Lecture 19

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 19 Class Lecture 17–Tuesday 3/19/2013

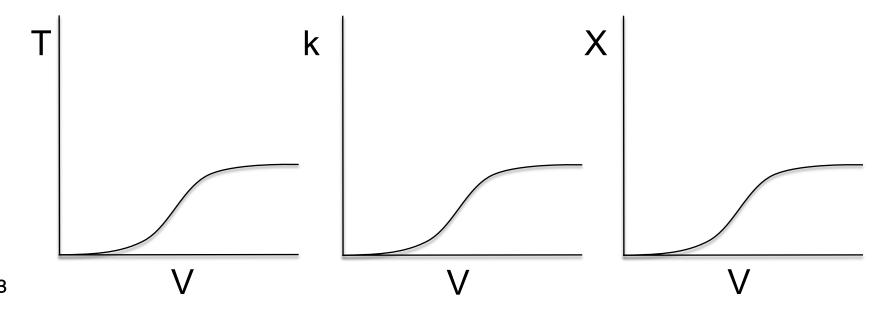
- Energy Balance Fundamentals
 - Adiabatic reactors

Today's Lecture

Energy Balance, Rationale and Overview

Let's calculate the volume necessary to achieve a conversion, X, in a PFR for a first-order, exothermic and adiabatic reaction.

The temperature profile might look something like this:



Energy Balance, Rationale and Overview

Mole Balance:
$$\frac{dX}{dV} = \frac{-r_A}{F_{A0}}$$

Rate Law:
$$r_A = -k_i \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]C_A$$

Stoichiometry:
$$C_A = C_{A0}(1-X)$$

Combine:
$$\frac{dX}{dV} = \frac{k_i \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]}{F_{A0}} C_{A0} (1 - X)$$

Energy Balance, Rationale and Overview

$$\frac{dX}{dV} = \frac{k_i \exp\left[\frac{E}{R}\left(\frac{1}{T_1} - \frac{1}{T}\right)\right]}{F_{A0}}C_{A0}(1 - X)$$

We cannot solve this equation because we don't have X either as a function of V or T.

We need another equation. That equation is:

The Energy Balance

1. Adiabatic CSTR, PFR, Batch or PBR

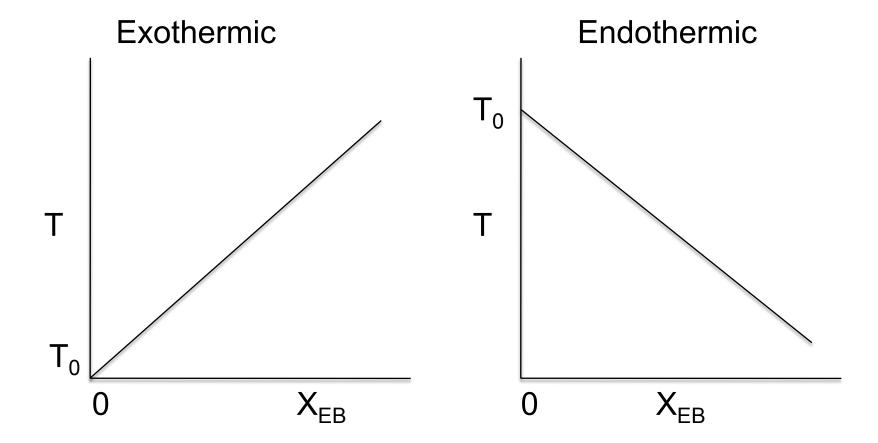
$$\dot{W}_{S} = 0$$
 $\Delta \hat{C}_{P} = 0$

$$X_{EB} = \frac{\sum \Theta_i C_{P_i} (T - T_0)}{-\Delta H_{Rx}^o}$$

$$X = \frac{\sum \Theta_i C_{P_i} (T - T_0)}{-\Delta H_{Rx}}$$

$$T = T_0 + \frac{\left(-\Delta H^o_{Rx}\right)X_{EB}}{\sum \Theta_i C_{P_i}}$$

Adiabatic



2. <u>CSTR</u> with <u>heat exchange</u>: UA(T_a-T) and a large coolant flow rate

