Lecture 12

Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 12 – Tuesday

- Multiple Reactions
 - Selectivity and Yield

$$\begin{array}{ccc} A & \stackrel{k_{D}}{\longrightarrow} & D \\ A & \stackrel{k_{U}}{\longrightarrow} & U \end{array}$$

- Series Reactions $A \longrightarrow B \longrightarrow C$
- Complex Reactions

$$A + B \longrightarrow C + D$$
$$A + C \longrightarrow E$$

4 Types of Multiple Reactions

• Series: $A \rightarrow B \rightarrow C$

• Parallel: $A \rightarrow D$

 $\mathsf{A} \to \mathsf{U}$

• Independent: $A \rightarrow B$

$$C \rightarrow D$$

• Complex: $A + B \rightarrow C + D$

$$A + C \rightarrow E$$

With multiple reactors, either molar flow or number of moles must be used (no conversion!)

Selectivity and Yield

There are two types of selectivity and yield: Instantaneous and Overall.

	Instantaneous	Overall
Selectivity	$S_{DU} = \frac{r_D}{r_U}$	$\widetilde{S}_{DU} = \frac{F_D}{F_U}$
Yield	$Y_D = \frac{r_D}{-r_A}$	$\widetilde{Y}_D = \frac{F_D}{F_{A0} - F_A}$

Selectivity and Yield

Example: $A+B \xrightarrow{k_1} D$ Desired Product: $r_D = k_1 C_A^2 C_B$ $A+B \xrightarrow{k_2} U$ Undesired Product: $r_U = k_2 C_A C_B$

$$S_{D/U} = \frac{r_D}{r_U} = \frac{k_1 C_A^2 C_B}{k_2 C_A C_B} = \frac{k_1}{k_2} C_A$$

To maximize the selectivity of D with respect to U run at high concentration of A and use PFR.

Gas Phase Multiple Reactions

Following the Algorithm

Number all reactions

Mole balances:

Mole balance on each and every species

PFR

CSTR

Batch

Membrane ("i" diffuses in)

$$\frac{dF_i}{dV} = r_i + R_i$$

 $r_{ii} = k_{ii} f_i(C_i, C_n)$

 $\frac{r_{iA}}{-a_i} = \frac{r_{iB}}{-b_i} = \frac{r_{iC}}{c_i} = \frac{r_{iD}}{d_i}$

 $r_j = \sum_{i=1}^{q} r_{ij}$

 $\frac{dF_j}{dV} = r_j$

 $F_{i0} - F_i = -r_i V$

 $dN_i = V$

Liquid-semibatch $\frac{dC_j}{J_4} = r_j + \frac{v_0(C_{j0} - C_j)}{V}$

Laws

Rates:

Relative rates

Net rates

Stoichiometry:

Gas phase

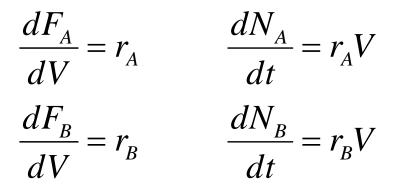
 $C_{j} = C_{T0} \frac{F_{j}}{F_{\tau}} \frac{P}{P_{0}} \frac{T_{0}}{T} = C_{T0} \frac{F_{j}}{F_{\tau}} \frac{T_{0}}{T} y$

 $y = \frac{P}{P_0}$ $F_T = \sum_{j=1}^n F_j$ $\frac{dy}{dW} = -\frac{\alpha}{2y} \left(\frac{F_T}{F_{T0}}\right) \frac{T}{T_0}$ $v = v_0$

Liquid phase

 $C_{\Lambda}, C_{\mathrm{B}}, \ldots$

Combine:


