Lecture 11

Chemical Reaction Engineering (CRE) is the
field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 11 - Thursday 2/14/2013

- Block 1: Mole Balances
- Block 2: Rate Laws
- Block 3: Stoichiometry
- Block 4: Combine
- Determining the Rate Law from Experimental Data
- Integral Method
- Differential (Graphical) Method
- Nonlinear Least Regression

Integral Method

Consider the following reaction that occurs in a constant volume Batch Reactor: (We will withdraw samples and record the concentration of A as a function of time.)

$A \rightarrow$ Products

Mole Balances: $\quad \frac{d N_{A}}{d t}=r_{A} V$
Rate Laws:

$$
-r_{A}=k C_{A}^{\alpha}
$$

Stoichiometry:
Combine:

$$
\begin{gathered}
V=V_{0} \\
-\frac{d C_{A}}{d t}=k C_{A}^{\alpha}
\end{gathered}
$$

Finally we should also use the formula to plot reaction rate data in terms of conversion vs. time for 0 , 1 st and 2nd order reactions.
Derivation equations used to plot 0th, 1st and 2nd order reactions.

These types of plots are usually used to determine the values k for runs at various temperatures and then used to determine the activation energy.

Zeroth order	First Order	$\underline{\text { Second Order }}$
$\frac{d C_{A}}{d t}=r_{A}=-k$	$\frac{d C_{A}}{d t}=r_{A}=-k C_{A}$	$\frac{d C_{A}}{d t}=r_{A}=-k C_{A}^{2}$
at $t=0, C_{A}=C_{A 0}$	at $t=0, C_{A}=C_{A 0}$	at $t=0, C_{A}=C_{A 0}$
$\Rightarrow C_{A}=C_{A 0}-k t$	$\Rightarrow \ln \left(\frac{C_{A 0}}{C_{A}}\right)=k t$	$\Rightarrow \frac{1}{C_{A}}-\frac{1}{C_{A 0}}=k t$

Integral Method

Guess and check for $\alpha=0,1,2$ and check against experimental plot.

$$
\begin{array}{lll}
\alpha=0 & \alpha=1 & \alpha=2 \\
r_{A}=C_{A 0}-k t & \ln \left(\frac{C_{A 0}}{C_{A}}\right)=k t & \frac{1}{C_{A}}-\frac{1}{C_{A 0}}=k t
\end{array}
$$

C_{A}
$\ln \left(\mathrm{C}_{\mathrm{A} 0} / \mathrm{C}_{\mathrm{A}}\right)$
$1 / C_{A}$

Differential Method

Taking the natural \log of $\left[-\frac{d C_{A}}{d t}=k C_{A}^{\alpha}\right]$

$$
\ln \left(-\frac{d C_{A}}{d t}\right)=\ln k+\alpha \ln C_{A}
$$

The reaction order can be found from a In-In plot of: $\left(-\frac{d C_{A}}{d t}\right)$ vs C_{A}

$$
k=\frac{\left.\left(-\frac{d C_{A}}{d t}\right)\right|_{p}}{C_{A p}^{\alpha}}
$$

Methods for finding the slope of log-log and semi-log graph papers may be found at

http://www.physics.uoguelph.ca/tutorials/GLP/

However, we are usually given concentration as a function of time from batch reactor experiments:

time (s)	0	t_{1}	t_{2}	t_{3}
concentration (moles $/ \mathrm{dm}^{3}$)	$\mathrm{C}_{\mathrm{A} 0}$	$\mathrm{C}_{\mathrm{A} 1}$	$\mathrm{C}_{\mathrm{A} 2}$	$\mathrm{C}_{\mathrm{A} 3}$

Three ways to determine $\left(-\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}\right)$ from concentration-time data

- Graphical differentiation
- Numerical differentiation formulas
- Differentiation of a polynomial fit to the data

1. Graphical

The method accentuates measurement error!

Example - Finding the Rate Law

$t(\min)$	0	1	2	3
$C_{A}(\mathrm{~mol} / \mathrm{L})$	1	0.7	0.5	0.35
$-\frac{\Delta C_{A}}{\Delta t}$	0.3		0.2	

$$
-\frac{\Delta C_{A}}{\Delta t} .3 \quad \begin{aligned}
& \text { Areas equal for both } \\
& \text { sides of the histogram }
\end{aligned}
$$

Example - Finding the Rate Law

Find $f(t)$ of $-\frac{\Delta C_{A}}{\Delta t}$ using equal area differentiation

C_{A}	1	0.7	0.5	0.35
$-\mathrm{d}_{\mathrm{A}} / \mathrm{dt}$	0.35	0.25	0.175	0.12

Plot $\left(-\mathrm{dC}_{\mathrm{A}} / \mathrm{dt}\right)$ as a function of C_{A}

Example - Finding the Rate Law

Choose a point, p, and find the concentration and derivative at that point to determine k .

Non-Linear Least-Square Analysis

We want to find the parameter values (α, k, E) for which the sum of the squares of the differences, the measured rate $\left(r_{m}\right)$, and the calculated rate $\left(r_{c}\right)$ is a minimum.

$$
\sigma^{2}=\sum_{i=1}^{n} \frac{\left(C_{i m}-C_{i c}\right)^{2}}{N-K}=\frac{S^{2}}{N-K}
$$

That is, we want σ^{2} to be a minimum.

