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Residence Time

Distributions of

Chemical Reactors

 

Nothing in life is to be feared. It is only to be understood.
—Marie Curie

 

16.1 General Considerations

 

The reactors treated in the book thus far—the perfectly mixed batch, the
plug-flow tubular, the packed bed, and the perfectly mixed continuous tank
reactors—have been modeled as ideal reactors. Unfortunately, in the real world

Overview. In this chapter we learn about nonideal reactors; that is, reactors
that do not follow the models we have developed for ideal CSTRs, PFRs, and
PBRs. After studying this chapter the reader will be able to describe:

• General Considerations. How the residence time distribution (RTD)
can be used (Section 16.1).

• Measurement of the RTD. How to calculate the concentration  curve
(i.e., the C-curve) and residence time distribution curve, (i.e., the
E-curve (Section 16.2)).

• Characteristics of the RTD. How to calculate and use the cumula-
tive RTD function, F(t), the mean residence time, tm, and the vari-
ance σ2 (Section 16.3).

• The RTD in ideal reactors. How to evaluate E(t), F(t), tm, and σ2 for
ideal PFRs, CSTRs, and laminar flow reactors (LFRs) so that we
have a reference point as to how much our real (i.e., nonideal) reac-
tor deviates form an ideal reactor (Section 16.4). 

• How to diagnose problems with real reactors by comparing tm, E(t),
and F(t) with ideal reactors. This comparison will help to diagnose
and troubleshoot by-passing and dead volume problems in real
reactors (Section 16.5).
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we often observe behavior very different from that expected from the exem-
plar; this behavior is true of students, engineers, college professors, and chem-
ical reactors. Just as we must learn to work with people who are not perfect,

 

†

 

so the reactor analyst must learn to diagnose and handle chemical reactors
whose performance deviates from the ideal. Nonideal reactors and the princi-
ples behind their analysis form the subject of this chapter and the next two
chapters.

The basic ideas that are used in the distribution of residence times to char-
acterize and model nonideal reactions are really few in number. The two major
uses of the residence time distribution to characterize nonideal reactors are

1. To diagnose problems of reactors in operation.
2. To predict conversion or effluent concentrations in existing/available

reactors when a new chemical reaction is used in the reactor.

The following two examples illustrate reactor problems one might find
in a chemical plant. 

 

Example 1

 

A packed-bed reactor is shown in Figure 16-1. When a reactor is
packed with catalyst, the reacting fluid usually does not flow uniformly
through the reactor. Rather, there may be sections in the packed bed that offer
little resistance to flow (Path 1) and, as a result, a portion of the fluid may chan-
nel through this pathway. Consequently, the molecules following this pathway
do not spend much time in the reactor. On the other hand, if there is internal
circulation or a high resistance to flow, the molecules could spend a long time
in the reactor (Path 2). Consequently, we see that there is a distribution of times
that molecules spend in the reactor in contact with the catalyst.

 

Example 2

 

In many continuous-stirred tank reactors, the inlet and outlet
pipes are somewhat close together (Figure 16-2). In one operation, it was
desired to scale up pilot plant results to a much larger system. It was realized
that some short-circuiting occurred, so the tanks were modeled as perfectly
mixed CSTRs with a bypass stream. In addition to short-circuiting, stagnant
regions (dead zones) are often encountered. In these regions, there is little or
no exchange of material with the well-mixed regions and, consequently, virtu-
ally no reaction occurs there. Experiments were carried out to determine the
amount of the material effectively bypassed and the volume of the dead zone.

 

†

 

See the AIChE webinar “Dealing with Difficult People”: 

 

www.aiche.org/academy/webinars/
dealing-difficult-people

 

.

We want to analyze
and characterize
nonideal reactor

behavior.

Figure 16-1 Packed-bed reactor.

Path 1

Path 2
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A simple modification of an ideal reactor successfully modeled the essential
physical characteristics of the system and the equations were readily solvable.

Three concepts were used to describe nonideal reactors in these exam-
ples: 

 

the distribution of residence times in the system (RTD), the quality of mixing

 

, and

 

the model used to describe the system

 

. All three of these concepts are considered
when describing deviations from the mixing patterns assumed in ideal reac-
tors. The three concepts can be regarded as characteristics of the mixing in
nonideal reactors.

One way to order our thinking on nonideal reactors is to consider mod-
eling the flow patterns in our reactors as either ideal CSTRs or PFRs as a 

 

f irst

 

approximation. In real reactors, however, nonideal flow patterns exist, result-
ing in ineffective contacting and lower conversions than in the case of ideal
reactors. We must have a method of accounting for this nonideality, and to
achieve this goal we use the next-higher level of approximation, which involves
the use of 

 

macromixing

 

 information (RTD) (Sections 16.1 to 16.4). The next level
uses microscale (

 

micromixing

 

) information (Chapter 17) to make predictions
about the conversion in nonideal reactors. After completing the first four sec-
tions, 16.1 through 16.4, the reader can proceed directly to Chapter 17 to learn
how to calculate the conversion and product distributions exiting real reactors.
Section 16.5 closes the chapter by discussing how to use the RTD to diagnose
and troubleshoot reactors. Here, we focus on two common problems: reactors
with bypassing and dead volumes. Once the dead volumes, V

 

D

 

, and bypassing
volumetric flow rates, 

 

b

 

, are determined, the strategies in Chapter 18 to model
the real reactor with ideal reactors can be used to predict conversion.