Polymath will combine all the equations for you. Thank you,

Multiple Reactions

A) Mole Balance of each and every species

Flow Batch

Multiple Reactions B) Rates

a) Rate Law for each reaction: $\begin{aligned} -r_{1A} &= k_{1A}C_AC_B \\ -r_{2A} &= k_{2A}C_CC_A \end{aligned}$

b) Net Rates:
$$r_A = \sum_{i=1} r_{iA} = r_{1A} + r_{2A}$$

c) Relative Rates: $\frac{r_{iA}}{-a_i} = \frac{r_{iB}}{-b_i} = \frac{r_{iC}}{c_i} = \frac{r_{iD}}{d_i}$

Multiple Reactions C) Stoichiometry

Gas:
$$C_A = C_{T0} \frac{F_A}{F_{A0}} \left(\frac{P}{P_0}\right) \left(\frac{T_0}{T}\right)$$

Liquid:
$$C_A = F_A / \upsilon_0$$

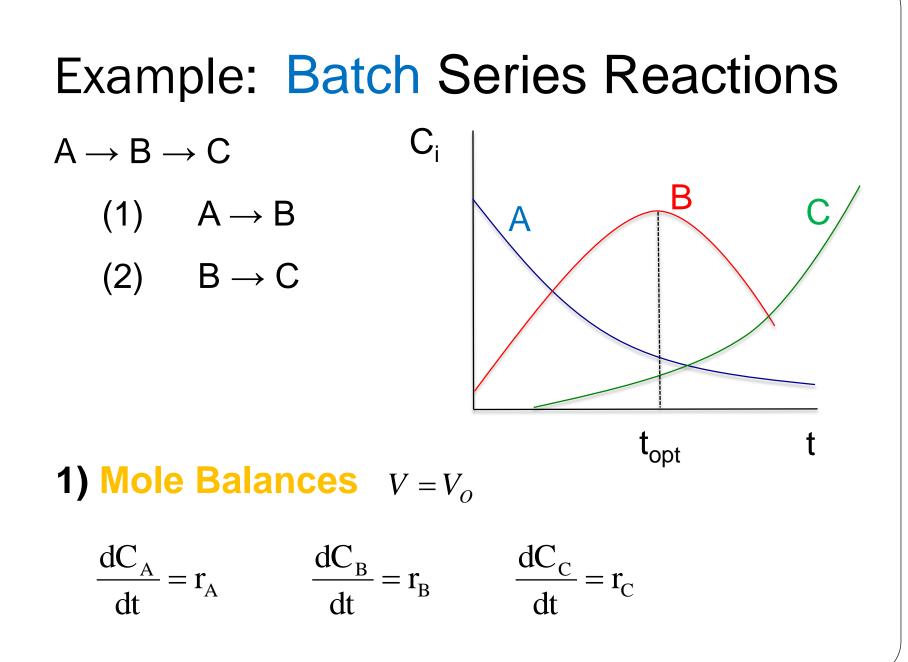
Example:
$$A \rightarrow B \rightarrow C$$

(1) $A \rightarrow B$ k_1
(2) $B \rightarrow C$ k_2

Batch Series Reactions

1) Mole Balances

$$\frac{\mathrm{dN}_{\mathrm{A}}}{\mathrm{dt}} = \mathrm{r}_{\mathrm{A}}\mathrm{V}$$


$$\frac{dN_{\rm B}}{dt} = r_{\rm B}V$$

$$\frac{dN_{\rm C}}{dt} = r_{\rm C}V$$

V=V₀ (constant batch)

$$\frac{dC_A}{dt} = r_A \qquad \frac{dC_B}{dt} = r_A \qquad \frac{dC_C}{dt} = r_A$$

Batch Series Reactions 2) Rate Laws $-\mathbf{r}_{1A} = \mathbf{k}_{1A}\mathbf{C}_{A}$ $-\mathbf{r}_{1B} = \mathbf{k}_{1B}\mathbf{C}_{B}$ Laws $r_{A} = r_{1A}$ Net rates $r_{B} = r_{1B} + r_{2B}$ $\frac{\mathbf{r}_{1A}}{\mathbf{r}_{1B}} = \frac{\mathbf{r}_{1B}}{\mathbf{r}_{1B}}$ -1 1 **Relative rates** $\frac{\mathbf{r}_{2B}}{\mathbf{r}_{2C}} = \frac{\mathbf{r}_{2C}}{\mathbf{r}_{2C}}$ -1 1

