Lecture 8

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 8 – Tuesday

- Block 1: Mole Balances
- Block 2: Rate Laws
- Block 3: Stoichiometry
- Block 4: Combine

Pressure Drop

- Liquid Phase Reactions
- Gas Phase Reactions
- Engineering Analysis of Pressure Drop

Pressure Drop in PBRs
Concentration Flow System:
$$C_A = \frac{F_A}{\upsilon}$$

Gas Phase Flow System: $\upsilon = \upsilon_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P_0}{P}$
 $C_A = \frac{F_A}{\upsilon} = \frac{F_{A0} (1 - X)}{\upsilon_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P_0}{P}} = \frac{C_{A0} (1 - X) T_0}{(1 + \varepsilon X) T} \frac{P}{T} \frac{P_0}{P_0}$
 $C_B = \frac{F_B}{\upsilon} = \frac{F_{A0} \left(\Theta_B - \frac{b}{a} X\right)}{\upsilon_0 (1 + \varepsilon X) \frac{T}{T_0} \frac{P}{P}} = \frac{C_{A0} \left(\Theta_B - \frac{b}{a} X\right)}{(1 + \varepsilon X) T} \frac{T_0}{T} \frac{P}{P_0}$

Note: Pressure Drop does NOT affect liquid phase reactions

Sample Question:

Analyze the following second order gas phase reaction that occurs isothermally in a PBR:

A→B

Mole Balances

Must use the differential form of the mole balance to separate variables: λV

$$F_{A0} \frac{dx}{dW} = -r_A'$$

Rate Laws

Second order in A and irreversible: $-r_{A}' = kC_{A}^{2}$

Stoichiometry $C_A = \frac{F_A}{\upsilon} = C_{A0} \frac{(1-X)}{(1+\varepsilon X)} \frac{P}{P_0} \frac{T_0}{T}$

Isothermal,
$$T=T_0$$
 $C_A = C_{A0} \frac{(1-X)}{(1+\varepsilon X)} \frac{P}{P_0}$

Combine:

$$\frac{dX}{dW} = \frac{kC_{A0}^2}{F_{A0}} \frac{(1-X)^2}{(1+\varepsilon X)^2} \left(\frac{P}{P_0}\right)^2$$

Need to find (P/P_0) as a function of W (or V if you have a PFR)

Ergun Equation:

$$\frac{dP}{dz} = \frac{-G}{\rho g_c D_p} \left(\frac{1-\phi}{\phi^3}\right) \left[\frac{150(1-\phi)\mu}{D_p} + \underbrace{1.75G}_{TURBULENT}\right]$$

Constant mass flow: $\dot{m} = \dot{m}_0$

$$\rho \upsilon = \rho_0 \upsilon_0$$
$$\rho = \rho_0 \frac{\upsilon_0}{\upsilon}$$

$$\upsilon = \upsilon_0 \frac{F_T}{F_{T0}} \frac{P_0}{P} \frac{T}{T_0}$$
$$\upsilon = \upsilon_0 (1 + \varepsilon X) \frac{P_0}{P} \frac{T}{T_0}$$

Variable Density
$$\rho = \rho_0 \frac{P}{P_0} \frac{T_0}{T} \frac{F_{T0}}{F_T}$$

$$\frac{dP}{dz} = \frac{-G}{\rho_0 g_c D_p} \left(\frac{1-\phi}{\phi^3}\right) \left[\frac{150(1-\phi)\mu}{D_p} + 1.75G\right] \frac{P_0}{P} \frac{T}{T_0} \frac{F_T}{F_{T0}}$$

Let
$$\beta_0 = \frac{G}{\rho_0 g_c D_p} \left(\frac{1-\phi}{\phi^3}\right) \left[\frac{150(1-\phi)\mu}{D_p} + 1.75G\right]$$

Catalyst Weight
$$W = zA_c\rho_b = zA_c(1-\phi)\rho_c$$

Where

 $\rho_{b} = bulk \ density$ $\rho_{c} = solid \ catalyst \ density$ $\phi = porosity (a.k.a., \ void \ fraction)$ $(1-\phi) = solid \ fraction$

$$\frac{dP}{dW} = \frac{-\beta_0}{A_c (1-\phi)\rho_c} \frac{P_0}{P} \frac{T}{T_0} \frac{F_T}{F_{T0}}$$