 

16.1.1 Residence Time Distribution (RTD) Function

 

The idea of using the distribution of residence times in the analysis of chem-
ical reactor performance was apparently f irst proposed in a pioneering paper
by MacMullin and Weber.

 

1

 

 However, the concept did not appear to be used
extensively until the early 1950s, when Prof. P. V. Danckwerts gave organiza-
tional structure to the subject of RTD by defining most of the distributions
of interest.

 

2

 

 The ever-increasing amount of literature on this topic since then

 

There are a number of mixing tutorials on the AIChE Webinar website and as an
AIChE 

 

 

 

student member you have free access to all these webinars. See

 

www.aiche.org/search/site/webinar

 

.

 

1

 

R. B. MacMullin and M. Weber, Jr., 

 

Trans. Am. Inst. Chem. Eng.

 

, 31, 409 (1935).

 

2

 

P. V. Danckwerts, 

 

Chem. Eng. Sci.

 

, 2, 1 (1953).

Dead
zone

Bypassing

Figure 16-2 CSTR.

We want to find
ways of determin-
ing the dead zone

volume and the
fraction of the

volumetric flow
rate bypassing the

system.

The three concepts
• RTD
• Mixing
• Model

Chance Card:
Do not pass go,
proceed directly to

Chapter 17.

GO υ
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has generally followed the nomenclature of Danckwerts, and this will be
done here as well.

In an ideal plug-flow reactor, all the atoms of material leaving the reactor
have been inside it for exactly the same amount of time. Similarly, in an ideal
batch reactor, all the atoms of materials within the reactor have been inside the
BR for an identical length of time. The time the atoms have spent in the reactor
is called the 

 

residence time

 

 of the atoms in the reactor.
The idealized plug-flow and batch reactors are the only two types of reac-

tors in which all the atoms in the reactors have exactly the same residence
time. In all other reactor types, the various atoms in the feed spend different
times inside the reactor; that is, there is a distribution of residence times of the
material within the reactor. For example, consider the CSTR; the feed intro-
duced into a CSTR at any given time becomes completely mixed with the
material already in the reactor. In other words, some of the atoms entering the
CSTR leave it almost immediately because material is being continuously with-
drawn from the reactor; other atoms remain in the reactor almost forever
because all the material recirculates within the reactor and is virtually never
removed from the reactor at one time. Many of the atoms, of course, leave the
reactor after spending a period of time somewhere in the vicinity of the mean
residence time. In any reactor, the distribution of residence times can signifi-
cantly affect its performance in terms of conversion and product distribution.

The 

 

residence time distribution

 

 (RTD) of a reactor is a characteristic of the
mixing that occurs in the chemical reactor. There is no axial mixing in a
plug-flow reactor, and this omission is reflected in the RTD. The CSTR is thor-
oughly mixed and possesses a far different kind of RTD than the plug-flow
reactor. As will be illustrated later (cf. Example 16-3), not all RTDs are unique
to a particular reactor type; markedly different reactors and reactor sequencing
can display identical RTDs. Nevertheless, the RTD exhibited by a given reactor
yields distinctive clues to the type of mixing occurring within it and is one of
the most informative characterizations of the reactor.

 

16.2 Measurement of the RTD

 

The RTD is determined experimentally by injecting an inert chemical, mole-
cule, or atom, called a 

 

tracer

 

, into the reactor at some time 

 

t

 

 

 

�

 

 0 and then mea-
suring the tracer concentration, 

 

C

 

, in the effluent stream as a function of time.
In addition to being a nonreactive species that is easily detectable, the tracer
should have physical properties similar to those of the reacting mixture and be
completely soluble in the mixture. It also should not adsorb on the walls or
other surfaces in the reactor. The latter requirements are needed to insure that
the tracer’s behavior will reliably reflect that of the material flowing through
the reactor. Colored and radioactive materials along with inert gases are the
most common types of tracers. The two most used methods of injection are

 

pulse input

 

 and 

 

step input

 

.

 

16.2.1 Pulse Input Experiment

 

In a pulse input, an amount of tracer 

 

N

 

0

 

 is suddenly injected in one shot into
the feed stream entering the reactor in as short a time as is humanly possible.
The outlet concentration is then measured as a function of time. Typical

Residence time

The “RTD”: Some
molecules leave

quickly, others
overstay their

welcome.

We will use the
RTD to

characterize
nonideal reactors.