Example: Batch Series Reactions 2) Rate Laws

Laws: $r_{1A} = -k_1 C_A$ $r_{2B} = -k_2 C_B$ Relative: $\frac{r_{1A}}{-1} = \frac{r_{1B}}{1}$ $\frac{r_{2B}}{-1} = \frac{r_{2C}}{1}$

Example: Batch Series Reactions 3) Combine

 $-\frac{\mathrm{d}\mathrm{C}_{\mathrm{A}}}{\mathrm{d}\mathrm{t}} = -\mathrm{r}_{\mathrm{A}} = \mathrm{k}_{\mathrm{1}}\mathrm{C}_{\mathrm{A}}$ Species A: $C_{A} = C_{A0} \exp(-k_{1}t)$ $\frac{dC_{\rm B}}{dt} = r_{\rm B}$ Species B: $r_{\rm B} = r_{\rm B \, NET} = r_{\rm 1B} + r_{\rm 2B} = k_1 C_{\rm A} - k_2 C_{\rm B}$ $\frac{\mathrm{d}\mathbf{C}_{\mathrm{B}}}{\mathrm{d}t} + k_{2}\mathbf{C}_{\mathrm{B}} = k_{1}\mathbf{C}_{\mathrm{A0}}\exp(-k_{1}t)$

Example: **Batch Series Reactions**

Using the integrating factor, $I.F. = \exp(\int k_2 dt) = \exp(k_2 t)$

$$d \frac{[C_B \exp(k_2 t)]}{dt} = k_1 C_{A0} \exp(k_2 - k_1)t$$

at t = 0, C_B=0
$$C_{B} = \frac{k_{1}C_{A0}}{k_{2} - k_{1}} \left[\exp(-k_{1}t) - \exp(-k_{2}t) \right]$$

$$C_{C} = C_{A0} - C_{A} - C_{B}$$

$$C_{C} = \frac{C_{A0}}{k_{2} - k_{1}} \left[k_{2} \left(1 - e^{-k_{1}t} \right) - k_{1} \left(1 - e^{-k_{2}t} \right) \right]$$

What is the optimal *τ*?**1)** Mole Balances

A:

$$F_{A0} - F_A + r_A V = 0$$

$$C_{A0} v_0 - C_A v_0 + r_A V = 0$$

$$C_{A0} - C_A + r_A \tau = 0$$

B:

$$0 - v_0 C_B + r_B V = 0$$
$$- C_B + r_B \tau = 0$$

2) Rate Laws

Laws: $r_{1A} = -k_1 C_A$ $r_{2B} = -k_2 C_B$ Relative: $\frac{r_{1A}}{-1} = \frac{r_{1B}}{1}$ $\frac{r_{2B}}{-1} = \frac{r_{2C}}{1}$ Net: $r_A = r_{1A} + 0 = -k_1 C_A$ $r_B = -r_{1A} + r_{2B} = k_1 C_A - k_2 C_B$

3) Combine

 $C_{40} - C_{4} - k_1 C_4 t = 0$ $C_A = \frac{C_{A0}}{1 + k_1 t}$ $-C_{R} + (k_{1}C_{A} - k_{2}C_{B})t = 0$ $C_B = \frac{k_1 C_A t}{1 + k_2 t}$ $C_B = \frac{k_1 C_{A0} t}{(1 + k_2 t)(1 + k_1 t)}$

Find $\, au \,$ that gives maximum concentration of B

$$C_{B} = \frac{k_{1}C_{A0}\tau}{(1+k_{2}\tau)(1+k_{1}\tau)}$$

 $\frac{dC_B}{d\tau} = 0$

$$\tau_{\max} = \frac{1}{\sqrt{k_1 k_2}}$$

Number all reactions

Mole balances:

