Lecture 23

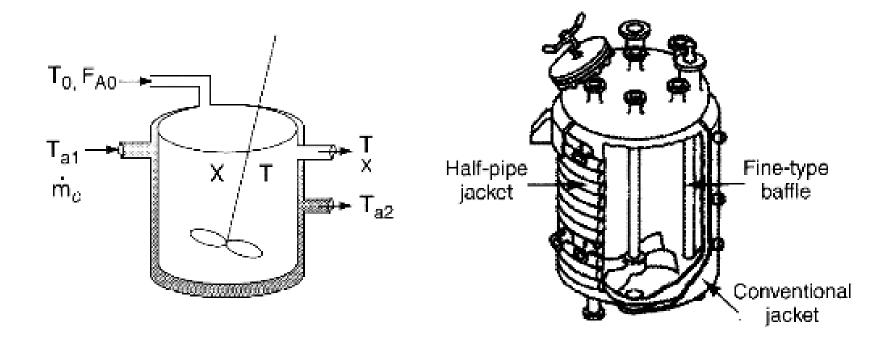
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 23 Class Lecture 19 - Tuesday

CSTR With Heat Effects

- Multiple Steady States
- Ignition and Extinction Temperatures

CSTR with Heat Effects



Courtesy of Pfaudler, Inc.

$$\dot{Q} - \dot{W}_{S} + \sum_{i=1}^{n} F_{i0} H_{i0} - \sum_{i=1}^{n} F_{i} H_{i} = \frac{d\hat{E}_{sys}}{dt}$$

Neglect

Using
$$\hat{E}_{sys} = \sum N_i E_i = \sum N_i (H_i - PV_i) = \sum N_i H_i - PV_i$$

$$\frac{dE_{sys}}{dt} = \frac{d\sum N_i H_i}{dt} = \sum N_i \frac{dH_i}{dt} = \sum H_i \frac{dN_i}{dt}$$

$$\frac{dH_{i}}{dt} = C_{Pi} \frac{dT}{dt}$$

$$\frac{dN_i}{dt} = -v_i r_A V + F_{i0} - F_i$$

We obtain after some manipulation:

$$\frac{dT}{dt} = \frac{\dot{Q} - \dot{W}_{S} - \sum F_{i0}C_{Pi}(T - T_{i0}) + \left[-\Delta H_{Rx}(T)\right](-r_{A}V)}{\sum N_{i}C_{Pi}}$$

Collecting terms with $\dot{Q}=UA(T_a-T)$ and $\dot{W}_S=0$ high coolant flow rates, and $F_{i0}=F_{A0}\Theta_i$

$$\frac{dT}{dt} = \frac{\left[\frac{C_{P_0}}{F_{A0} \sum \Theta_i C_{P_i}} (T - T_0) + (UA(T - T_a)) \right]}{\sum N_i C_{P_i}}$$

$$= \frac{F_{A0}}{\sum N_i C_{P_i}} \underbrace{\Delta H_R \frac{r_A V}{F_{A0}} - \left[C_{P_0} \left[T - T_0 + \underbrace{\frac{UA}{F_{A0} C_{P_s}}}_{\kappa} (T - T_a) \right] \right]}_{\kappa}$$

6

$$\frac{dT}{dt} = \frac{F_{A0}}{\sum N_i C_{P_i}} [G(T) - R(T)]$$

$$G(T) = (r_A V) [\Delta H_{Rx}]$$

$$R(T) = C_{P_0} [(1 + \kappa)T - (T_0 + \kappa T_a)]$$

$$R(T) = C_{P_0} (1 + \kappa) \left(T - \frac{T_0 + \kappa T_a}{1 + \kappa}\right) = C_{P_0} (1 + \kappa)(T - T_C)$$

$$\kappa = \frac{UA}{F_{A0}C_{P0}} \qquad T_{C} = \frac{T_{0} + \kappa T_{a}}{1 + \kappa}$$

$$\frac{dT}{dt} = G(T) - R(T)$$

If G(T) > R(T) Temperature Increases

If R(T) > G(T) Temperature Decreases

At Steady State

$$\begin{split} \frac{d\mathbf{T}}{dt} &= \frac{d\mathbf{N}_{A}}{dt} = 0\\ &- \mathbf{r}_{A} \mathbf{V} = \mathbf{F}_{A0} \mathbf{X}\\ &\boldsymbol{G}(\boldsymbol{T}) - \boldsymbol{R}(\boldsymbol{T}) = \boldsymbol{0}\\ &(-\Delta \mathbf{H}_{Rx}) \mathbf{F}_{A0} \mathbf{X} - \mathbf{F}_{A0} \sum \boldsymbol{\Theta}_{i} \mathbf{C}_{P_{i}} (\mathbf{T} - \mathbf{T}_{0}) - \mathbf{U} \mathbf{A} (\mathbf{T} - \mathbf{T}_{a}) = 0 \end{split}$$

Solving for X.