Non-Linear Least-Square Analysis

For concentration-time data, we can combine the mole balance equation for $-r_{A}=k C_{A}^{\alpha}$ to obtain:

$$
\begin{gathered}
\frac{d C_{A}}{d t}=-k C_{A}^{\alpha} \\
t=0 \quad C_{A}=C_{A 0} \\
C_{A 0}^{1-\alpha}-C_{A}^{1-\alpha}=(1-\alpha) k t
\end{gathered}
$$

Rearranging to obtain the calculated concentration as a function of time, we obtain:

$$
C_{A c}=C_{A}=\left[C_{A 0}^{1-\alpha}-(1-\alpha) k t\right]^{1 /(1-\alpha)}
$$

Non-Linear Least-Square Analysis

Now we could use Polymath or MATLAB to find the values of α and k that would minimize the sum of squares of differences between the measured (C_{Am}) and calculated (C_{Ac}) concentrations.
That is, for N data points,

$$
s^{2}=\sum_{i=1}^{N}\left(C_{\mathrm{A} m i}-C_{\mathrm{A} c i}\right)^{2}=\sum_{i=1}^{N}\left[C_{\mathrm{A} m i}-\left[C_{\mathrm{A} 0}^{1-\alpha}-(1-\alpha) k t_{i}\right]^{1 /(1-\alpha)}\right]^{2}
$$

Similarly one can calculate the time at a specified concentration, t_{c}

$$
t_{c}=\frac{C_{\mathrm{A} 0}^{1-\alpha}-C_{\mathrm{A}}^{1-\alpha}}{k(1-\alpha)}
$$

and compare it with the measured time, t_{m}, at that same concentration.
That is, we find the values of k and α that minimize:

$$
s^{2}=\sum_{i=1}^{N}\left(t_{m i}-t_{c i}\right)^{2}=\sum_{i=1}^{N}\left[t_{m i}-\frac{C_{\mathrm{A} 0}^{1-\alpha}-C_{\mathrm{A} i}^{1-\alpha}}{k(1-\alpha)}\right]^{2}
$$

Non-Linear Least Squares Analysis

Guess values for α and k and solve for measured data points then sum squared differences:

C_{Am}	1	0.7	0.5	0.35	
C_{Ac}	1	0.5	0.33	0.25	
$\left(\mathrm{C}_{\mathrm{Ac}}-\mathrm{C}_{\mathrm{Am}}\right)$	0	-0.2	-0.17	-0.10	
$\left(\mathrm{C}_{\mathrm{Ac}}-\mathrm{C}_{\mathrm{Am}}\right)^{2}$	0	0.04	0.029	0.01	0.07

for $\alpha=2, k=1 \rightarrow s^{2}=0.07$
for $\alpha=2, k=2 \rightarrow s^{2}=0.27$
etc. until s^{2} is a minimum

Non-Linear Least Squares Analysis

Table E5-3.1. Regression of Data

Original Data				uess 1	Guess 2		Guess 3		Guess 4	
			$\begin{aligned} & \alpha=3 \\ & k^{\prime}=5 \end{aligned}$		$\begin{aligned} & \alpha=2 \\ & k^{\prime}=5 \end{aligned}$		$\begin{gathered} \alpha=2 \\ k^{\prime}=0.2 \end{gathered}$		$\begin{gathered} \alpha=2 \\ k^{\prime}=0.1 \end{gathered}$	
	$\underset{(\mathrm{min})}{t}$	$\begin{gathered} C_{\mathrm{A}} \times 10^{3} \\ \left(\mathrm{~mol} / \mathrm{dm}^{3}\right) \end{gathered}$	t_{C}	$\left(t_{m}-t_{\mathrm{C}}\right)^{2}$	t_{C}	$\left(t_{m}-t_{\mathrm{C}}\right)^{2}$	t_{C}	$\left(t_{m}-t_{\mathrm{C}}\right)^{2}$	t_{C}	$\left(t_{m}-t_{\mathrm{C}}\right)^{2}$
1	0	50	0	0	0	0	0	0	0	0
2	50	38	29.2	433	1.26	2,375	31.6	339	63.2	174
3	100	30.6	66.7	1,109	2.5	9,499	63.4	1,340	126.8	718
4	200	22.2	163	1,375	5.0	38,622	125.2	5,591	250	2,540
$s^{2}=2916$					$s^{2}=49,895$		$s^{2}=7270$		$s^{2}=3432$	

Non-Linear Least Squares Analysis

$s^{2}=\sum_{k=1}^{N}\left(C_{A m i}-C_{A t}\right)^{2}=\sum_{k=1}^{N}\left(C_{A n i t}-\left[C_{A 0}^{1-\alpha}-(1-\alpha) k t_{i}\right]^{11-\alpha \alpha}\right)^{2}$
We find the values of alpha and k which minimize s^{2}

$$
\sigma^{2}=f(k, \alpha)
$$

Minimum Sum of Squares

File Edit Window Help

POLYMATH Report

Nonlinear Regression (mrqmin)

Model: $\mathrm{C} 02=\mathrm{A}+\mathrm{B}^{*} \mathrm{C} 03$

Variable Initial guess Value 95\% confidence

A	0.5	-8.38	0.1723379
B	0.5	0.68	0.0519618

Nonlinear regression settings
Max \# iterations $=64$
Tolerance $=0.0001$
Precision

$\mathrm{R}^{\wedge} 2$	0.9982729
$\mathrm{R}^{\wedge} 2 \mathrm{adj}$	0.9976972
Rmsd	0.0178885
Variance	0.0026667
Chi-Sq	0.8
Alamda	$1.0 \mathrm{E}-05$

No File		POLYMATH Report	
10:16 PM	11/26/2007	CAPS	NUM

Residuals

End of Lecture 11