Let
$$\alpha = \frac{2\beta_0}{A_c(1-\phi)\rho_c} \frac{1}{P_0}$$

Pressure Drop in PBRs

$$\frac{dy}{dW} = -\frac{\alpha}{2y} \frac{T}{T_0} \frac{F_T}{F_{T0}} \qquad y = \frac{P}{P_0}$$

We will use this form for single reactions:

$$\frac{d(P/P_0)}{dW} = -\frac{\alpha}{2} \frac{1}{(P/P_0)} \frac{T}{T_0} (1 + \varepsilon X)$$

$$\frac{dy}{dW} = -\frac{\alpha}{2y} \frac{T}{T_0} (1 + \varepsilon X)$$

$$\frac{dy}{dW} = -\frac{\alpha}{2y} \left(1 + \varepsilon X\right)$$

Isothermal case

$$\frac{dX}{dW} = \frac{kC_{A0}^{2}(1-X)^{2}}{F_{A0}(1+\varepsilon X)^{2}} y^{2}$$

$$\frac{dX}{dW} = f(X, P) \text{ and } \frac{dP}{dW} = f(X, P) \text{ or } \frac{dy}{dW} = f(y, X)$$

The two expressions are coupled ordinary differential equations. We can only solve them simultaneously using an ODE solver such as Polymath. For the special case of isothermal operation and epsilon = 0, we can obtain an analytical solution.

Polymath will combine the Mole Balances, Rate Laws and Stoichiometry.

Packed Bed Reactors

For
$$\varepsilon = 0$$

$$\frac{dy}{dW} = \frac{-\alpha}{2y}(1 + \varepsilon X)$$

$$When \quad W = 0 \quad y = 1$$

$$dy^2 = -\alpha \, dW$$

$$y^2 = (1 - \alpha W)$$

$$y = (1 - \alpha W)^{1/2}$$

$$\upsilon = \upsilon_0 \left(1 + \varepsilon X \right) \frac{P_0}{P} \frac{T}{T_0}$$

$$T = T_0 \qquad y = \frac{P_0}{P}$$

$$f = \frac{\nu_0}{\nu} = \frac{1}{(1 + \varepsilon X)y}$$

Example 1: Gas Phase Reaction in PBR for $\delta=0$

Gas Phase reaction in PBR with $\delta = 0$ (Analytical Solution)

$$A + B \rightarrow 2C$$

Repeat the previous one with equimolar feed of A and B and:

 $k_{\rm A} = 1.5 {\rm dm^6/mol/kg/min}$ $C_{A0} = C_{B0}$ $\alpha = 0.0099 {\rm kg^{-1}}$

Find X at 100 kg

Example 1: Gas Phase Reaction in PBR for $\delta=0$

1) Mole Balance

$$\frac{dX}{dW} = \frac{-r'_A}{F_{A0}}$$

2) Rate Law $-r'_{A} = kC_{A}C_{B}$

3) Stoichiometry $C_A = C_{A0}(1-X)y$

$$C_B = C_{A0} (1 - X) y$$

Example 1: Gas Phase Reaction in PBR for $\delta=0$ $\frac{dy}{dW} = -\frac{\alpha}{2y}$ $2ydy = -\alpha dW$ W = 0 , y = 1 $y^2 = 1 - \alpha W$ $y = (1 - \alpha W)^{1/2}$ 4) Combine $-r_{A} = kC_{A0}^{2}(1-X)^{2}y^{2} = kC_{A0}^{2}(1-X)^{2}(1-\alpha W)$

$$\frac{dX}{dW} = \frac{kC_{A0}^{2}(1-X)^{2}(1-\alpha W)}{F_{A0}}$$

Example 1: Gas Phase Reaction in PBR for $\delta=0$

$$\frac{dX}{(1-X)^2} = \frac{kC_{A0}^2}{F_{A0}} (1-\alpha W) dW$$

$$\frac{X}{1-X} = \frac{kC_{A0}^2}{F_{A0}} \left(W - \frac{\alpha W^2}{2} \right)$$

W = 0, X = 0, W = W, X = X

 $X = 0.6 (with \ pressured rop)$ $X = 0.75 (without \ pressured rop, i.e. \ \alpha = 0)$

Example 2:

Gas Phase Reaction in PBR for $\delta \neq 0$

The reaction

$A + 2B \rightarrow C$

is carried out in a packed bed reactor in which there is pressure drop. The feed is stoichiometric in A and B.

Plot the conversion and pressure ratio $y = P/P_0$ as a function of catalyst weight up to 100 kg.