Use of tracers to
determine the RTD
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concentration–time curves at the inlet and outlet of an arbitrary reactor are
shown in Figure 16-4 on page 772. The effluent of the tracer concentration ver-
sus time curve is referred to as the 

 

C

 

-curve in RTD analysis. We shall first ana-
lyze the injection of a tracer pulse for a single-input and single-output system
in which 

 

only flow

 

 (i.e., no dispersion) carries the tracer material across system
boundaries. Here, we choose an increment of time 

 

�

 

t

 

 sufficiently small that
the concentration of tracer, 

 

C

 

(

 

t

 

), exiting between time 

 

t

 

 and time (

 

t

 

 

 

�

 

 

 

�

 

t

 

) is
essentially the same. The amount of tracer material, 

 

�

 

N

 

, leaving the reactor
between time 

 

t

 

 and 

 

t

 

 

 

�

 

 

 

�

 

t

 

 is then

 

�

 

N

 

 

 

�

 

 

 

C

 

(

 

t

 

)

 

�

 

t

 

(16-1)

where  is the effluent volumetric flow rate. In other words, 

 

�

 

N

 

 is the amount
of material exiting the reactor that has spent an amount of time between 

 

t

 

 and

 

t

 

 

 

�

 

 

 

�

 

t

 

 in the reactor. If we now divide by the total amount of material that was
injected into the reactor, 

 

N

 

0

 

, we obtain

(16-2)

which represents 

 

the fraction of material that has a residence time in the reactor between
time

 

 

 

t

 

 

 

and

 

 

 

t

 

 

 

�

 

 

 

�

 

t

 

.
For pulse injection we define

 

E

 

(

 

t

 

) 

 

�

 

 (16-3)

so that

 

 

�

 

 

 

E

 

(

 

t

 

) 

 

�

 

t

 

(16-4)

The quantity 

 

E

 

(

 

t

 

)

 

 is called the 

 

residence time distribution function

 

. It is the
function that describes in a quantitative manner how much time different fluid
elements have spent in the reactor. The quantity 

 

E

 

(

 

t

 

)

 

dt

 

 is the fraction of fluid
exiting the reactor that has spent between time 

 

t

 

 and 

 

t

 

 + 

 

dt

 

 inside the reactor.

Figure 16-4 shows schematics of the inlet and outlet concentrations for
both a pulse input and step input for the experimental set up in Figure 16-3.

If 

 

N

 

0

 

 is not known directly, it can be obtained from the outlet concentration
measurements by summing up all the amounts of materials, 

 

�

 

N

 

, between time
equal to zero and infinity. Writing Equation (16-1) in differential form yields

 

dN

 

 

 

�

 

 

 

C

 

(

 

t

 

) 

 

dt

 

(16-5)

The C-curve

υ

υ

�N
N0
-------- υC t( )

N0
-------------  � t �

υC t( )
N0

-------------

�N
N0
--------

Interpretation of
E(t) dt

Feed EffluentReactor

Injection Detection

Figure 16-3 Experimental set up to determine E(t).

t

The C-curve

C(t)

υ
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and then integrating, we obtain

 (16-6)

The volumetric flow rate  is usually constant, so we can define 

 

E

 

(

 

t

 

) as

(16-7)

 

The 

 

E

 

-curve is just the 

 

C

 

-curve divided by the area under the 

 

C

 

-curve.

 

An alternative way of interpreting the residence time function is in its
integral form:

We know that the fraction of all the material that has resided for a time 

 

t

 

 in the
reactor between 

 

t

 

 

 

�

 

 0 and 

 

t

 

 

 

�

 

  is 1; therefore

(16-8)

The following example will show how we can calculate and interpret 

 

E

 

(

 

t

 

)
from the effluent concentrations from the response to a pulse tracer input to a
real (i.e., nonideal) reactor.

Pulse injection

C

0

Step injection

C

0

Step response

C

0 t

0 t

Pulse response

The C-curveC

 

Figure 16-4

 

RTD measurements.

t

Area = ∫0  C (t)dt

C(t)

∞

N0   υ C t ( ) td 

0

  � 
�

 
�

υ

We find the RTD
function, E(t), from

the tracer
concentration C(t)

t

The E-curve

E(t)

E t( ) C t( )

  C t ( ) td 
0

  � 
�

 ------------------------- �

 Fraction of material leaving the reactor 
that has resided in the reactor

for a time between t1 and t2

  E t ( ) td 
t

 

1

  t 2 
�

 
�

�

Eventually all
guests must leave   E t ( ) td 

0

  � 
�

 
1

 
�
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Example 16–1 Constructing the C(t) and E(t) Curves

 

A sample of the tracer hytane at 320 K was injected as a pulse into a reactor, and the
effluent concentration was measured as a function of time, resulting in the data
shown in Table E16-1.1.

The measurements represent the exact concentrations at the times listed and not
average values between the various sampling tests. 

 

(a)

 

Construct a figure showing the tracer concentration 

 

C

 

(

 

t

 

) as a function of time.

 

(b)

 

Construct a figure showing 

 

E

 

(

 

t

 

) as a function of time.

 

Solution

 

(a)

 

 By plotting 

 

C

 

 as a function of time, using the data in Table E16-1.1, the curve
shown in Figure E16-1.1 is obtained.

To convert the C(

 

t

 

) curve in Figure E16-1.1 to an E(

 

t

 

) curve we use the area under the
C(

 

t

 

) curve. There are three ways we can determine the area using this data. 