Solving for X:

$$X = \frac{\sum \Theta_{i}C_{P_{i}}(T - T_{0}) + \frac{UA}{F_{A0}}(T - T_{a})}{-\Delta H_{Rx}^{\circ}} = X_{EB}$$

Solving for T:

$$T = \frac{F_{A0}X(-\Delta H_{Rx}) + UAT_a + F_{A0}\sum\Theta_iC_{P_i}T_0}{UA + F_{A0}\sum\Theta_iC_{P_i}}$$

$$X(-\Delta H_{Rx}) = C_{P_0} \left| T - T_0 + \frac{UA}{F_{A_0}C_{P_0}} (T - T_a) \right|$$

Let
$$\kappa = \frac{UA}{F_{A0}C_{P_0}}$$

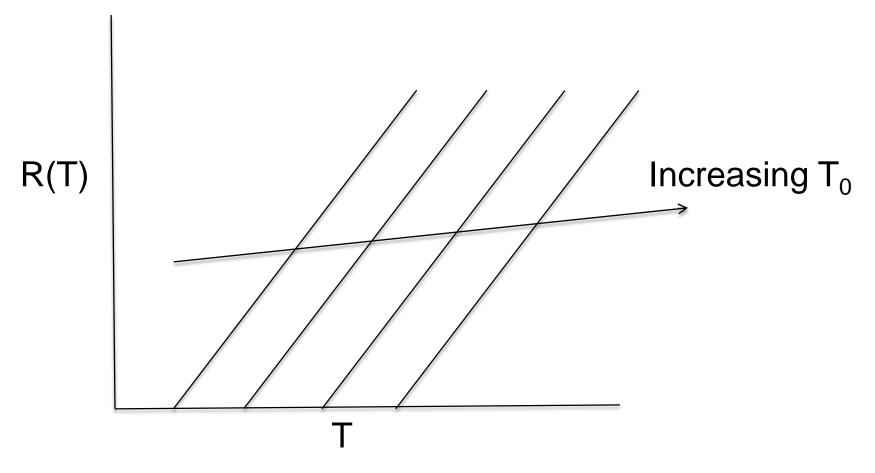
$$X(-\Delta H_{Rx}) = C_{P_0} (T + \kappa T - T_0 - \kappa T_a) = C_{P_0} (1 + \kappa) \left(T - \frac{T_0 + \kappa T_a}{1 + \kappa} \right)$$
$$= C_{P_0} (1 + \kappa) (T - T_C)$$

$$T_{\rm C} = \frac{T_0 + \kappa T_{\rm a}}{1 + \kappa}$$

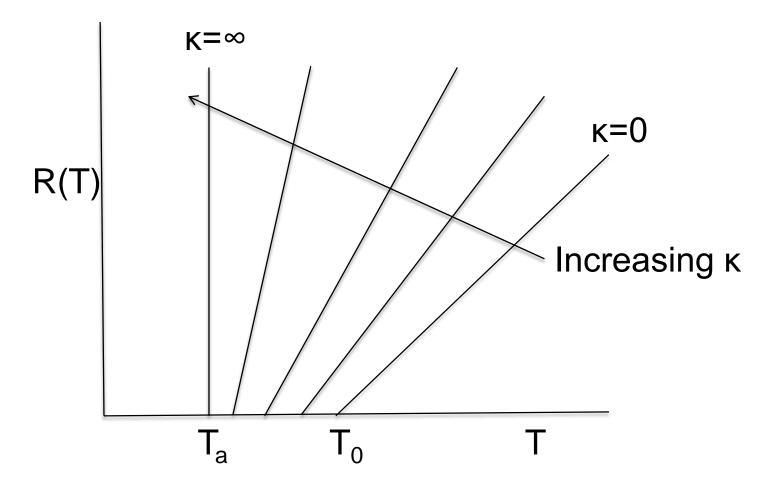
$$\underbrace{-X \Delta H^{o}_{Rx}}_{P0} = \underbrace{C_{P0}(1+\kappa)(T-T_{C})}_{P0}$$

$$X = \frac{C_{P0}(1+\kappa)(T-T_{C})}{-\Delta H^{o}_{Rx}}$$

$$T = T_C + \frac{\left(-\Delta H^o_{Rx}\right)(X)}{C_{P0}(1+\kappa)}$$



Variation of heat removal line with inlet temperature.



