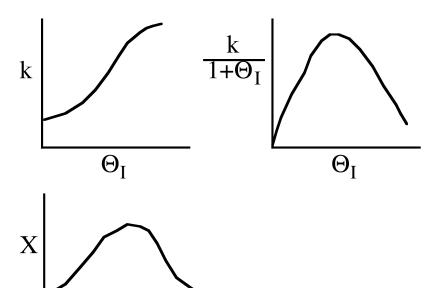


A.1.a. Case 2. Constant $\upsilon_{\text{A}_{\text{-}}}$ Variable υ_{0}



 Θ_{I}



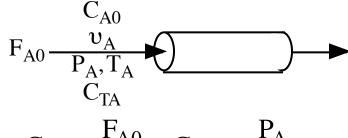


27

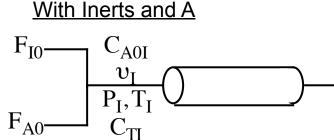
 $\frac{\mathrm{dX}}{\mathrm{dV}} = \frac{\mathrm{k}(1-\mathrm{X})}{\upsilon_0} = \frac{\mathrm{k}(1-\mathrm{X})}{\upsilon_{\mathrm{A}}(1+\Theta_{\mathrm{I}})}$

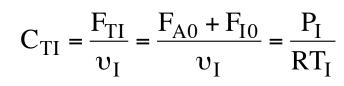
A.2. Gas Phase

Without Inerts



$$C_{TA} = \frac{\Gamma_{A0}}{\upsilon_A} = C_{A0} = \frac{\Gamma_A}{RT_A}$$





Taking the ratio of C_{TA} to C_{TI}

$$\frac{C_{TI}}{C_{TA}} = \frac{\frac{F_{TI}}{\upsilon_{I}}}{\frac{F_{TA}}{\upsilon_{A}}} = \frac{\frac{P_{I}}{RT_{I}}}{\frac{P_{I}}{RT_{A}}}$$

 $\upsilon_{I} = \upsilon_{A} \frac{F_{TI}}{F_{TA}} \frac{P_{A}}{P_{I}} \frac{T_{I}}{T_{A}}$

Solving for υ_{I}

We want to compare what happens when Inerts and A are fed to the case when only A is fed.

Nomenclature note: Sub I with Inerts I and reactant A fed Sub A with only reactant A fed

- F_{TI} = Total inlet molar flow rate of inert, I, plus reactant A, F_{TI} = F_{A0} + F_{I0}
- F_{TA} = Total inlet molar flow rate when no Inerts are fed, i.e., F_{TA} = F_{A0}
- P_{I} , T_{I} = Inlet temperature and pressure for the case when both Inerts (I) and A are fed
- P_A , T_A = Inlet temperature and pressure when only A is fed

$$\begin{split} C_{A0} &= \text{Concentration of A entering when no inerts are presents} \quad C_{A0} = \frac{F_{A0}}{\upsilon_A} \\ C_{TA} &= \text{Total concentration when no inerts are present} \quad = \frac{P_A}{RT_A} \\ C_{TI} &= \text{Total concentration when both I and A are present} \quad = \frac{P_I}{RT_I} \\ C_{A0I} &= \text{Concentration of A entering when inerts A are entering} \quad = \frac{F_{A0}}{\upsilon_I} \\ \upsilon_I &= \text{Entering volumetric flow rate with both Inerts (I) and reactant (A)} \end{split}$$

$$\frac{F_{TI}}{F_{TA}} = \frac{F_{A0} + F_{I0}}{F_{A0}} \equiv (1 + \Theta_I) = \frac{1}{\left(\frac{F_{A0}}{F_{I0} + F_{A0}}\right)} = \frac{1}{p_{A0}}$$
$$p_{A0} = \frac{1}{(1 + \Theta_I)}$$

$$\upsilon_{I} = \upsilon_{A} \left[(1 + \Theta_{I}) \frac{P_{A}}{P_{I}} \frac{T_{I}}{T_{A}} \right]$$

A.2.a. Case 1

Maintain constant volumetric flow, v_0 , rate as inerts are added. I.e., $v_0 = v_1 = v_A$. Not a very reasonable situation, but does represent one extreme. Achieve constant v_0 varying P, T to adjust conditions so term in brackets, [], is one.