 

(1)

 

Brute force: calculate the area by measuring the area of the squares and partial
squares under the curve, and then summing them up. 

 

(2)

 

Use the integration formulas given in Appendix A. 

 

(3)

 

Fit the data to one or more polynomials using Polymath or some other software
program. We will choose Polymath to fit the data. 

 

Note:

 

 A step-by-step tutorial to
fit the data points using Polymath is given on the CRE Web site
(

 

www.umich.edu/~elements/5e/index.html

 

) LEP 16-1. We will use two polynomials to
fit the  C  -curve, one for the ascending portion,  C

 1 ( t ), and one for the descending
portion, 

 
C

 

2
 

(
 

t
 

), both of which meet at t
 

1
 

.
Using the Polymath polynomial fitting routine (see tutorial), the data in

Table E16-1.1 yields the following two polynomials to

For  

 

t

 

 

 

�

 

 4 min  then  

 

C

 

1

 

(

 

t

 

) 

 

�

 

 0.0039 

 

�

 

 0.274 

 

t

 

 

 

�

 

 1.57 

 

t

 

2

 

 

 

�

 

 0.255 

 

t

 

3

 

(E16-1.1)

For  

 

t

 

 

 

�

 

 4 min  then  

 

C

 

2

 

(

 

t

 

) 

 

�

 

 

 

�

 

33.4 

 

�

 

 37.2 

 

t

 

 

 

�

 

 11.6 

 

t

 

2

 

 

 

�

 

 1.7 

 

t

 

3

 

 

 

�

 

 0.13 

 

t

 

4

 

 

 

�

 

 0.005 

 

t

 

5

 

�

 

7.7 

 

	

 

 10

 

�

 

5

 

 

 

t

 

6

 

  (E16-1.2)

 

T

 

ABLE

 

 E16-1.1 T

 

RACER

 

 D

 

ATA

 

t

 

 (min) 0 0.5 1 2 3 4 5 6 7 8 9 10 12 14

 

C

 

 (g/m

 

3

 

) 0 0.6 1.4 5 8 10 8 6 4 3 2.2 1.5 0.6 0
Pulse input

0 2 3 5 6 8
t(min)

C(t)
(gm/m3)

9 11 12 14 15

C

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Figure E16-1.1 The C-curve.
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We then use an 

 

if statement

 

 in our fitted curve.
If (

 

t

 

 

 

�

 

 4 and 

 

t

 

 

 




 

 0) then C1 else if (t 
 4 and t � � 14) then C2 else 0

To find the area under the curve, A, we use the ODE solver.
Let A represent the area the curve, then

(E16-1.3)

(E16-1.4)

(b) Construct E(t).

The Polymath program and results are shown below where we see A � 51.

Now that we have the area, A (i.e., 51 g•min/m3), under the C-curve, we can con-
struct the E(t) curves. We now calculate E(t) by dividing each point on the C(t) curve
by 51.0 g•min/m3

E (t ) � (E16-1.5)

with the following results:

Using Table E16-1.2 we can construct E(t) as shown in Figure E16-1.2

TABLE E16-1.2 C(t) AND E(t)

t (min) 0 1 2 3 4 5 6 7 8 9 10 12 14

C (t ) (g/m3 ) 0 1.4 5 8 10 8 6 4 3 2.2 1.5 0.6 0

E (t ) (min�1 ) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

Match

C2(t)C1(t)C(t)

t1 t2

dA
dt
------ C t( )�

A C t( ) td
0

14��

E t( ) C t( )

C t( ) td
0

�

�
----------------------- C t( )

A
---------� �

Calculated values of DEQ variables

Variable Initial value Final value

1 Area 0 51.06334
2 C 0.0038746 0.0148043
3 C1 0.0038746 -387.266
4 C2 -33.43818 0.0148043
5 t 0 14.

Differential equations
*1 d(Area)/d(t) = C

Explicit equations
1 C2 = -33.43818 + 37.18972*t - 11.58838*t^2 + 1.695303*t^3 -
   0.1298667*t^4 + 0.005028*t^5 - 7.743*10^-5*t^6
2 C1 = 0.0038746 + 0.2739782*t + 1.574621*t^2 - 0.2550041*t^3
3 C = If(t<=4 and t>=0) then C1 else if(t>4 and t<=14) then C2 else 0

POLYMATH Report
Ordinary Differential Equations

C t( )

  C t ( ) td 
0

  � 
�

 ------------------------ 
C t

 
( )

 51 g min m 3 � ---------------------------------- �
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Analysis:

 

 In this example we fit the effluent concentration data 

 

C

 

(

 

t

 

) from an inert
tracer pulse input to two polynomials and then used an 

 

If statement

 

 to model the com-
plete curve. We then used the Polymath ODE solver to get the area under the curve
that we then used to divide the 

 

C

 

(

 

t

 

) curve in order to obtain the 

 

E

 

(

 

t

 

). Once we have
the 

 

E

 

(

 

t

 

) curve, we ask and easily answer such questions as “what fraction of the mod-
ules spend between 2 and 4 minutes in the reactor” or “what is the mean residence
time 

 

t

 

m

 

?” We will address these questions in the following sections where we discuss
characteristics of the residence time distribution (RTD).