PFR

CSTR

Batch

Rates:

Laws

Mole balance on each and every species

 $\frac{dF_j}{dV} = r_j$ $F_{i0} - F_i = -r_i V$ $\frac{dN_j}{dt} = r_j V$ $\frac{dF_i}{dV} = r_i + R_i$ Membrane ("i" diffuses in) $\frac{dC_j}{dt} = r_j + \frac{v_0(C_{j0} - C_j)}{V}$ Liquid-semibatch $r_{ii} = k_{ii}f_i(C_i, C_n)$ $\frac{r_{i\mathrm{A}}}{-a_i} = \frac{r_{i\mathrm{B}}}{-b_i} = \frac{r_{i\mathrm{C}}}{c_i} = \frac{r_{i\mathrm{D}}}{d_i}$ Relative rates $r_j = \sum_{j=1}^{q} r_{ij}$ Net rates Stoichiometry: $C_j = C_{T0} \frac{F_j}{F_T} \frac{F_0}{P_0} \frac{T_0}{T}$ Gas phase $y = \frac{P}{P_0}$ $F_T = \sum_{j=1}^n F_j$ $\frac{dy}{dW} = -\frac{\alpha}{2y} \left(\frac{F_T}{F_{T0}}\right) \frac{T}{T_0}$ $v = v_0$ $C_{\rm A}, C_{\rm B}, \ldots$

Liquid phase

Combine:

Polymath will combine all the equations for you. Thank you,

Following the Algorithm

$$_{j} = C_{T0} \frac{F_{j}}{F_{T}} \frac{P}{P_{0}} \frac{T_{0}}{T} = C_{T0} \frac{F_{j}}{F_{T}} \frac{T_{0}}{T} y$$

End of Lecture 12

Supplementary Slides

Blood Coagulation

$$TF + VII \bigoplus_{k_{2}}^{k_{1}} TF = VII$$

$$TF + VIIa \bigoplus_{k_{4}}^{k_{3}} TF = VIIa$$

$$TF = VIIa + VII \bigoplus_{k_{5}}^{k_{5}} TF = VIIa + VIIa$$

$$TF = VIIa + VII \bigoplus_{k_{7}}^{k_{7}} TF = VIIa + VIIa$$

$$Ia + VII \bigoplus_{k_{7}}^{k_{7}} IIa + VIIa$$

$$TF = VIIa + X \bigoplus_{k_{9}}^{k_{8}} TF = VIIa = X \bigoplus_{k_{10}}^{k_{10}} TF = VIIa = Xa$$

$$TF = VIIa + IX \bigoplus_{k_{14}}^{k_{13}} TF = VIIa = IX \bigoplus_{k_{15}}^{k_{15}} TF = VIIa + IXa$$

$$Xa + II \bigoplus_{k_{17}}^{k_{16}} IIa + VIIIa$$

$$IIa + VIII \bigoplus_{k_{19}}^{k_{19}} IIa + VIIIa$$

$$IXa = VIIIa + X \bigoplus_{k_{21}}^{k_{20}} IXa = VIIIa = X \bigoplus_{k_{22}}^{k_{23}} IXa = VIIIa + Xa$$

$$VIIIa \bigoplus_{k_{24}}^{k_{25}} VIIIa_{1} \cdot L + VIIIa_{2}$$

$$IXa = VIIIa = X \bigoplus_{k_{25}}^{k_{25}} VIIIa_{1} \cdot L + VIIIa_{2} + IXa$$

$$IIa + V \bigoplus_{k_{27}}^{k_{26}} IIa + Va$$

$$Xa + Va \bigoplus_{k_{27}}^{k_{27}} Xa = Va$$

$$Xa = Va + II \bigoplus_{k_{30}}^{k_{29}} Xa = Va = II \longrightarrow Xa = Va + mIIa$$

