Lecture 1

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 1 – Thursday

- Introduction
- Definitions
- General Mole Balance Equation
 - Batch (BR)


```
STMONTOONEER $194
```

- Continuously Stirred Tank Reactor (CSTR)
- Plug Flow Reactor (PFR)
- Packed Bed Reactor (PBR)

Chemical Reaction Engineering

 Chemical reaction engineering is at the heart of virtually every chemical process. It separates the chemical engineer from other engineers.

Industries that Draw Heavily on Chemical Reaction Engineering (CRE) are:

CPI (Chemical Process Industries) Examples like Dow, DuPont, Amoco, Chevron

Dimersol G (an organometallic catalyst) unit (two CSTRs and one tubular reactor in series) to dimerize propylene into isohexanes. Institut Français du Pétrole process. [Photo courtesy of Editions Technip (Institut Français du Pétrole).]

Materials on the Web and CD-ROM

http://www.umich.edu/~essen/

Let's Begin CRE

 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Chemical Identity

- A chemical species is said to have reacted when it has lost its chemical identity.
- The identity of a chemical species is determined by the kind, number, and configuration of that species' atoms.

Chemical Identity

- A chemical species is said to have reacted when it has lost its chemical identity.
- There are three ways for a species to loose its identity:
- **1. Decomposition** $CH_3CH_3 \rightarrow H_2 + H_2C = CH_2$
- **2. Combination** $N_2 + O_2 \rightarrow 2 NO$
- **3. Isomerization** $C_2H_5CH=CH_2 \rightarrow CH_2=C(CH_3)_2$

- The reaction rate is the rate at which a species looses its chemical identity per unit volume.
- The rate of a reaction (mol/dm³/s) can be expressed as either:
 - The rate of Disappearance of reactant: -r_A

or as

The rate of Formation (Generation) of product: r_P

Consider the isomerization

$A \rightarrow B$

- r_A = the rate of formation of species A per unit volume
- -r_A = the rate of a disappearance of species A per unit volume
- r_B = the rate of formation of species B per unit volume

EXAMPLE: A→B

If Species B is being formed at a rate of 0.2 moles per decimeter cubed per second, i.e., $r_B = 0.2 \text{ mole/dm}^3/s$

Then A is disappearing at the same rate: $-r_A = 0.2$ mole/dm³/s The rate of formation (generation of A) is: $r_A = -0.2$ mole/dm³/s

 For a catalytic reaction we refer to -r_A', which is the rate of disappearance of species A on a per mass of catalyst basis. (mol/gcat/s)

NOTE: dC_A/dt is not the rate of reaction

Consider species j:

- r_j is the rate of formation of species j per unit volume [e.g. mol/dm³s]
- 2. r_j is a function of concentration, temperature, pressure, and the type of catalyst (if any)
- r_j is independent of the type of reaction system (batch, plug flow, etc.)
- 4. \mathbf{r}_{j} is an algebraic equation, not a differential equation (e.g. $-r_{A} = kC_{A}$ or $-r_{A} = kC_{A}^{2}$)

$$G_j = \sum_{i=1}^n r_{ji} \Delta V_i$$

Take limit

$$G_{j} = \sum_{i=1}^{n} r_{ji} \Delta V_{i} = \int r_{j} dV$$

Batch Reactor - Mole Balances

Batch

$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$

$$F_{A0} = F_A = 0$$

Well-Mixed

$$\int r_A dV = r_A V$$

 $\frac{dN_A}{dt} = r_A V$

Batch Reactor - Mole Balances

Integrating
$$dt = \frac{dN_A}{r_A V}$$

when

$$t = 0 \quad N_A = N_{A0}$$
$$t = t \quad N_A = N_A$$

$$t = \int_{N_{A0}}^{N_A} \frac{dN_A}{-r_A V}$$

Time necessary to reduce the number of moles of A from N_{A0} to N_A .