 

The principal difficulties with the pulse technique lie in the problems
connected with obtaining a reasonable pulse at a reactor’s entrance. The injec-
tion must take place over a period that is very short compared with residence
times in various segments of the reactor or reactor system, and there must be
a negligible amount of dispersion between the point of injection and the
entrance to the reactor system. If these conditions can be fulfilled, this tech-
nique represents a simple and direct way of obtaining the RTD.

There could be problems in fitting 

 

E

 

(

 

t

 

) to a polynomial if the effluent
concentration–time curve were to have a long tail because the analysis can be
subject to large inaccuracies. This problem principally affects the denominator
of the right-hand side of Equation (16-7), i.e., the integration of the 

 

C

 

(

 

t

 

) curve.
It is desirable to extrapolate the tail and analytically continue the calculation.
The tail of the curve may sometimes be approximated as an exponential decay.
The inaccuracies introduced by this assumption are very likely to be much less
than those resulting from either truncation or numerical imprecision in this
region. Methods of fitting the tail are described in the 

 

Professional Reference Shelf
R16.1

 

.

 

16.2.2 Step Tracer Experiment

 

Now that we have an understanding of the meaning of the RTD curve from a
pulse input, we will formulate a relationship between a step tracer injection
and the corresponding concentration in the effluent.

0.0
0.00

1.5 3.0 4.5 6.0 7.5
t (min)

E (t )
(min–1)

9.0 10.5 12.0 13.5 15.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18 E

0.20

Figure E16-1.2 E(t)-Curve

Drawbacks to the
pulse injection to

obtain the RTD
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The inlet concentration most often takes the form of either a perfect 

 

pulse
input

 

 (Dirac delta function), 

 

imperfect pulse injection

 

 (see Figure 16-4), or a 

 

step
input

 

. Just as the RTD function 

 

E

 

(

 

t

 

) can be determined directly from a pulse
input, the cumulative distribution 

 

F

 

(

 

t

 

) can be determined directly from a step
input. 

 

The cumulative distribution gives the fraction of material F

 

(

 

t

 

)

 

 that has been in the
reactor at time 

 

t

 

 or less

 

. We will now analyze a 

 

step input

 

 in the tracer concentra-
tion for a system with a constant volumetric flow rate. Consider a constant rate
of tracer addition to a feed that is initiated at time 

 

t

 

 

 

�

 

 0. Before this time, no
tracer was added to the feed. Stated symbolically, we have

(16-9)

The concentration of tracer in the feed to the reactor is kept at this level until
the concentration in the effluent is indistinguishable from that in the feed; the
test may then be discontinued. A typical outlet concentration curve for this
type of input is shown in Figure 16-4.

Because the inlet concentration is a constant with time, 

 

C

 

0

 

, we can take it
outside the integral sign; that is,

 

C

 

out

 

(

 

t

 

) 

 

�

 

 

 

C

 

0

 

 

 

E

 

(

 

t

 

�

 

) 

 

dt

 

�

 

Dividing by 

 

C

 

0

 

 yields

 

E

 

(

 

t

 

�

 

) 

 

dt

 

�

 

 

 

�

 

 

 

F

 

(

 

t

 

)

(16-10)

We differentiate this expression to obtain the RTD function 

 

E

 

(

 

t

 

):

 

E

 

(

 

t

 

) 

 

�

 

 (16-11)

The positive step is usually easier to carry out experimentally than the
pulse test, and it has the additional advantage that the total amount of tracer in
the feed over the period of the test does not have to be known as it does in the
pulse test. One possible drawback in this technique is that it is sometimes dif-
ficult to maintain a constant tracer concentration in the feed. Obtaining the
RTD from this test also involves differentiation of the data and presents an
additional and probably more serious drawback to the technique, because dif-
ferentiation of data can, on occasion, lead to large errors. A third problem lies
with the large amount of tracer required for this test. If the tracer is very expen-
sive, a pulse test is almost always used to minimize the cost.

Other tracer techniques exist, such as negative step (i.e., elution), fre-
quency-response methods, and methods that use inputs other than steps or
pulses. These methods are usually much more difficult to carry out than the

Cout t( )
0

C0   constant ,  
t

 
0

 

�

 t 0 � ⎩
⎨
⎧

 
�

t

Cout

t

Step Input
Cin

 
0

  t 
�

Cout t( )
C0

---------------
step

  
0

  t 
�

 
�

F t( )
Cout t( )

C0
---------------

step
�

dF
dt
----- d

dt
----

Cout t( )
C0

---------------
step

�

Advantages and
drawbacks to the

step injection
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ones presented and are not encountered as often. For this reason, they will not
be treated here, and the literature should be consulted for their virtues, defects,
and the details of implementing them and analyzing the results. A good source
for this information is Wen and Fan.

 

3

 

16.3 Characteristics of the RTD

 

Sometimes 

 

E

 

(

 

t

 

) is called the 

 

exit-age distribution function

 

. If we regard the “age” of
an atom as the time it has resided in the reaction environment, then 

 

E

 

(

 

t

 

) con-
cerns the age distribution of the effluent stream. It is the most used of the dis-
tribution functions connected with reactor analysis because it characterizes
the lengths of time various atoms spend at reaction conditions.

