
Chemical Reaction Engineering (CRE) is the 
field that studies the rates and mechanisms of 

chemical reactions and the design of the reactors in 
which they take place. 
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Web Lecture 22 
Class Lecture 18-Thursday 3/28/2013 

Review of Multiple Steady States (MSS) 

Reactor Safety (Chapter 13) 
�  Blowout Velocity 
�  CSTR Explosion 
�  Batch Reactor Explosion 
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Review Last Lecture 

CSTR with Heat Effects 
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Energy Balance for CSTRs 
Review Last Lecture 



R(T) 

T 

Variation of heat removal line with inlet temperature. 

Increasing T0 
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Energy Balance for CSTRs 
Review Last Lecture 
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T0 Ta T 
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κ=0 

Increase κ 

Variation of heat removal line with κ (κ=UA/CP0FA0) 
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Review Last Lecture 

Energy Balance for CSTRs 



Variation of heat generation curve with space-time. 
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Review Last Lecture 

Multiple Steady States (MSS) 



Finding Multiple Steady States with T0 varied 
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Review Last Lecture 

Multiple Steady States (MSS) 



Temperature ignition-extinction curve 

Multiple Steady States (MSS) 
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Review Last Lecture 



Review Last Lecture 

Bunsen Burner Effect (Blowout) 

Multiple Steady States (MSS) 
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Bunsen Burner Effect (Blowout) 

Review Last Lecture 

Multiple Steady States (MSS) 



Reversible Reaction 
Gas Flow in a PBR with Heat Effects 
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UA = 73,520 

UA = 0 

Reversible Reaction 
Gas Flow in a PBR with Heat Effects 
A ↔ B 



KC =
CBe

CAe

=
CA0XepT0 T

CA0 1− Xe( ) pT0 T

8( )   Xe =
KC

1+KC
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Reversible Reaction 
Gas Flow in a PBR with Heat Effects 
A ↔ B 
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Exothermic Case:  
Xe 

T

KC 

T 

KC 

T T 
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Endothermic Case: 

Reversible Reaction 
Gas Flow in a PBR with Heat Effects 
A ↔ B 



Conversion on Temperature  
Exothermic ΔH is negative 
Adiabatic Equilibrium temperature (Tadia) and conversion (Xe,adia) 
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Adiabatic Equilibrium Conversion 
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Gas Phase Heat Effects 
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T 
Xeadia 
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Xe =
KC
1+KC
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T = T0 +
−ΔHRx
∑ΘiCPi

Gas Phase Heat Effects 



Adiabatic: 

19 

Effect of adding inerts on adiabatic equilibrium conversion 
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Gas Phase Heat Effects 
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Adiabatic Exothermic Reactions 
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The heat of reaction for endothermic reaction is positive, i.e.,  
  
Energy Balance : 

      
 
 

      
 
 
 
 
 
 
We want to learn the effects of adding inerts on conversion. How the 
conversion varies with the amount, i.e., ΘI, depends on what you vary 
and what you hold constant as you change ΘI.  
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A. First Order Reaction 
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Combining the mole balance, rate law and stoichiometry   
 
 
 

     
  Two cases will be considered  
  Case 1 Constant υ0, volumetric flow rate 
  Case 2: Variable υ0, volumetric flow rate 



A.1. Liquid Phase Reaction 
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For Liquids, volumetric flow rates are additive.  

€ 

υ0 = υA0 + υI0 = υA0 1+ΘI( )

Ta

Fi0

T0

Tao

T

Ta

Ta

T

V=0 V=Vf



What happens when we add Inerts, i.e., vary Theta I??? It all depends 
what you change and what you hold constant!!! 
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 \ 

Effect of Adding Inerts to an Endothermic Adiabatic Reaction 



A.1.a. Case 1. Constant υ0 
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To keep υ0 constant if we increase the amount of Inerts, 
i.e., increase ΘI we will need to decrease the amount of 
A entering, i.e., υA0. So ΘI ↑ then υA0 ↓ 
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A.1.a. Case 2. Constant υA, Variable υ0 
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A.2. Gas Phase  
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                 Without Inerts                               With Inerts and A 

       
 
 
 
 
 

       
  
Taking the ratio of CTA to CTI 

      
 
 
 
 
 
Solving for υI 

      
 
We want to compare what happens when Inerts and A are fed to the case when 
only A is fed.  
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Nomenclature note:  Sub I with Inerts I and reactant A fed 
                           Sub A with only reactant A fed 

FTI = Total inlet molar flow rate of inert, I, plus reactant A, FTI = FA0 + FI0 

FTA = Total inlet molar flow rate when no Inerts are fed, i.e., FTA = FA0 

PI, TI = Inlet temperature and pressure for the case when both Inerts (I) and A are fed 

PA, TA = Inlet temperature and pressure when only A is fed 

CA0 = Concentration of A entering when no inerts are presents 

CTA = Total concentration when no inerts are present  

CTI = Total concentration when both I and A are present  

CA0I = Concentration of A entering when inerts A are entering  

υI = Entering volumetric flow rate with both Inerts (I) and reactant (A) 
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A.2.a.  Case 1 
Maintain constant volumetric flow, υ0, rate as inerts are added. I.e., υ0 = 
υI = υA. Not a very reasonable situation, but does represent one extreme. 
Achieve constant  υ0 varying P, T to adjust conditions so term in 
brackets, [  ], is one. 
  

  
 
 
For example if ΘI = 2 then υI will be the same as υA, but we need the 
entering pressures PI and PA to be in the relationship PI = 3PA with TA = 
TI 
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That is the term in brackets, [  ], would be 1 which would 
keep υ0 constant with υI = υA = υ0. Returning to our 
combined mole balance, rate law and stoichiometry  

A.2.a.  Case 1 
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A.2.b.  Case 2: Variable υ0 Constant T, P 
i.e., PI = PA, TI = TA  
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B. Gas Phase Second Order Reaction  
              

     Pure A                                            Inerts Plus A  
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B. Gas Phase Second Order Reaction  
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For the same temperature and pressures for the cases 
with and without inerts, i.e., PI = PA and TI = TA, then  

B. Gas Phase Second Order Reaction  



Mole Balance 

Rate Laws 

Stoichiometry 

Isothermal Design 

Heat Effects 
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Mole Balance 

Rate Laws 

Stoichiometry 

Isothermal Design 

Heat Effects 
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End of  Web Lecture 24 
  Class Lecture 20 
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