Batch Reactor - Mole Balances

21

CSTR - Mole Balances

$$F_{A0} - F_A + \int r_A dV = \frac{dN_A}{dt}$$

Steady State

$$\frac{dN_A}{dt} = 0$$

22

CSTR - Mole Balances

Well Mixed

$$\int r_A dV = r_A V$$

$$F_{A0} - F_A + r_A V = 0$$

$$V = \frac{F_{A0} - F_A}{-r_A}$$

CSTR volume necessary to reduce the molar flow rate from F_{A0} to F_{A} .

Plug Flow Reactor - Mole Balances

Polyethylene reactor; this 16-in inner-diameter reactor is designed to operate at 35,000 psi and 600°F; in operation, this reactor is in a vertical configuration. Courtesy of Autoclave Engineers, Division of Snap-tite, Inc.

Plug Flow Reactor - Mole Balances

$$\begin{bmatrix} In \\ at V \end{bmatrix} - \begin{bmatrix} Out \\ at V + \Delta V \end{bmatrix} + \begin{bmatrix} Generation \\ in \Delta V \end{bmatrix} = 0$$
$$F_A|_V - F_A|_{V+\Delta V} + r_A\Delta V = 0$$

Plug Flow Reactor - Mole Balances

Rearrange and take limit as $\Delta V \rightarrow 0$

$$\lim_{\Delta V \to 0} \frac{F_A \big|_{V + \Delta V} - F_A \big|_V}{\Delta V} = r_A$$

$$\frac{dF_A}{dV} = r_A$$

This is the volume necessary to reduce the entering molar flow rate (mol/s) from F_{A0} to the exit molar flow rate of F_A .

$$F_{A0} - F_A + \int r_A dV = 0$$

Alternative Derivation Plug Flow Reactor - Mole Balances

Differientiate with respect to V

The integral form is:

$$V = \int_{F_{A0}}^{F_A} \frac{dF_A}{r_A}$$

This is the volume necessary to reduce the entering molar flow rate (mol/s) from F_{A0} to the exit molar flow rate of F_A .

Packed Bed Reactor - Mole Balances

Rearrange:

$$\frac{dF_A}{dW} = r'_A$$

The integral form to find the catalyst weight is:

$$W = \int_{F_{A0}}^{F_A} \frac{dF_A}{r'_A}$$

PBR catalyst weight necessary to reduce the entering molar flow rate F_{A0} to molar flow rate F_{A} .

Reactor Mole Balances Summary

The GMBE applied to the four major reactor types (and the general reaction $A \rightarrow B$)

31

Reactors with Heat Effects

- EXAMPLE: Production of Propylene Glycol in an Adiabatic CSTR
- Propylene glycol is produced by the hydrolysis of propylene oxide:

What are the exit conversion X and exit temperature T?

Solution

Let the reaction be represented by

1. Mole Balance and design equation:

 $F_{\rm A0} - F_{\rm A} + r_{\rm A}V = 0$

The design equation in terms of X is

$$V = \frac{F_{\rm A0}X}{-r_{\rm A}}$$

2. Rate Law:

$$-r_{\rm A} = kC_{\rm A}$$

3. Stoichiometry (liquid phase, $v = v_0$):

$$C_{\rm A} = C_{\rm A0}(1-X)$$

4. Combining yields

$$V = \frac{F_{A0}X}{kC_{A0}(1-X)} = \frac{v_0X}{k(1-X)}$$

Solving for X as a function of T and recalling that $\tau = V/v_0$ gives

$$X_{\rm MB} = \frac{\tau k}{1 + \tau k} = \frac{\tau A e^{-E/RT}}{1 + \tau A e^{-E/RT}}$$

This equation relates temperature and conversion through the mole balance.