 

16.3.1 Integral Relationships

 

The fraction of the exit stream that has resided in the reactor for a period of
time shorter than a given value 

 

t

 

 is equal to the sum over all times less than 

 

t

 

 of

 

E

 

(

 

t

 

) 

 

�

 

t

 

, or expressed continuously, by integrating 

 

E

 

(

 

t

 

) between time 

 

t

 

 

 

�

 

 0 and
time, 

 

t

 

.

(16-12)

Analogously, we have, by integrating between time  t   and time 

(16-13)

Because 

 

t

 

 appears in the integration limits of these two expressions,
Equations (16-12) and (16-13) are both functions of time. Danckwerts defined
Equation (16-12) as a 

 

cumulative distribution function and called it

 

 

 

F

 

(

 

t

 

).

 

4

 

 We can cal-
culate 

 

F

 

(

 

t

 

) at various times 

 

t

 

 from the area under the curve of a plot of 

 

E

 

(

 

t

 

) ver-
sus 

 

t

 

, i.e., the 

 

E

 

-curve. A typical shape of the 

 

F

 

(

 

t

 

) curve is shown in Figure 16-5.
One notes from this curve that 80% (i.e., 

 

F

 

(

 

t

 

) = 0.8) of the molecules spend 8
minutes or less in the reactor, and 20% of the molecules [1 

 

�

 

 

 

F

 

(

 

t

 

)] spend longer
than 8 minutes in the reactor.

The 

 

F

 

-curve is another function that has been defined as the normalized
response to a particular input. Alternatively, Equation (16-12) has been used as
a definition of 

 

F

 

(

 

t

 

), and it has been stated that as a result it can be obtained as
the response to a positive step tracer test. Sometimes the 

 

F

 

-curve is used in the
same manner as the RTD in the modeling of chemical reactors. An excellent
industrial example is the study of Wolf and White, who investigated the behav-
ior of screw extruders in polymerization processes.

 

5

 

3

 

C. Y. Wen and L. T. Fan, 

 

Models for Flow Systems and Chemical Reactors

 

 (New York: Marcel
Dekker, 1975).

 

4

 

P. V. Danckwerts, 

 

Chem. Eng. Sci.

 

, 2, 1 (1953).

 

5

 

D. Wolf and D. H. White, 

 

AIChE J.

 

, 22, 122 (1976).

From E (t ) we can
learn how long

different molecules
have been in the

reactor.

The cumulative
RTD function F (t )   E t ( ) td 

0

  t 
�

 
F t

 
( )

 Fraction of effluent
 that has been in reactor 

for less than time 

 

t

 
� �

t �⇒

  E t ( ) td 
t

  � 
�

 
1

 
F t

 
( )

 
�

 Fraction of effluent
 that has been in reactor 

for longer than time 

 

t

 
� �
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16.3.2 Mean Residence Time

 

In previous chapters treating ideal reactors, a parameter frequently used was
the space time or average residence time, 

 

τ

 

, which was defined as being equal
to (

 

V

 

/

 

υ

 

). It will be shown that, in the absence of dispersion, and for constant
volumetric flow (

 

υ

 

 = 

 

υ

 

0

 

)  no matter what RTD exists for a particular reactor,
ideal or nonideal, this nominal space time, 

 

τ

 

, is equal to the 

 

mean residence
time

 

, 

 

t

 

m

 

.
As is the case with other variables described by distribution functions,

the mean value of the variable is equal to the first moment of the RTD func-
tion, 

 

E

 

(

 

t

 

). Thus the mean residence time is

(16-14)

We now wish to show how we can determine the total reactor volume using
the cumulative distribution function.

In the 

 

Extended Material for Chapter 16 on the Web

 

, a proof is given that for
constant volumetric flow rate, the mean residence time is equal to the space
time, i.e., 

(16-15)

This result is true 

 

only

 

 for a 

 

closed system

 

 (i.e., no dispersion across boundaries; see
Chapter 18). The exact reactor volume is determined from the equation

(16-16)

 

16.3.3 Other Moments of the RTD

 

It is very common to compare RTDs by using their moments instead of trying
to compare their entire distributions (e.g., Wen and Fan).

 

6

 

 For this purpose,
three moments are normally used. The first is the mean 

 

residence time

 

, 

 

t

 

m

 

. The

 

6

 

C. Y. Wen and L. T. Fan, 

 

Models for Flow Systems and Chemical Reactors

 

 (New York: Decker,
1975), Chap. 11.

1.0

0.8

0.6

0.4

0.2

0

F(t )

t (min)8

Figure 16-5 Cumulative distribution curve, F (t ).

τ � tm

The F-curve

The first moment
gives the average
time the effluent

molecules spent in
the reactor.

tm

  tE t ( ) td 
0

  � 
�

  E t ( ) td 
0

  � 
�

 --------------------------   tE t ( ) td 
0

  � 
�

 
� �

tm t�

V υtm�
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second moment commonly used is taken about the mean and is called the

 

variance

 

, 

 

σ

 

2

 

, or square of the standard deviation. It is defined by

(16-17)

The magnitude of this moment is an indication of the “spread” of the distribution;
the greater the value of this moment is, the greater a distribution’s spread will be.