$$mIIa + Xa = Va \longrightarrow Xa = Va + IIa$$

$$Xa + TPFI \bigoplus_{k_{34}}^{k_{33}} Xa = TFPI$$

$$TF = VIIa = Xa + TFPI \bigoplus_{k_{36}}^{n_{35}} TF = VIIa = Xa = TFPI$$

$$TF = VIIa + Xa = TFPI \longrightarrow TF = VIIa = Xa = TFPI$$

$$Xa + ATIII \longrightarrow_{k_{39}}^{k_{39}} mIIa = ATIII$$

$$mIIa + ATIII \longrightarrow_{k_{40}}^{k_{40}} IXa = ATIII$$

$$mIIa + AIIII \longrightarrow mIIa = AIIII$$

$$IXa + ATIII \xrightarrow{k_{40}} IXa = ATIII$$

$$IIa + ATIII \xrightarrow{k_{41}} IIa = ATIII$$

$$TF = VIIa + ATIII \xrightarrow{k_{42}} TF = VIIa = ATIII$$

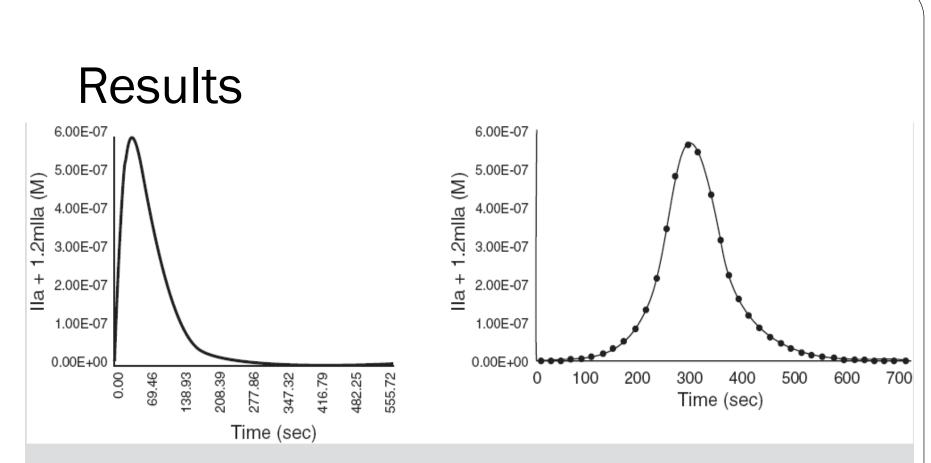
Courtesy of Hockin, M.F., Jones, K.C., Everse, S.J. and Mann, K.G. (2002). A model for the stoichiometric regulation of blood coagulation. *The Journal of Biological Chemistry* **277** (21), 18322-18333.

Notations

Crassies source had	No se al atoma	
Species symbol	Nomenclature	
TF	Tissue factor	
VII	proconvertin	
TF=VIIa	factor TF=VIIa	
VIIa	factor novoseven	
TF=VIIa	factor TF=VIIa complex	
Xa	Stuart prower factor activated	
IIa	thrombin	
Х	Stuart Prower factor	
TF=VIIa=X	TF=VIIa=X complex	
TF=VIIa=X	TF=VIIa=X complex	
IX	Plasma Thromboplastin Component	
TF=VIIa=IX	TF=VIIa=IX complex	
IXa	factor IXa	
II	prothrombin	
VIII	antihemophilic factor	
VIIIa	antihemophilic factor activated	
IXa=VIIIa	IXa=VIIIa complex	
IXa=VIIIa=X	IXa=VIIIa=X complex	

