Lecture 13

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 13 - Tuesday 2/26/2013

- Complex Reactions:

$$
\begin{aligned}
& A+2 B \rightarrow C \\
& A+3 C \rightarrow D
\end{aligned}
$$

- Example A: Liquid Phase PFR
- Example B: Liquid Phase CSTR
- Example C: Gas Phase PFR
- Example D: Gas Phase Membrane Reactors

Sweep Gas Concentration Essentially Zero
Sweep Gas Concentration Increases with Distance

- Example E: Semibatch Reactor

Number all reactions

Mole balances:

Mole balance on each and every species

Gas Phase Multiple Reactions

Following the Algorithm

PFR	$\frac{d F_{j}}{d V}=r_{j}$
CSTR	$F_{j 0}-F_{j}=-r_{j} V$
Batch	$\frac{d N_{j}}{d t}=r_{j} V$
Membrane ("i" diffuses in)	$\frac{d F_{i}}{d V}=r_{i}+R_{i}$
Liquid-semibatch	$\frac{d C_{j}}{d t}=r_{j}+\frac{v_{0}\left(C_{j 0}-C_{j}\right)}{V}$

Rates:

Laws

$$
r_{i j}=k_{i j} f_{i}\left(C_{j}, C_{n}\right)
$$

Relative rates

Net rates

$$
\frac{r_{i \mathrm{~A}}}{-a_{i}}=\frac{r_{i \mathrm{~B}}}{-b_{i}}=\frac{r_{i \mathrm{C}}}{c_{i}}=\frac{r_{i \mathrm{D}}}{d_{i}}
$$

$$
r_{j}=\sum^{q} r_{i j}
$$

Stoichiometry:

Gas phase

$$
\begin{gathered}
C_{j}=C_{T O} \frac{F_{i}}{F_{T}} \frac{P}{P_{0}} \frac{T_{0}}{T}=C_{T 0} \frac{F_{i}}{F_{T}} \frac{T_{0}}{T} y \\
\mathrm{p}=\frac{p}{P_{0}}
\end{gathered}
$$

$$
F_{T}=\sum_{j=1}^{n} F_{j}
$$

$$
\frac{d p}{d W}=-\frac{\alpha}{2 p}\left(\frac{F_{Y}}{F_{\mathrm{T}}}\right) \frac{T}{T_{0}}
$$

Liquid phase

$$
\begin{gathered}
v=v_{0} \\
C_{\mathrm{A}}, C_{\mathrm{B}}, \ldots
\end{gathered}
$$

New things for multiple reactions are:

1. Number Every Reaction
2. Mole Balance on every species
3. Rate Laws
(a) Net Rates of Reaction for every species

$$
r_{A}=\sum_{i=1}^{N} r_{i A}
$$

(b) Rate Laws for every reaction

$$
\begin{aligned}
& r_{1 A}=-k_{1 A} C_{A} C_{B}^{2} \\
& r_{2 C}=-k_{2 C} C_{A}^{2} C_{C}^{3}
\end{aligned}
$$

(c) Relative Rates of Reaction for every reaction For a given reaction i: (i) $\mathrm{a}_{\mathrm{i}} \mathrm{A}+\mathrm{b}_{\mathbf{i}} \mathrm{B} \rightarrow \mathrm{c}_{\mathbf{i}} \mathrm{C}+\mathrm{d}_{\mathbf{i}} \mathrm{D}$:

$$
\frac{r_{i A}}{-a_{i}}=\frac{r_{i B}}{-b_{i}}=\frac{r_{i C}}{c_{i}}=\frac{r_{i D}}{d_{i}}
$$

Reactor Mole Balance Summary

Reactor Type Gas Phase Liquid Phase

Batch

$$
\begin{array}{cc}
\frac{d N_{A}}{d t}=r_{A} V & \frac{d C_{A}}{d t}=r_{A} \\
\frac{d N_{A}}{d t}=r_{A} V & \frac{d C_{A}}{d t}=r_{A}-\frac{v_{0} C_{A}}{V} \\
\frac{d N_{B}}{d t}=r_{B} V+F_{B 0} & \frac{d C_{B}}{d t}=r_{B}+\frac{v_{0}\left[C_{B 0}-C_{B}\right]}{V}
\end{array}
$$