The third moment is also taken about the mean and is related to the 

 

skew-
ness

 

, 

 

s

 

3

 

, The skewness is defined by

 

s

 

3

 

 

 

�

 

 (16-18)

The magnitude of the third moment measures the extent that a distribution is
skewed in one direction or another in reference to the mean.

Rigorously, for a complete description of a distribution, all moments
must be determined. Practically, these three are usually sufficient for a reason-
able characterization of an RTD.

 

Example 16–2 Mean Residence Time and Variance Calculations

 

Using the data given in Table E16-1.2 in Example 16-1

 

(a)

 

Construct the 

 

F

 

(

 

t

 

) curve.

 
(b)

 
Calculate the mean residence time, 

 
t

 
m

 
.

 (c)  Calculate the variance about the mean,  �  2  .  

(d)

 

Calculate the fraction of fluid that spends between 3 and 6 minutes in the
reactor.

 

(e)

 

Calculate the fraction of fluid that spends 2 minutes or less in the reactor.

 

(f)

 

Calculate the fraction of the material that spends 3 minutes or longer in the
reactor.

 

Solution

 

(a)

 

 To construct the 

 

F

 

-curve, we simply integrate the 

 

E

 

-curve

(E16-1.5)

using an ODE solver such as Polymath shown in Table E16-2.1 

(16-11)

The Polymath program and results are shown in Table E16-1.2 and Figure E16-2.1(b),
respectively.

 

  

 

Table E16-1.2

 

C

 

(

 

t

 

), 

 

AND

 

 

 

E

 

(

 

t

 

)

 

t

 

 (min) 0 1 2 3 4 5 6 7 8 9 10 12 14

 

C

 

(

 

t

 

) (g/m

 

3

 

) 0 1.4 5 8 10 8 6 4 3 2.2 1.5 0.6 0

 

E

 

(

 

t

 

) (min

 

�

 

1

 

) 0 0.02 0.1 0.16 0.2 0.16 0.12 0.08 0.06 0.044 0.03 0.012 0

The second
moment about the

mean is the
variance.

�2   t t m � ( ) 2 E t ( ) td 
0

  � 
�

 
�

The two parameters
most commonly

used to
characterize the

RTD are τ and �2

1
�3 2�
---------    t t m � ( ) 3 E t ( ) td 

0

  � 
�

E t( ) C t( )
A

--------- C t( )
51

---------� �

dF
dt
----- E t( )�

 

Fogler_Ch16.fm  Page 13  Tuesday, March 14, 2017  6:24 PM



 

16-14

 

Residence Time Distributions of Chemical Reactors Chapter 16

 

(b)

 

 We also show in Table E16-2.1 the Polymath program to calculate the mean res-
idence time, 

 

t

 

m

 

. By differentiating Equation (16-14), we can easily use Polymath to
find 

 

t

 

m

 

, i.e., 

(E16-2.1)

with 

 

t

 

 

 

�

 

 0 then 

 

E

 

 

 

�

 

 0 and 

 

t

 

 

 

�

 

 14 then 

 

E

 

 

 

�

 

 0. Equation (E16-2.1) and the calculated
result is also shown in Table E16-2.1 where we find

 

t

 

m

 

 

 

�

 

 5.1 minutes

 

T

 

ABLE

 

 E16-2.1  

 
P

 

OLYMATH

 
 P

 

ROGRAM

 
 

 

AND

 
 R

 

ESULTS

 
 

 

TO

 
 C

 

ONTRUCT

 
 

 

THE

 
 

 
E

 
- 

 

AND

 
 

 
F

 
- C

 

URVES

 

Using the Polymath plotting routines, we can construct Figures E16-2.1 (a) and (b)
after executing the program shown in the Polymath Table E16-2.1.

 

(c)

 

 Now that we have found the mean residence time 

 

t

 

m

 

 we can calculate the vari-
ance 

 

σ

 

2

 

.

(E16-2.2)

We now differentiate Equation (E16-2.2) with respect to 

 

t

 

(E16-2.3)

and then use Polymath to integrate between 

 

t

 

 = 0 and 

 

t

 

 = 14, which is the last point 
on the 

 

E

 

-curve.