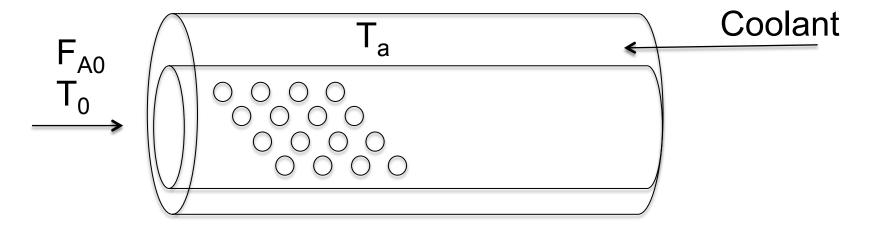
$$X_{EB} = \frac{\left(\frac{UA}{F_{A0}}(T - T_{a})\right) + \sum_{i=0}^{\infty} \Theta_{i}C_{P_{i}}(T - T_{0})}{-\Delta H_{Rx}^{o}}$$

$$\dot{m}_{C}$$

$$T$$

$$X_{EB} = \frac{\left(\frac{UA}{F_{A0}}(T - T_{a})\right) + \sum_{i=0}^{\infty} \Theta_{i}C_{P_{i}}(T - T_{0})}{-\Delta H_{Rx}^{o}}$$

3. PFR/PBR with heat exchange



3A. PFR in terms of conversion

$$\frac{dT}{dV} = \frac{\overbrace{r_A \Delta H_{Rx} \left(T\right) - Ua\left(T - T_a\right)}^{\mathcal{S}}}{F_{A0} \left(\sum \Theta_i C_{Pi} + \Delta C_p X\right)} = \frac{Q_g - Q_r}{F_{A0} \left(\sum \Theta_i C_{Pi} + \Delta C_p X\right)}$$

3B. PBR in terms of conversion

$$\frac{dT}{dW} = \frac{r_A' \Delta H_{Rx}(T) - \frac{Ua}{\rho_b} (T - T_a)}{F_{A0} \left(\sum \Theta_i C_{Pi} + \Delta C_p X \right)}$$

3C. PBR in terms of molar flow rates

$$\frac{dT}{dW} = \frac{r_A' \Delta H_{Rx}(T) - \frac{Ua}{\rho_b} (T - T_a)}{\sum_{i} F_i C_{P_i}}$$

User Friendly Equations Relate T and X or F_i 3D. PFR in terms of molar flow rates

$$\frac{dT}{dV} = \frac{r_A \Delta H_{Rx}(T) - Ua(T - T_a)}{\sum_{i} F_i C_{P_i}} = \frac{Q_g - Q_r}{\sum_{i} F_i C_{P_i}}$$

4. Batch

$$\frac{dT}{dt} = \frac{(r_A V)(\Delta H_{Rx}) - UA(T - T_a)}{\sum_{i} N_i C_{P_i}}$$

User Friendly Equations Relate T and X or F_i 5. For Semibatch or unsteady CSTR

$$\frac{dT}{dt} = \frac{\dot{Q} - \dot{W_S} - \sum_{i=1}^{n} F_{i0} \left(C_{P_i} \left(T - T_{i0} \right) + \left[-\Delta H_{Rx} \left(T \right) \right] \left(-r_A V \right) \right)}{\sum_{i=1}^{n} N_i C_{P_i}}$$

6. For multiple reactions in a PFR (q reactions and m species)

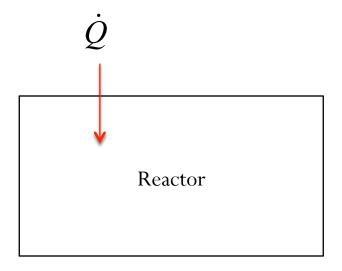
$$\frac{dT}{dV} = \frac{\sum_{i=1}^{q} r_{ij} \Delta H_{Rx_{ij}} - Ua(T - T_a)}{\sum_{i=1}^{m} F_i C_{Pj}}$$

Let's look where these User Friendly Equations came from.

Energy BalanceReactor with no Spatial Variations

Reactor

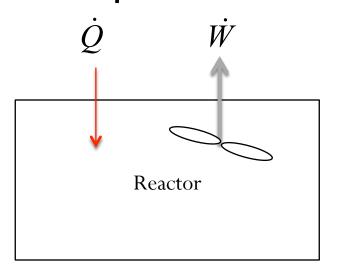
Reactor with no Spatial Variations



Rate of flow of heat *to* the system *from* the surroundings

Q (J/s)

Reactor with no Spatial Variations

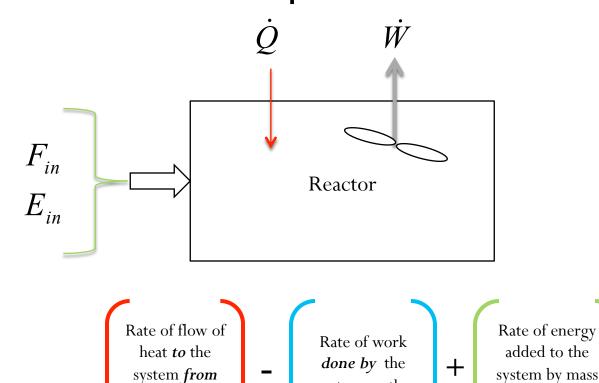


Rate of flow of heat *to* the system *from* the surroundings

Rate of work *done by* the system *on* the surroundings

 \dot{Q} - \dot{W} (J/s) (J/s)