Semibatch

Reactor Mole Balance Summary

Reactor Type Gas Phase Liquid Phase

CSTR

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}} \quad V=v_{0} \frac{\left(C_{A 0}-C_{A}\right)}{-r_{A}}
$$

PFR

$$
\frac{d F_{A}}{d V}=r_{A}
$$

$$
v_{0} \frac{d C_{A}}{d V}=r_{A}
$$

PBR

$$
\frac{d F_{A}}{d W}=r_{A}^{\prime}
$$

$$
v_{0} \frac{d C_{A}}{d W}=r_{A}^{\prime}
$$

Note: The reaction rates in the above mole balances are net rates.

$$
\begin{array}{cc}
\begin{array}{cc}
\text { Batch } \\
\downarrow
\end{array} & \begin{array}{c}
\text { Flow } \\
\downarrow
\end{array} \\
C_{B}=\frac{N_{B}}{V} & C_{B}=\frac{F_{B}}{v} \\
V=V_{0} \frac{N_{T}}{N_{T 0}} \frac{P_{0}}{P} \frac{T_{0}}{T} & v=v_{0} \frac{F_{T}}{F_{T 0}} \frac{P_{0}}{P} \frac{T_{0}}{T} \\
C_{B}=\frac{N_{B}}{N_{T}} \frac{N_{T 0}}{V_{0}} \frac{P}{P_{0}} \frac{T_{0}}{T} & C_{B}=\frac{F_{B}}{F_{T}} \frac{F_{T 0}}{v_{0}} \frac{P}{P_{0}} \frac{T_{0}}{T} \\
C_{B}=C_{T 0} \frac{N_{B}}{N_{T}} \frac{P}{P_{0}} \frac{T_{0}}{T} & C_{B}=C_{T 0} \frac{F_{B}}{F_{T}} \frac{P}{P_{0}} \frac{T_{0}}{T}
\end{array}
$$

Stoichiometry

Concentration of Gas:
$C_{A}=C_{T 0}\left(\frac{F_{A}}{F_{T}}\right) p\left(\frac{T_{0}}{T}\right) \quad F_{T}=F_{A}+F_{B}+F_{C}+F_{D}$
Note: We could use the gas phase mole balances for liquids and then just express the concentration as:
Flow: $\quad C_{A}=\frac{F_{A}}{v_{0}}$
Batch: $\quad C_{A}=\frac{N_{A}}{V_{0}}$

Example A: Liquid Phase PFR

The complex liquid phase reactions follow elementary rate laws:
(1) $A+2 B \rightarrow C$

$$
-r_{1 A}=k_{1 A} C_{A} C_{B}^{2}
$$

NOTE: The specific reaction rate $k_{1 A}$ is defined with respect to species A.

$$
\text { (2) } 3 C+2 A \rightarrow D \quad-r_{2 C}=k_{2 C} C_{C}^{3} C_{A}^{2}
$$

NOTE: The specific reaction rate $\mathrm{k}_{2 \mathrm{C}}$ is defined with respect to species C.

Example A: Liquid Phase PFR

Complex Reactions
(1) $\mathrm{A}+2 \mathrm{~B} \rightarrow \mathrm{C}$
(2) $\mathrm{A}+3 \mathrm{C} \rightarrow \mathrm{D}$

1) Mole Balance on each and every species
(1) $\frac{d F_{A}}{d V}=r_{A}$
(2) $\frac{d F_{B}}{d V}=r_{B}$
(3) $\frac{d F_{C}}{d V}=r_{C}$
(4) $\frac{d F_{D}}{d V}=r_{D}$

Example A: Liquid Phase PFR

2) Rate Laws:

Net Rates (5) $r_{A}=r_{1 A}+r_{2 A} \quad$ (7) $r_{B}=r_{1 B}+r_{2 B}$

$$
\text { (6) } r_{C}=r_{1 C}+r_{2 C} \quad \text { (8) } r_{D}=0+r_{2 D}
$$

Rate Laws

$$
\begin{aligned}
& \text { (9) } r_{1 A}=-k_{1 A} C_{A} C_{B}^{2} \\
& \text { (10) } r_{2 C}=-k_{2 C} C_{A}^{2} C_{C}^{3}
\end{aligned}
$$