Notations

VIIIaI	factor VIIIa I	
VIIIa ₁ L	factor VIIIa ₁ L	
VIIIa ₂	factor VIIIa ₂	
V	proaccelerin	
Va	factor Va	
Xa=Va	Xa=Va complex	
Xa=Va=II	Xa=Va=II complex	
mIIa	meizothrombin	
TFPI	tissue factor pathway inhibitor	
Xa=TFPI	Xa=TFPI complex	
TF=VIIa=Xa=TFPI	TF=VIIa=Xa=TFPI complex	
ATIII	antithrombin	
Xa=ATIII	Xa=ATIII complex	
mIIa=ATIII	mIIa=ATIII complex	
IXa=ATIII	IXa=ATIII complex	
TF=VIIIa=ATIII	TF=VIIIa=ATIII complex	
IIa=ATIII	IIa=ATIII complex	


Mole Balances

$$\begin{aligned} \frac{dC_{IT}}{dT} &= k_2 \cdot C_{ITFVII} - k_1 \cdot C_{TF} \cdot C_{VII} - k_3 \cdot C_{TF} \cdot C_{VIIa} + k_4 \cdot C_{ITFVIIa} \\ \frac{dC_{VII}}{dt} &= k_2 \cdot C_{ITFVII} - k_1 \cdot C_{TF} \cdot C_{VII} - k_6 \cdot C_{Xa} \cdot C_{VII} - k_7 \cdot C_{IIa} \cdot C_{VII} - k_5 \cdot C_{TFVIIa} \cdot C_{VII} \\ \frac{dC_{ITVII}}{dt} &= -k_2 \cdot C_{IFVII} + k_1 \cdot C_{TF} \cdot C_{VII} \\ \frac{dC_{ITVII}}{dt} &= k_4 \cdot C_{ITFVIIa} - k_3 \cdot C_{TF} \cdot C_{VIIa} + k_5 \cdot C_{ITFVIIa} \cdot C_{VII} + k_6 \cdot C_{Xa} \cdot C_{VII} + k_7 \cdot C_{IIa} \cdot C_{VII} \\ \frac{dC_{ITVIIa}}{dt} &= -k_4 \cdot C_{IFFVIIa} - k_3 \cdot C_{TF} \cdot C_{VIIa} + k_9 \cdot C_{IFVIIa} - k_8 \cdot C_{IFVIIa} \cdot C_X - k_{11} \cdot C_{IFVIIa} \cdot C_{Xa} + \\ k_{12} \cdot C_{ITFVIIa} - k_{13} \cdot C_{IFVIIa} \cdot C_{IX} + k_{14} \cdot C_{IFVIIaIX} + k_{15} \cdot C_{IFVIIa} - k_{37} \cdot C_{IFVIIa} \cdot C_{Xa} - k_{12} \cdot C_{ITFVIIa} \cdot C_{Xa} + \\ k_{12} \cdot C_{IFVIIa} \cdot C_{AIIII} \\ \frac{dC_{Xa}}{dt} &= k_{11} \cdot C_{IFVIIa} \cdot C_{Xa} + k_{12} \cdot C_{IFVIIaXa} + k_{22} \cdot C_{IXaVIIIaX} + k_{28} \cdot C_{XaVa} - k_{27} \cdot C_{Xa} \cdot C_{Va} + \\ k_{34} \cdot C_{XaIFFFI} - k_{33} \cdot C_{Xa} \cdot C_{IFFFI} - k_{38} \cdot C_{Xa} \cdot C_{AIIII} \\ \frac{dC_{IIa}}{dt} &= k_{16} \cdot C_{Xa} \cdot C_{II} + k_{32} \cdot C_{mila} \cdot C_{XaVa} - k_{41} \cdot C_{IIa} \cdot C_{AIIII} \\ \frac{dC_{IIa}}{dt} &= -k_8 \cdot C_{IFVIIa} \cdot C_X + k_9 \cdot C_{IFVIIaX} - k_{20} \cdot C_{IXaVIIIa} \cdot C_X + k_{21} \cdot C_{IXaVIIIaX} + k_{25} \cdot C_{IXaVIIIaX} + \\ \frac{dC_{III}}{dt} &= -k_8 \cdot C_{IFVIIa} \cdot C_X - k_9 \cdot C_{IFVIIaX} - k_{10} \cdot C_{IFVIIaX} - \\ \end{array}$$