Additional Information $k_A = 6 \text{ dm}^9/\text{mol}^2/\text{kg/min}$ $\alpha = 0.02 \text{ kg}^{-1}$

Example 2: **Gas Phase Reaction in PBR for \delta \neq 0** $A + 2B \rightarrow C$ **1) Mole Balance** $\frac{dX}{dW} = \frac{-r'_A}{F_{A0}}$

- **2)** Rate Law $-r'_A = kC_A C_B^2$
- 3) Stoichiometry: Gas, Isothermal

$$\upsilon = \upsilon_0 \left(1 + \varepsilon X\right) \frac{P_0}{P}$$
$$C_A = C_{A0} \frac{\left(1 - X\right)}{\left(1 + \varepsilon X\right)} y$$

Example 2:
Gas Phase Reaction in PBR for
$$\delta \neq 0$$

4) $C_B = C_{A0} \frac{(\Theta_B - 2X)}{(1 + \varepsilon X)} y$
5) $\frac{dy}{dW} = -\frac{\alpha}{2y} (1 + \varepsilon X)$
6) $f = \frac{\upsilon}{\upsilon_0} = \frac{(1 + \varepsilon X)}{y}$
7) $\varepsilon = y_{A0} [1 - 1 - 2] = \frac{1}{3} [-2] = -\frac{2}{3}$
 $C_{A0} = 2, F_{A0} = 2, k = 6, \alpha = 0.02$
Initial values: $W=0, X=0, y=1$
Final values: $W=100$
Combine with Polymath.
If $\delta \neq 0$, polymath must be used to solve.

Example 2:

Gas Phase Reaction in PBR for $\delta \neq 0$

POLYMATH Results

POLYMATH Report 01-30-2006, Rev5.1.233

Calculated values of the DEQ variables

Variable	initial value	<u>minimal value</u>	<u>maximal value</u>	<u>final value</u>
W	0	0	100	100
Х	0	0	0.8587763	0.8587763
У	1	0.1148659	1	0.1148659
eps	-0.6666667	-0.6666667	-0.6666667	-0.6666667
Cao	0.2	0.2	0.2	0.2
TheataB	2	2	2	2
СЪ	0.4	0.0151789	0.4	0.0151789
Fao	2	2	2	2
k	6	6	6	6
Ca	0.2	0.0075895	0.2	0.0075895
alpha	0.02	0.02	0.02	0.02
ra	-0.192	-0.192	-1.049E-05	-1.049E-05

ODE Report (RKF45)

Differential equations as entered by the user

- [1] d(X)/d(W) = -ra/Fao
- [2] d(y)/d(VV) = -alpha*(1+eps*X)/2/y

Explicit equations as entered by the user

- [1] eps = (1-2-1)/3
- [2] Cao=0.2
- [3] TheataB = 2
- [4] Cb = Cao*(TheataB-2*X)/(1+eps*X)*y
- [5] Fao=2
- [6] k=6
- [7] Ca = Cao*(1-X)/(1+eps*X)*y
- [8] alpha = 0.02
- [9] ra=-k*Ca*Cb^2

Example 2: Gas Phase Reaction in PBR for $\delta \neq 0$

Gas Phase Reaction in PBR with Pressure Drop $T = T_0$

Mole Balance (1) Rate Law (2) Stoichiometry Gas $T = T_0$ (3) $C_A = \frac{C_{A0}(1-X)}{(1+\varepsilon X)}y$ (4) $\frac{dX}{dW} = -r'_A/F_{A0}$ $-r'_A = kC_A$ $C_A = \frac{C_{A0}(1-X)}{(1+\varepsilon X)}y$

(5) – (9) Parameters, ε , α , ...

Combine:

Polymath with combine for you

Robert the Worrier wonders: *What if* we increase the catalyst size by a factor of 2?

Robert

$$\alpha = \frac{2}{A_{\rm C}(1-\phi)\rho_{\rm C}P_0}\beta_0 = \frac{2}{A_{\rm C}(1-\phi)\rho_{\rm C}P_0} \left[\frac{G(1-\phi)}{\rho_0 g_{\rm C}D_{\rm P}\phi^3} \left[\frac{\frac{Laminar}{150(1-\phi)\mu}}{D_{\rm P}} + \frac{Turbulent}{1.75G}\right]\right]$$

$$\rho_0 = MW * C_{T0} = \frac{MW * P_0}{RT_0}$$

$$\alpha = \frac{2RT_0}{A_C \rho_C g_C P_0^2 D_P \phi^3 M W} G \left[\frac{150(1-\phi)\mu}{D_P} + 1.75G \right]$$
$$\alpha \approx \left(\frac{1}{P_0}\right)^2$$