Reactor with no Spatial Variations



the

surroundings

$$\dot{Q}$$
 - \dot{W} + $F_{in}E_{in}$ (J/s) (J/s)

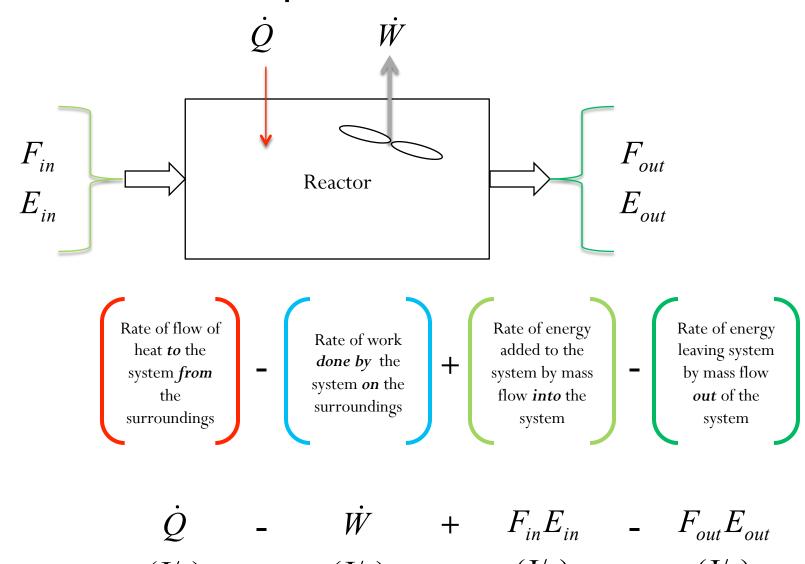
system on the

surroundings

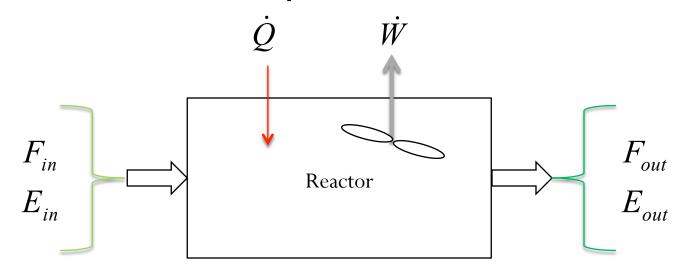
flow into the

system

Reactor with no Spatial Variations



Reactor with no Spatial Variations



$$\frac{dE_{sys}}{dt} = \dot{Q} - \dot{W} + F_{in}E_{in} - F_{out}E_{out}$$

$$(J/s) \qquad (J/s) \qquad (J/s) \qquad (J/s) \qquad (J/s)$$

$$\begin{array}{c}
F_{i}|_{in} \\
(e.g., F_{A0}) \\
H_{i}|_{in} \\
(e.g., H_{A0})
\end{array}$$

$$\begin{array}{c}
V \\
(e.g., F_{A}) \\
H_{i}|_{out} \\
(e.g., H_{A})
\end{array}$$

Energy Balance on an open system: schematic.

$$\dot{Q} - \dot{W}_S + \sum_i F_{i0} E_{i0} \Big|_{in} - \sum_i F_i E_i \Big|_{out} = \frac{dE_{system}}{dt} (1)$$

OK folks, here is what we are going to do to put the above equation into a usable form.

- 1. Replace U_i by U_i=H_i-PV_i
- 2. Express H_i in terms of heat capacities
- 3. Express F_i in terms of either conversion or rates of reaction
- 4. Define ΔH_{Rx}
- 5. Define ΔC_P
- 6. Manipulate so that the overall energy balance is in terms of the User Friendly Equations.