Variation of heat removal line with κ (κ =UA/C_{P0}F_{A0})

$$V = \frac{F_{A0}X}{-r_{A}(X,T)}$$

$$A \rightarrow B$$

1) Mole Balances:
$$V = \frac{\Gamma_{A0}^2}{-r}$$

2) Rate Laws:
$$-r_A = kC_A$$

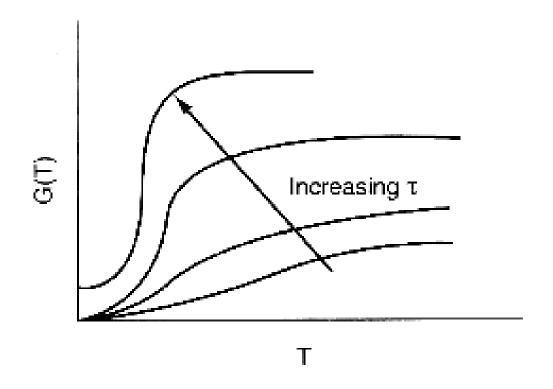
3) Stoichiometry:
$$C_A = C_{A0}(1-X)$$

4) Combine:
$$V = \frac{F_{A0}X}{kC_{A0}(1-X)} = \frac{C_{A0}v_0X}{kC_{A0}(1-X)}$$

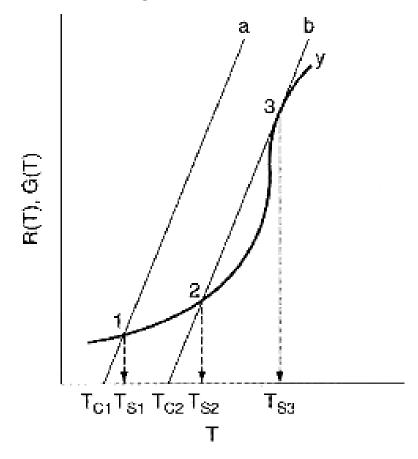
$$\tau \mathbf{k} = \frac{\mathbf{X}}{1 - \mathbf{X}}$$

$$X = \frac{\tau k}{1 + \tau k} = \frac{\tau A e^{-E/RT}}{1 + A e^{-E/RT}}$$

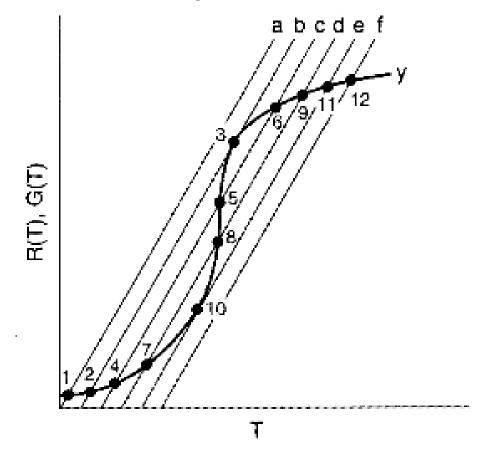
$$G(T) = X(-\Delta H_{Rx}) = \frac{\tau A e^{-E/RT}}{1 + A e^{-E/RT}}(-\Delta H_{Rx})$$



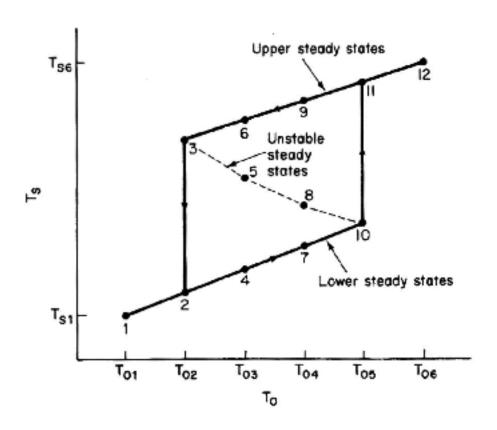
Variation of heat generation curve with space-time.



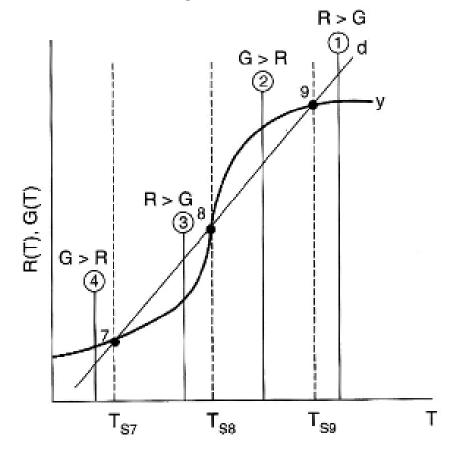
Finding Multiple Steady States with T_o varied



Finding Multiple Steady States with T_o varied



Temperature ignition-extinction curve



Stability of multiple state temperatures

MSS - Generating G(T) and R(T)

$$\frac{dT}{dt} = 1$$

$$G(T) = X \cdot (-\Delta H_{Rx})$$

$$R = C_{P_0} \cdot (1 + \kappa) \cdot (T - T_C)$$

Need to solve for X after combining mole balance, rate law, and stoichiometry.

MSS - Generating G(T) and R(T)

For a first order irreversible reaction

$$X = \frac{\tan \cdot k}{\left(1 + \tan \cdot k\right)}$$

$$k = k_1 \exp \left[\frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T} \right) \right]$$

<u>Parameters</u>

Tau,
$$(-\Delta H_{Rx})$$
, k_1 , E , R , T_1 , T_C , kappa, C_{P_0}

Then plot G and R as a function of T.

End of Web Lecture 23 Class Lecture 19