Mole Balances

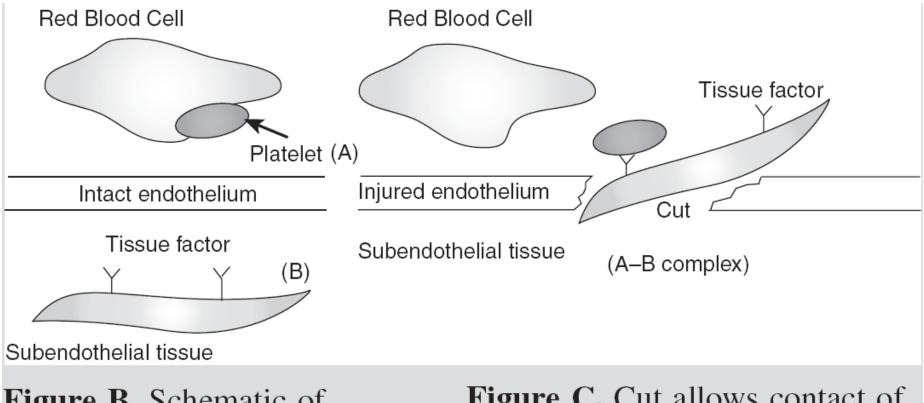
Mole Balances

$$\begin{aligned} \frac{dC_{Y}}{dt} &= -k_{26} \cdot C_{IIa} \cdot C_{Y} \\ \frac{dC_{Ya}}{dt} &= k_{26} \cdot C_{IIa} \cdot C_{Y} + k_{28} \cdot C_{Xa} \cdot C_{Ya} - k_{27} \cdot C_{Xa} \cdot C_{Ya} \\ \frac{dC_{XaYaI}}{dt} &= -k_{28} \cdot C_{Xa} \cdot C_{Ya} + k_{27} \cdot C_{Xa} \cdot C_{Ya} - k_{29} \cdot C_{IIaYa} \cdot C_{II} + k_{30} \cdot C_{XaYaII} + k_{31} \cdot C_{XaYaII} \\ \frac{dC_{XaYaII}}{dt} &= k_{29} \cdot C_{IIaYa} \cdot C_{II} - k_{30} \cdot C_{XaYaII} - k_{31} \cdot C_{XaYaII} \\ \frac{dC_{mila}}{dt} &= k_{31} \cdot C_{XaYaII} - k_{32} \cdot C_{mila} \cdot C_{XaYa} - k_{39} \cdot C_{mila} \cdot C_{ATIII} \\ \frac{dC_{mila}}{dt} &= k_{34} \cdot C_{XaTFPI} - k_{35} \cdot C_{Xa} \cdot C_{TFPI} + k_{36} \cdot C_{TFPIIaXaTFPI} - k_{35} \cdot C_{TFPIIaXa} \cdot C_{TFPI} \\ \frac{dC_{TFPI}}{dt} &= -k_{34} \cdot C_{XaTFPI} + k_{37} \cdot C_{Xa} \cdot C_{TFPI} - k_{37} \cdot C_{TFPIIa} \cdot C_{XaTFPI} \\ \frac{dC_{TFPIIaXITFPI}}{dt} &= -k_{36} \cdot C_{TFPIIaXaTFPI} + k_{35} \cdot C_{TFPIIaXa} \cdot C_{TFPI} + k_{37} \cdot C_{XaTFPI} \\ \frac{dC_{attin}}{dt} &= -k_{38} \cdot C_{Xa} \cdot C_{ATIII} - k_{39} \cdot C_{mila} \cdot C_{ATIII} - k_{40} \cdot C_{IXa} \cdot C_{ATIII} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} \cdot C_{ATIII} \\ \frac{dC_{maxTIII}}{dt} &= k_{38} \cdot C_{Xa} \cdot C_{ATIII} - k_{39} \cdot C_{mila} \cdot C_{ATIII} - k_{40} \cdot C_{IXa} \cdot C_{ATIII} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{40} \cdot C_{IXa} \cdot C_{ATIII} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{40} \cdot C_{IXa} \cdot C_{ATIII} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} - k_{41} \cdot C_{IIa} \cdot C_{ATIII} - k_{42} \cdot C_{TFPIIa} \cdot$$