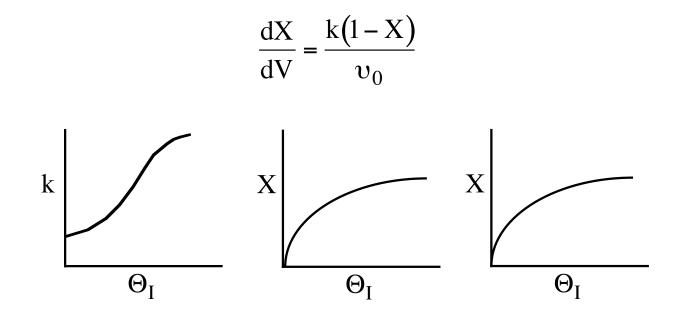
$$\left[\left(1 + \Theta_{\mathrm{I}} \right) \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{I}}} \frac{\mathrm{T}_{\mathrm{I}}}{\mathrm{T}_{\mathrm{0}}} \right] = 1$$

<u>For example</u> if $\Theta_1 = 2$ then υ_1 will be the same as υ_A , but we need the entering pressures P_1 and P_A to be in the relationship $P_1 = 3P_A$ with $T_A = T_1$

$$\upsilon_{I} = \upsilon_{A} \left[(1+2) \bullet \frac{P_{A}}{3P_{A}} \frac{T_{A}}{T_{A}} \right] = \upsilon_{A} \left[3 \bullet \frac{1}{3} \right] = \upsilon_{A} = \upsilon_{0}$$

A.2.a. Case 1

That is the term in brackets, [], would be 1 which would keep v_0 constant with $v_1 = v_A = v_0$. Returning to our combined mole balance, rate law and stoichiometry



B. Gas Phase Second Order Reaction



B. Gas Phase Second Order Reaction

$$\upsilon_{I} = \upsilon_{A} (1 + \Theta_{I}) \frac{P_{A}}{P_{I}} \frac{T_{I}}{T_{A}}$$

$$\frac{C_{A0I}^{2}}{F_{A0}} = \frac{(F_{A0}/\upsilon_{I})^{2}}{F_{A0}} = \frac{F_{A0}}{\upsilon_{I}^{2}} = \frac{F_{A0}}{\upsilon_{A}} \cdot \upsilon_{A} (1 + \Theta_{I})^{2} \left(\frac{P_{A}}{P_{I}}\right)^{2} \left(\frac{T_{I}}{T_{A}}\right)^{2}$$

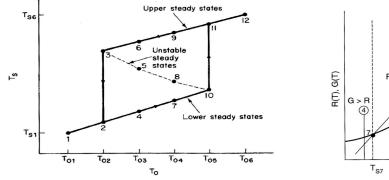
$$= \frac{C_{A0}}{\upsilon_{A} (1 + \Theta_{I})^{2}} \left(\frac{P_{I}}{P_{A}} \frac{T_{A}}{T_{I}}\right)^{2}$$

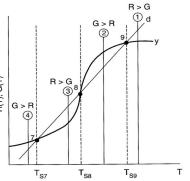
$$\frac{dX}{dV} = \frac{k}{(1 + \Theta_{I})^{2}} \frac{C_{A0}}{\upsilon_{A}} \left(\frac{P_{I}}{P_{A}} \frac{T_{A}}{T_{I}}\right)^{2} (1 - X)^{2}$$

B. Gas Phase Second Order Reaction

For the same temperature and pressures for the cases with and without inerts, i.e., $P_1 = P_A$ and $T_1 = T_A$, then

$$\frac{\mathrm{dX}}{\mathrm{dV}} = \frac{\mathrm{k}}{\left(1 + \Theta_{\mathrm{I}}\right)^{2}} \frac{\mathrm{C}_{\mathrm{A0}}}{\upsilon_{\mathrm{A}}} \left(1 - \mathrm{X}\right)^{2}$$



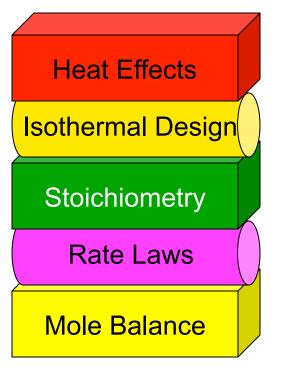


Heat Effects Isothermal Design

Stoichiometry

Rate Laws

Mole Balance



End of Web Lecture 24 Class Lecture 20