b. Stoichiometry (C_{A0} , Θ_i , τ): The total liquid volumetric flow rate entering the reactor is

$$V = 300 \text{ gal} = 40.1 \text{ ft}^{3}$$

$$\tau = \frac{V}{v_{0}} = \frac{40.1 \text{ ft}^{3}}{326.3 \text{ ft}^{3}/\text{h}} = 0.123 \text{ h}$$

$$C_{A0} = \frac{F_{A0}}{v_{0}} = \frac{43.0 \text{ lb mol/h}}{326.3 \text{ ft}^{3}/\text{h}}$$

$$= 0.132 \text{ lb mol/ft}^{3}$$
For methanol: $\Theta_{M} = \frac{F_{M0}}{F_{A0}} = \frac{71.87 \text{ lb mol/h}}{43.0 \text{ lb mol/h}} = 1.67$
For water: $\Theta_{B} = \frac{F_{B0}}{F_{A0}} = \frac{802.8 \text{ lb mol/h}}{43.0 \text{ lb mol/h}} = 18.65$

c. Evaluate mole balance terms: The conversion calculated from the mole balance, X_{MB} , is found from Equation (E8-8.5).

$$X_{\rm MB} = \frac{(2.084 \times 10^{12}) \exp(-16,306/T)}{1 + (2.084 \times 10^{12}) \exp(-16,306/T)}, T \text{ is in }^{\circ} \text{R}$$

 The energy balance for this adiabatic reaction in which there is negligible energy input provided by the stirrer is

$$X_{\rm EB} = \frac{\sum \Theta_i C_{P_i} (T - T_{i0})}{-[\Delta H_{\rm Rx}^\circ (T_R) + \Delta C_P (T - T_R)]}$$

d. Evaluate energy balance terms

$$\Sigma \Theta_i C_{P_i} = C_{P_A} + \Theta_B C_{P_B} + \Theta_M C_{P_M}$$

= 35 + (18.65)(18) + (1.67)(19.5)

Substituting all the known quantities into the energy balance gives us

$$X_{\rm EB} = \frac{(403.3 \text{ Btu/lb mol} \cdot {}^{\circ}\text{F})(T - 535){}^{\circ}\text{F}}{-[-36,400 - 7(T - 528)] \text{ Btu/lb mol}}$$

$$X_{\rm EB} = -\frac{\Sigma \Theta_i C_{P_i} (T - T_{i0})}{\Delta H_{\rm Rx}^{\circ} (T_R) + \Delta C_P (T - T_R)}$$

$$X_{\rm EB} = \frac{403.3(T-535)}{36,400+7(T-528)}$$

39

7. Solving.

Т (°R)	X _{MB} [Eq. (E8-8.10)]	X _{EB} [Eq. (E8-8.12)]
535	0.108	0.000
550	0.217	0.166
565	0.379	0.330
575	0.500	0.440
585	0.620	0.550
595	0.723	0.656
605	0.800	0.764
615	0.860	0.872
625	0.900	0.980

Analysis

We have applied our CRE algorithm to calculate the Conversion (X=0.84) and Temperature (T=614 °R) in a 300 gallon CSTR operated adiabatically.

Keeping Up

These topics do not build upon one another.

These topics build upon one another.

Reaction Engineering

Heat Effects

Isothermal Design

Stoichiometry

Rate Laws

Mole Balance

CRE Algorithm

Be careful not to cut corners on any of the **CRE building blocks** while learning this material!

Otherwise, your Algorithm becomes unstable.

End of Lecture 1

The reactor is 3.5 m in diameter and 38 m tall. [Schematic and photo courtesy of Sasol/Sastech PT Limited.]

Penicillium chrysogenum

Hippo Digestion (Ch. 2)

Modeling the Digestive System of a Hippopotamus*

Matthew Robertson, Fredrik Persson, Brian Vicente, Professor H. Scott Fogler

"Even hippo's like Chemical Reaction Engineering."

^{*}From a problem suggested by **Professor Alice P. Gast** ["Animal Guts as Ideal Reactors", Chemical Engineering Education, Winter 1998, pp 24-29]

Oil Recovery (Ch. 7)

Pharmacokinetics of Cobra Bites Multiple Reactions in a Batch (Body) Reactor

> Cobra Bites (Ch. 8 DVD-ROM)

Effective Lubricant Design Scavenging Free Radicals Lubricant Design (Ch. 9)

Nitroanaline Plant Explosion Exothermic Reactions That Run Away

Plant Safety (Ch. 11,12,13)