Relative Rates

$$
\frac{r_{1 A}}{-1}=\frac{r_{1 B}}{-2}=\frac{r_{1 C}}{1}
$$

(11) $r_{1 B}=2 r_{1 A}$
(12) $r_{1 C}=-r_{1 A}$

Example A: Liquid Phase PFR

 Relative Rates Reaction 2$$
\begin{aligned}
& \frac{r_{2 A}}{-2}=\frac{r_{2 C}}{-3}=\frac{r_{2 D}}{1} \\
& \text { (13) } r_{2 A}=\frac{2}{3} r_{2 C}
\end{aligned}
$$

$$
\text { (14) } r_{2 D}=-\frac{r_{2 C}}{3}
$$

$$
r_{A}=-k_{1 A} C_{A} C_{B}^{2}-\frac{2}{3} k_{2 C} C_{A}^{2} C_{C}^{3}
$$

$$
r_{B}=-2 k_{1 A} C_{A} C_{B}^{2}
$$

$$
r_{C}=k_{1 A} C_{A} C_{B}-k_{2 C} C_{A}^{2} C_{C}^{3}
$$

$$
r_{D}=\frac{k_{2 C}}{3} C_{A}^{2} C_{C}^{3}
$$

Example A: Liquid Phase PFR

3) Stoichiometry

Liquid
(15) $C_{A}=F_{A} / v_{0}$
(16) $C_{B}=F_{B} / v_{0}$
(17) $C_{C}=F_{C} / v_{0}$
(18) $C_{D}=F_{D} / v_{0}$
(19) $\widetilde{S}_{C / D}=$ if $(V>0.00001)$ then $\left(\frac{F_{C}}{F_{D}}\right)$ else 0

Example A: Liquid Phase PFR

Others
$F_{T}=$ Liquid - Not Needed
(19) $\alpha=$ Liquid - Not Needed
(20) $C_{T 0}=$ Liquid - Not Needed
4) Parameters
(21) $k_{1 A}=10$
(22) $k_{2 C}=20$
(23) $\alpha=$ Liquid
(24) $C_{T 0}=$ Liquid
(25) $V_{f}=2500$
(26) $F_{A 0}=200$
(28) $F_{B 0}=200$
(26) $v_{0}=100$

Example B: Liquid Phase CSTR

Same reactions, rate laws, and rate constants as Example A
(1) $A+2 B \rightarrow C$

$$
-r_{1 A}=k_{1 A} C_{A} C_{B}^{2}
$$

NOTE: The specific reaction rate $k_{1 A}$ is defined with respect to species A.

$$
\text { (2) } 3 C+2 A \rightarrow D \quad-r_{2 C}=k_{2 C} C_{C}^{3} C_{A}^{2}
$$

NOTE: The specific reaction rate $k_{2 C}$ is defined with respect to species C.

Example B: Liquid Phase CSTR

The complex liquid phase reactions take place in a $2,500 \mathrm{dm}^{3}$ CSTR. The feed is equal molar in A and B with $F_{A 0}=200 \mathrm{~mol} / \mathrm{min}$, the volumetric flow rate is $100 \mathrm{dm}^{3} / \mathrm{min}$ and the reaction volume is 50 dm^{3}.

Find the concentrations of A, B, C and D existing in the reactor along with the existing selectivity.