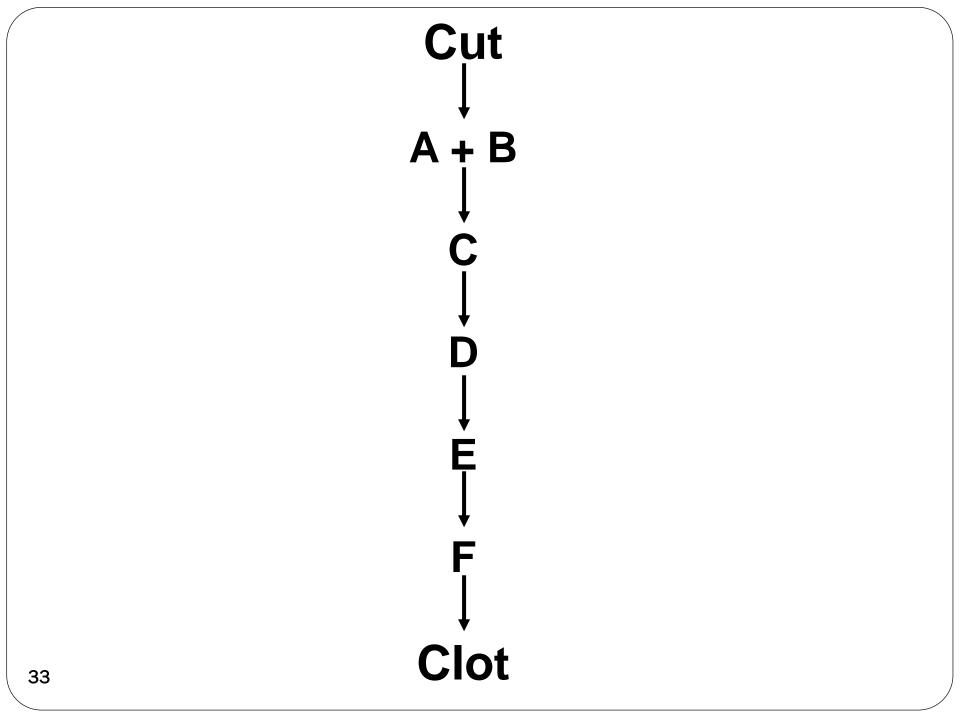
Figure D. Total thrombin as a function of time with an initiating TF concentration of 25 pM (after running Polymath) for the abbreviated blood clotting cascade.

Figure E. Total thrombin as a function of time with an initiating TF concentration of 25 p*M*. [Figure courtesy of M. F. Hockin et al., "A Model for the Stoichiometric Regulation of Blood Coagulation," *The Journal of Biological Chemistry*, 277[21], pp. 18322–18333 (2002)]. Full blood clotting cascade.

Blood Coagulation


Many metabolic reactions involve a large number of sequential reactions, such as those that occur in the coagulation of blood.

 $Cut \rightarrow Blood \rightarrow Clotting$


Figure A. Normal Clot Coagulation of blood (picture courtesy of: Mebs, Venomous and Poisonous Animals, Medpharm, Stugart 2002, Page 305)

Schematic of Blood Coagulation

Figure B. Schematic of separation of TF (A) and plasma (B) before cut occurs.

Figure C. Cut allows contact of plasma to initiate coagulation. (A + B \rightarrow Cascade)