Assumptions:

$$E_i = U_i + P\dot{E}_i^{=0} + K\dot{E}_i^{=0}$$
 Other energies small compared to internal $\dot{W} = flow \ work + shaft \ work$

flow work =
$$-\sum F_{i0}P_{0}\widetilde{V}_{i0} + \sum F_{i}P\widetilde{V}_{i}$$
 $\left(\widetilde{V} = \frac{m^{3}}{mol}\right)$

Recall:

$$H_i = U_i + P\tilde{V}_i$$

Substituting for \dot{W}

$$\sum F_{i0}U_{i0} - \sum F_{i}U_{i} + \dot{Q} - \left[-\sum F_{i0}P_{0}\tilde{V}_{i0} + \sum F_{i}P\tilde{V}_{i} + \dot{W}_{S} \right] = \frac{dE_{sys}}{dt}$$

$$\sum F_{i0} \left[U_{i0} + P_0 \tilde{V}_{i0} \right] - \sum F_i \left[U_i + P \tilde{V}_i \right] + \dot{Q} - \dot{W}_S = \frac{dE_{sys}}{dt}$$

$$\sum F_{i0} H_{i0} - \sum F_{i} H_{i} + \dot{Q} - \dot{W}_{S} = \frac{dE_{sys}}{dt}$$

Steady State:
$$\dot{Q} - \dot{W}_S + \sum F_{i0} H_{i0} - \sum F_i H_i = 0$$

General Energy Balance:

$$\dot{Q} - \dot{W}_S + \sum_i F_{i0} H_{i0} - \sum_i F_i H_i = \frac{dE_{system}}{dt}$$

For Steady State Operation:

$$\dot{Q} - \dot{W}_{S} + \sum F_{i0}H_{i0} - \sum F_{i}H_{i} = 0$$

$$\sum F_{i0}H_{i0} = F_{A0}\sum \Theta_i H_{i0}$$

$$\sum F_i H_i = F_{A0} \sum \left(\Theta_i + \upsilon_i X\right) H_i = F_{A0} \sum \Theta_i H_i + F_{A0} X \overbrace{\sum \upsilon_i H_i}$$

$$\dot{Q} - \dot{W}_{S} + F_{A0} \left(\sum \Theta_{i} \left(H_{i0} - H_{i} \right) + F_{A0} X \Delta H_{Rx} \right) = 0$$

For No Phase Changes

$$H_i(T) = H_i^0(T_R) + \int_{T_R}^T C_{Pi} dT$$

→ Enthalpy of formation at temperature T_R

Constant Heat Capacities

$$\rightarrow H_i(T) = H_i^0(T_R) + C_{Pi}(T - T_R)$$

$$H_{i0} - H_i = C_{Pi} \left(T - T_0 \right)$$

$$\sum v_i H_i = \sum v_i H_i^0 + \sum v_i C_{Pi} (T - T_R)$$

→ Heat of reaction at temperature T

$$\sum v_i H_i = \sum v_i H_i^0 + \sum v_i C_{Pi} (T - T_R)$$

$$\Delta H_R(T) = \Delta H_R^o(T_R) + \Delta \hat{C}_P(T - T_R)$$

$$\sum v_i \hat{C}_{Pi} = \Delta \hat{C}_P = \frac{d}{a} \hat{C}_{PD} + \frac{c}{a} \hat{C}_{PC} - \frac{b}{a} \hat{C}_{PB} - \hat{C}_{PA}$$

Substituting back into the Energy Balance

$$\dot{Q} - \dot{W}_{S} - F_{A0}X \left[\Delta H_{R}^{o} \left(T_{R}\right) + \Delta \hat{C}_{P} \left(T - T_{R}\right)\right] - F_{A0} \sum \Theta_{i} \tilde{C}_{Pi} \left(T - T_{i0}\right) = 0$$

Adiabatic (Q=0) and no Work $(W_S = 0)$

$$\Delta H_{Rx} = \frac{d}{a} H_D + \frac{c}{a} H_C - \frac{b}{a} H_B - H_A$$

$$\Delta C_{P} = \frac{d}{a}C_{PD} + \frac{c}{a}C_{PC} - \frac{b}{a}C_{PB} - C_{PA}$$

$$\dot{Q} - \dot{W}_S + F_{A0} \left(\sum \Theta_i \left(H_{i0} - H_i \right) + F_{A0} X \Delta H_{Rx} \right) = 0$$

Substituting back into the Energy Balance

$$\dot{Q} - \dot{W}_{S} - F_{A0}X \left[\Delta H_{R}^{o} \left(T_{R}\right) + \Delta \hat{C}_{P} \left(T - T_{R}\right)\right] - F_{A0} \sum \Theta_{i} \tilde{C}_{Pi} \left(T - T_{i0}\right) = 0$$