Plot $F_{A}, F_{B}, F_{C}, F_{D}$ and $S_{C / D}$ as a function of V

Example B: Liquid Phase CSTR

(1) $A+2 B \rightarrow C$
(2) $2 A+3 C \rightarrow D$
$r_{1 A}=-k_{1 A} C_{A} C_{B}^{2}$
$r_{2 C}=-k_{2 C} C_{A}^{2} C_{C}^{3}$

1) Mole Balance
(1) A
$v_{0} C_{A 0}-v_{0} C_{A}+r_{A} V=0$
(2) B
$v_{0} C_{B 0}-v_{0} C_{B}+r_{B} V=0$
(3) C
$0-v_{0} C_{C}+r_{C} V=0$
(4) D
$0-v_{0} C_{D}+r_{D} V=0$

Example B: Liquid Phase CSTR

2) Rate Laws: (5)-(14) same as PFR
3) Stoichiometry: (15)-(18)
same as Liquid Phase PFR
(19) $S_{C / D}=\frac{F_{C}}{F_{D}+0.0001}=\frac{v_{0} C_{C}}{v_{0} C_{D}+0.0001}$
4) Parameters:

$$
k_{1 A}, k_{2 C}, C_{A 0}, C_{B 0}, V, v_{0}
$$

Example B: Liquid Phase CSTR

 In terms of molar flow rates$$
\text { (1) } \begin{aligned}
\mathrm{A}+2 \mathrm{~B} & \rightarrow \mathrm{C} \quad \text { (2) } 2 \mathrm{~A}+3 \mathrm{C} \rightarrow \mathrm{D} \\
r_{1 A} & =-k_{1 A} C_{A} C_{B}^{2} \\
r_{2 C} & =-k_{2 C} C_{A}^{2} C_{C}^{3}
\end{aligned}
$$

1) Mole Balance (1-4)
2) Rates (5-14) 3) Stoichiometry: (15-19)
(1) $f\left(F_{A}\right)=F_{A 0}-F_{A}+r_{A} V(=0)$
(2) $f\left(F_{B}\right)=F_{B 0}-F_{B}+r_{B} V \quad(=0)$
(3) $f\left(F_{C}\right)=0-F_{C}+r_{C} V(=0)$
(4) $f\left(F_{D}\right)=0-F_{D}+r_{D} V$
(=0)

Same as
Example A
(15) $C_{A}=F_{A} / v_{0}$
(16) $C_{B}=F_{B} / v_{0}$
(17) $C_{C}=F_{C} / v_{0}$
(18) $C_{D}=F_{D} / v_{0}$
(19) $S_{C / D}=\frac{F_{C}}{F_{D}+0.00001}$

Example B: Liquid Phase CSTR

 In terms of concentration$$
\text { (1) } \begin{aligned}
\mathrm{A}+2 \mathrm{~B} & \rightarrow \mathrm{C} \quad \text { (2) } 2 \mathrm{~A}+3 \mathrm{C} \rightarrow \mathrm{D} \\
r_{1 A} & =-k_{1 A} C_{A} C_{B}^{2} \\
r_{2 C} & =-k_{2 C} C_{A}^{2} C_{C}^{3}
\end{aligned}
$$

1) Mole Balance (1-4)

(1) $f\left(C_{A}\right)=v_{0} C_{A 0}-v_{0} C_{A}+r_{A} V$
2) Rates (5-14)
3) Stoichiometry: (15-19)

Same as Example A
(2) $f\left(C_{B}\right)=v_{0} C_{B 0}-v_{0} C_{B}+r_{B} V \quad(=0)$
(3) $f\left(C_{C}\right)=0-v_{0} C_{C}+r_{C} V \quad(=0)$
(4) $f\left(C_{D}\right)=0-v_{0} C_{D}+r_{D} V \quad(=0)$

Example C: Gas Phase PFR, No ΔP

Same reactions, rate laws, and rate constants as Example A:

$$
\text { (1) } A+2 B \rightarrow C \quad-r_{1 A}=k_{1 A} C_{A} C_{B}^{2}
$$

NOTE: The specific reaction rate $k_{1 A}$ is defined with respect to species A.

$$
\text { (2) } 3 C+2 A \rightarrow D \quad-r_{2 C}=k_{2 C} C_{C}^{3} C_{A}^{2}
$$

NOTE: The specific reaction rate $\mathrm{k}_{2 \mathrm{C}}$ is defined with respect to species C.