Pressure Drop Engineering Analysis

A. Laminar Flow Dominant (Term 1 >> Term 2)

$$\alpha \sim \frac{G}{A_C D_P^2 P_0^2}$$

Case 1 / Case 2

$$\alpha_2 = \alpha_1 \left(\frac{G_2}{G_1} \right) \left(\frac{A_{C1}}{A_{C2}} \right) \left(\frac{D_{P1}}{D_{P2}} \right)^2 \left(\frac{P_{01}}{P_{02}} \right)^2$$

Example

How will the pressure drop (e.g., α) change if you decrease the particle diameter by a factor of 4 and increase entering pressure by a factor of 3

$$D_{P2} = \frac{1}{4} D_{P1} \text{ and } P_{02} = 3P_{01}$$
$$\alpha_2 = \alpha_1 \left(\frac{D_{P1}}{\frac{1}{4} D_{P1}}\right)^2 \left(\frac{P_{01}}{3P_{01}}\right)^2 = \frac{16}{9} \alpha_1$$

Pressure Drop Engineering Analysis

B. Turbulent Flow Dominates (Term 2 >> Term 1)

 $\alpha \sim \frac{G^2}{A_C D_P P_0^2}$ $\alpha_2 = \alpha_1 \left(\frac{G_2}{G_1}\right)^2 \left(\frac{A_{C1}}{A_{C2}}\right) \left(\frac{P_{01}}{P_{02}}\right)^2 \left(\frac{D_{P1}}{D_{P2}}\right)$ $D_{P2} = \frac{1}{4} D_{P1}$ and $P_{02} = 3P_{01}$ $\alpha_{2} = \alpha_{1} \left(\frac{D_{P1}}{\frac{1}{4} D_{P1}} \right) \left(\frac{P_{01}}{3P_{01}} \right)^{2} = \frac{4}{9} \alpha_{1}$

Again

Heat Effects

Isothermal Design

Stoichiometry

Rate Laws

Mole Balance

End of Lecture 8

Pressure Drop - Summary

Pressure Drop

Liquid Phase Reactions

Pressure Drop does not affect concentrations in Iquid phase reactions.

Gas Phase Reactions

 Epsilon does not equal to zero d(P)/d(W)=...

Polymath will combine with d(X)/d(W) = ... for you

Epsilon = 0 and isothermal

P=f(W)

Combine then separate variables (X,W) and integrate

Engineering Analysis of Pressure Drop

Pressure Change – Molar Flow Rate

$$\frac{dP}{dW} = -\frac{\beta_0 \frac{F_T}{F_{T0}} \frac{P_0}{P} \frac{T}{T_0}}{\rho A_c (1-\phi)\rho_c}$$
$$\frac{dy}{dW} = -\frac{\beta_0 \frac{F_T}{F_{T0}} \frac{T}{T_0}}{y P_0 A_c (1-\phi)\rho_c}$$
$$\frac{dy}{dW} = -\frac{\alpha}{2y} \frac{F_T}{F_{T0}} \frac{T}{T_0}$$

$$\alpha = \frac{2\beta_0}{P_0 A_C (1 - \phi)\rho_C}$$

Use for heat effects, multiple rxns

$$\frac{F_{\rm T}}{F_{\rm T0}} = (1 + \varepsilon {\rm X}) \quad \text{Isothermal: T} = {\rm T_0}$$

$$\frac{\mathrm{dX}}{\mathrm{dW}} = -\frac{\alpha}{2y} \left(1 + \varepsilon X\right)$$

Example 1: Gas Phase Reaction in PBR for $\delta=0$ A + B \rightarrow 2C

 $k = 1.5 \frac{dm^6}{mol \cdot kg \cdot \min}$, $\alpha = 0.0099kg^{-1}$, $C_{B0} = C_{A0}$

Case 1: W = 100kg , X = ? , P = ?

Case 2: $D_P = 2D_{P1}$, $P_{02} = \frac{1}{2}P_{01}$, X = ? , P = ?

PBR

$$F_{A0} \frac{dX}{dW} = -r'_{A}$$

$$r_{A} = -kC_{A}C_{B}$$

$$C_{A} = \frac{F_{A}}{F_{T}}y$$

$$C_{A} = C_{B}$$

$$\delta = 0 \text{ and } T = T_{0} \therefore y = (1 - \alpha W)^{1/2}$$