Adiabatic Energy Balance

Adiabatic (Q=0) and no Work $(W_S = 0)$

$$T = T_0 - \frac{X \left[\Delta H_R^o \left(T_R \right) + \Delta \hat{C}_P \left(T - T_R \right) \right]}{\sum \Theta_i \widetilde{C}_{Pi} + X \Delta \hat{C}_P} = T_0 - \frac{X \left[\Delta H_R \left(T \right) \right]}{\sum \Theta_i \widetilde{C}_{Pi} + X \Delta \hat{C}_P}$$

$$\mathsf{Exothermic}$$

29

 $A \leftrightarrow B$

1) Mole Balance:
$$\frac{dX}{dV} = -\frac{r_A}{F_{A0}}$$

2) Rate Laws:
$$r_A = -k \left[C_A - \frac{C_B}{k_C} \right]$$
 $k = k_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$

$$\Delta C_P = 0$$
 $k_C = k_{C2} \exp \left[\frac{\Delta H_X^0}{k} \left(\frac{1}{T_2} - \frac{1}{T} \right) \right]$

 $A \leftrightarrow B$

3) Stoichiometry:

$$C_{A} = C_{A0} (1 - X)$$

$$C_B = C_{A0}X$$

4) Energy Balance

$$T = T_0 + \frac{-\Delta H_X^0 X}{\sum \theta_i C_{Pi}}$$

First need to calculate the maximum conversion which is at the adiabatic equilibrium conversion.

Differential equations

1 d(T)/d(t) = 1

Explicit equations

1 Kc1 = 1000

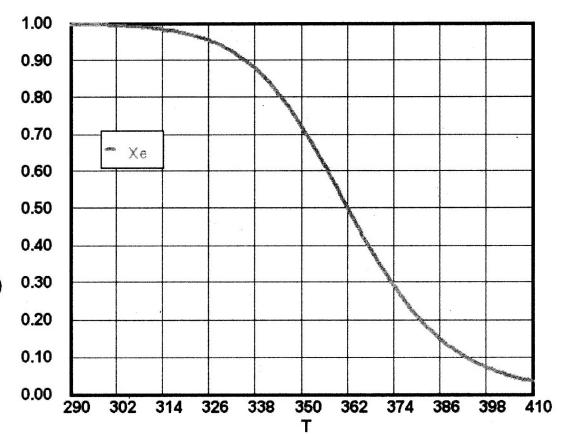
2 T1 = 290

3 R = 1.987

4 DeltaH = -20000

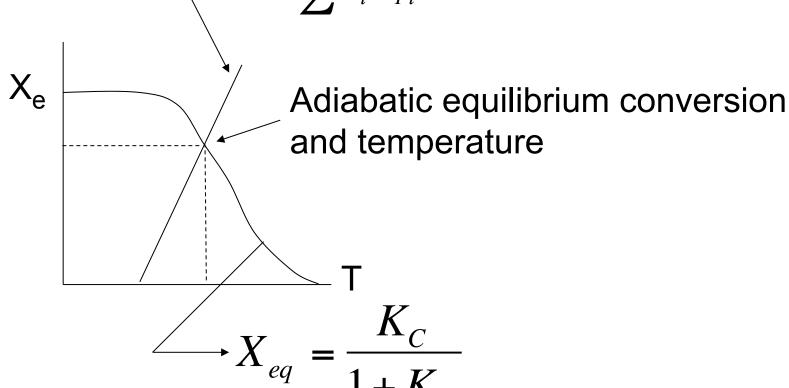
5 Kc = Kc1*exp((DeltaH/R)*(1/T1-1/T))

6 Xe = Kc/(1+Kc)

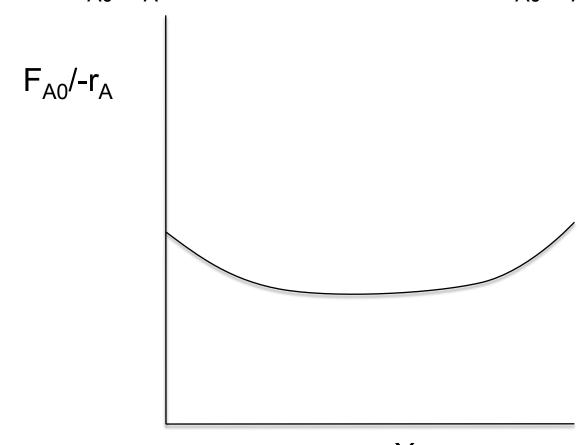


$$A \leftrightarrow B$$

$$T = T_0 + \frac{-\Delta H_X^0 X}{\sum \theta_i C_{Pi}}$$



We can now form a table. Set X, then calculate T, $-V_A$, and $F_{A0}/-r_A$, increment X, then plot $F_{A0}/-r_A$ vs. X:



End of Web Lecture 19 Class Lecture 17