Example C: Gas Phase PFR, No ΔP

1) Mole Balance

(1) $\frac{d F_{A}}{d V}=r_{A}$
(3) $\frac{d F_{C}}{d V}=r_{C}$
(2) $\frac{d F_{B}}{d V}=r_{B}$
(4) $\frac{d F_{D}}{d V}=r_{D}$

2) Rate Laws: (5)-(14) same as CSTR

Example C: Gas Phase PFR, No ΔP

3) Stoichiometry:

Gas: Isothermal $\mathrm{T}=\mathrm{T}_{0}$
(15) $C_{A}=C_{T 0} \frac{F_{A}}{F_{T}} p$ (16) $C_{B}=C_{T 0} \frac{F_{B}}{F_{T}} p$

$$
\text { (17) } C_{C}=C_{T 0} \frac{F_{C}}{F_{T}} p \quad \text { (18) } C_{D}=C_{T 0} \frac{F_{D}}{F_{T}} p
$$

(19) $F_{T}=F_{A}+F_{B}+F_{C}+F_{D}$

Packed Bed with Pressure Drop

$$
\frac{d p}{d W}=-\frac{\alpha}{2 p}\left(\frac{F_{T}}{F_{T 0}}\right)\left(\frac{T}{T_{0}}\right)=-\frac{\alpha}{2 p} \frac{F_{T}}{F_{T 0}}
$$

Example C: Gas Phase PFR, No $\triangle P$

4) Selectivity

$$
\begin{aligned}
& S=\frac{F_{C}}{F_{D}}=\text { if }(V>0.00001) \text { then }\left(\frac{F_{C}}{F_{D}}\right) \text { else }(0) \quad(20) \\
& p=1
\end{aligned}
$$

Example D: Membrane Reactor with ΔP

Same reactions, rate laws, and rate constants as Example A:

$$
\text { (1) } A+2 B \rightarrow C \quad-r_{1 A}=k_{1 A} C_{A} C_{B}^{2}
$$

NOTE: The specific reaction rate $k_{1 A}$ is defined with respect to species A.

$$
\text { (2) } 3 C+2 A \rightarrow D \quad-r_{2 C}=k_{2 C} C_{C}^{3} C_{A}^{2}
$$

NOTE: The specific reaction rate $\mathrm{k}_{2 \mathrm{C}}$ is defined with respect to species C.

Example D: Membrane Reactor with ΔP

 Because the smallest molecule, and the one with the lowest molecular weight, is the one diffusing out, we will neglect the changes in the mass flow rate down the reactor and will take as first approximation: $\dot{m}_{0}=\dot{m}$1) Mole Balances

$$
\left.\begin{array}{l}
A \quad \frac{d F_{A}}{d V}=r_{A} \tag{3}
\end{array} \quad \text { (1) } \quad C \quad \frac{d F_{C}}{d V}=r_{C}-R_{C}\right)
$$

We also need to account for the molar rate of desired product C leaving in the sweep gas $\mathrm{F}_{\mathrm{Csg}} \frac{d F_{C s g}}{d V}=R_{C}$

Example D: Membrane Reactor with ΔP

We need to reconsider our pressure drop equation.
When mass diffuses out of a membrane reactor there will be a decrease in the superficial mass flow rate, G. To account for this decrease when calculating our pressure drop parameter, we will take the ratio of the superficial mass velocity at any point in the reactor to the superficial mass velocity at the entrance to the reactor.

$$
\alpha=\alpha_{0} \frac{G}{G_{0}}=\alpha_{0}\left[\frac{\sum F_{i} \cdot M W_{i}}{\sum F_{i 0} \cdot M W_{i}}\right]
$$

Example D: Membrane Reactor with ΔP

The superficial mass flow rates can be obtained by multiplying the species molar flow rates, F_{i}, by their respective molecular weights, Mw_{i}, and then summing over all species:

$$
\frac{G}{G_{0}}=\frac{m / A_{C_{1}}}{m_{0} / A_{C_{1}}}=\frac{\sum F_{i} \cdot\left(M W_{i}\right) / A_{C_{1}}}{\sum F_{i 0} \cdot\left(M W_{i}\right) / A_{C_{1}}}=\frac{\sum F_{i}\left(M W_{i}\right)}{\sum F_{i 0}\left(M W_{i}\right)}
$$

Example D: Membrane Reactor with ΔP
2) Rate Laws: (5)-(14) same as Examples A, B, and C.
3) Stoichiometry: (15)-(20) same as Examples A and B ($\mathrm{T}=\mathrm{T}_{0}$)
$\frac{d p}{d W}=-\frac{\alpha}{2 p} \frac{F_{T}}{F_{T 0}} \quad \frac{d p}{d V}=-\frac{\rho \alpha}{2 p} \frac{F_{T}}{F_{T 0}}$ (21)
$R_{C}=k_{C}\left(C_{C}-C_{C S w e e p}\right)$
4) Sweep Gas Balance:

$$
\begin{aligned}
& \left.F_{C s g}\right|_{V}-\left.F_{C s g}\right|_{V+\Delta V}+R_{C} \Delta V=0 \\
& \frac{d F_{C s g}}{d V}=R_{C}
\end{aligned}
$$

Example E: Liquid Phase Semibatch

Same reactions, rate laws, and rate constants as Example A:

$$
\text { (1) } A+2 B \rightarrow C \quad-r_{1 A}=k_{1 A} C_{A} C_{B}^{2}
$$

NOTE: The specific reaction rate $k_{1 A}$ is defined with respect to species A.
(2) $3 C+2 A \rightarrow D$
$-r_{2 C}=k_{2 C} C_{C}^{3} C_{A}^{2}$

NOTE: The specific reaction rate $\mathrm{k}_{2 \mathrm{c}}$ is defined with respect to species C.

Example E: Liquid Phase Semibatch

The complex liquid phase reactions take place in a semilbatch reactor where A is fed to B with $\mathrm{F}_{\mathrm{A} 0}=3 \mathrm{~mol} / \mathrm{min}$. The volumetric flow rate is 10 $\mathrm{dm}^{3} / \mathrm{min}$ and the initial reactor volume is 1,000 dm^{3}.

The maximum volume is $2,000 \mathrm{dm}^{3}$ and $C_{A 0}=0.3 \mathrm{~mol} / \mathrm{dm}^{3}$ and $C_{B 0}=0.2 \mathrm{~mol} / \mathrm{dm}^{3}$. Plot C_{A}, C_{B}, C_{C}, C_{D} and $S_{S / D}$ as a function of time.

Example E: Liquid Phase Semibatch

(1) $A+2 B \rightarrow C \quad$ (2) $2 A+3 C \rightarrow D \quad F_{A 0}$ 1) Mole Balances:
$\frac{d N_{A}}{d t}=r_{A} V+F_{A 0}$
$\frac{d N_{B}}{d t}=r_{B} V$
$\frac{d N_{C}}{d t}=r_{C} V$
$\frac{d N_{D}}{d t}=r_{D} V$

$$
N_{A 0}=0
$$

$$
N_{B 0}=C_{B 0} V_{0}=2.000
$$

$$
N_{C 0}=0
$$

$$
N_{D 0}=0
$$

Example E: Liquid Phase Semibatch

2) Rate Laws: (5)-(14)

Net Rate, Rate Laws and relative rate - are the same as Liquid and Gas Phase PFR and Liquid Phase CSTR

$$
\begin{array}{ll}
V=V_{0}+v_{0} t \quad(15) \\
C_{A}=\frac{N_{A}}{V} \quad(16) \quad C_{B}=\frac{N_{B}}{V} \quad(17) \\
C_{C}=\frac{N_{C}}{V} \quad(18) \quad C_{D}=\frac{N_{D}}{V} \quad(19)
\end{array}
$$

3) Selectivity and Parameters:

$$
\begin{aligned}
& S_{C / D}=\text { if }(t>0.0001) \text { then }\left(\frac{N_{C}}{N_{D}}\right) \text { else }(0) \quad(20) \\
& v_{0}=10 \mathrm{dm}^{3} / \mathrm{min} \quad V_{0}=100 \mathrm{dm}^{3} \quad \mathrm{~F}_{\mathrm{A} 0}=3 \mathrm{~mol} / \mathrm{min}
\end{aligned}
$$

End of Lecture 13