Calculating the
mean residence

time,

t tm   tE t ( ) td 
0

 
�  �  � � dtm

dt
------- tE t( )�

Calculated values of DEQ variables

Variable Initial value Final value

1 Area 51. 51.
2 C 0.0038746 0.0148043
3 C1 0.0038746 -387.266
4 C2 -33.43818 0.0148043
5 E 7.597E-05 0.0002903
6 F 0 1.00125
7 t 0 14.
8 tm 0 5.107247

Differential equations
1 d(tm)/d(t) = t*E
2 d(F)/d(t) = E

Explicit equations
1 C1 = 0.0038746 + 0.2739782*t  + 1.574621*t^2 - 0.2550041*t^3
2 Area = 51
3 C2 = -33.43818 + 37.18972*t - 11.58838*t^2 + 1.695303*t^3 -
   0.1298667*t^4 + 0.005028*t^5 - 7.743*10^-5*t^6
4 C = If(t<=4 and t>=0) then C1 else if(t>4 and t<=14) then C2 else 0
5 E = C/Area

POLYMATH Report
Ordinary Differential Equations

0.0
0.00

1.5 3.0 4.5 6.0 7.5
t

9.0 10.5 12.0 13.5 15.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18 E

0.20

0.0
0.00 1.50 3.00 4.50 6.00 7.50

t
9.00 10.50 12.00 13.50 15.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 F

1.0

Figure E16-2.1 (a) E-Curve; (b) F-Curve.
(a) (b)

Calculating the
variance �2   t t m � ( ) 2 E t ( ) td 

0

  � 
�

 
�

d�
2

dt
-------- t tm�( )2E t( )�
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T

 

ABLE

 

 E16-2.2  

 

P

 

OLYMATH

 

 P

 

ROGRAM

 

 

 

AND

 

 R

 

ESULTS

 

 

 

TO

 

 C

 

ALCULATE

 

 

 

THE

 

 
M

 

EAN

 

 R

 

ESIDENCE

 

 T

 

IME

 

, 

 

t

 

m

 

, 

 

AND

 

 

 

THE

 

 

 

VARIANCE

 

 

 

σ

 

2

 

The results of this integration are shown in Table E16-2.1 where we find 

 

�

 

2

 

 

 

�

 

 6.2
minutes, so 

 

�

 

 

 

�

 

 2.49 minutes.

 

(d)

 

 To find the fraction of fluid that spends between 3 and 6 minutes, we simply inte-
grate the 

 

E

 

-curve between 3 and 6 

The Polymath program is shown in Table E16-2.3 along with the output. 

 

T

 

ABLE

 

 E16-2.3  

 

P

 

OLYMATH

 

 P

 

ROGRAM

 

 

 

TO

 

 F

 

IND

 

 

 

THE

 

 F

 

RACTION

 

 

 

OF

 

 F

 

LUID

 

 

 

THAT

 

 

 

SPENDS

 

 

 

BETWEEN

 

 3 

 

AND

 

 6 M

 

INUTES

 

 

 

IN

 

 

 

THE

 

 R

 

EACTOR

 

We see that approximately 50% (i.e., 49.53%) of the material spends between 3 and
6 minutes in the reactor.

We can visualize this fraction with the use of plot of 

 

E

 

(

 

t

 

) versus (

 

t

 

) as shown in
Figure E16-2.2. The shaded area in Figure E16-2.2 represents the fraction of material
leaving the reactor that has resided in the reactor between 3 and 6 min.
Evaluating this area, we find that 50% of the material leaving the reactor spends
between 3 and 6 min in the reactor.  
(e)

 
 We shall next consider the fraction of material that has been in the reactor for a

time 

 

t

 

 or less; that is, the fraction that has spent between 0 and 

 

t

 

 minutes in the reac-
tor, 

 

F

 

(

 

t

 

). This fraction is just the shaded area under the curve up to 

 

t

 

 

 

�

 

 

 

t

 

 minutes.
This area is shown in Figure E16-2.3 for 

 

t

 

 

 

�

 

 3 min. Calculating the area under the
curve, we see that approximately 20% of the material has spent 

 

3 min

 

 

 

or

 

 

 

less

 

 in the
reactor.

Calculated values of DEQ variables

Variable Initial value Final value

1 Area 51. 51.
2 C 0.0038746 0.0148043
3 C1 0.0038746 -387.266
4 C2 -33.43818 0.0148043
5 E 7.597E-05 0.0002903
6 Sigma2 0 6.212473
7 t 0 14.
8 tmf 5.1 5.1

Differential equations
1 d(Sigma2)/d(t) = (t-tmf)^2 * E

Explicit equations
1 C1 = 0.0038746 + 0.2739782*t  + 1.574621*t^2 - 0.2550041*t^3
2 Area = 51
3 C2 = -33.43818 + 37.18972*t - 11.58838*t^2 + 1.695303*t^3 -
   0.1298667*t^4 + 0.005028*t^5 - 7.743*10^-5*t^6
4 C = If(t<=4 and t>=0) then C1 else if(t>4 and t<=14) then C2 else 0
5 E = C/Area
6 tmf = 5.1

POLYMATH Report
Ordinary Differential Equations

F3 6� E t( ) td
3

6

��

Calculated values of DEQ variables

Variable Initial value Final value

1 C 8.112288 5.881819
2 C1 8.112288 3.253214
3 C2 10.2549 5.881819
4 E 0.1590645 0.1153298
5 F 0 0.4952889
6 t 3. 6.

Differential equations
1 d(F)/d(t) = E

Explicit equations
1 C1 = 0.0038746 + 0.2739782*t  + 1.574621*t^2 - 0.2550041*t^3
2 C2 = -33.43818 + 37.18972*t - 11.58838*t^2 + 1.695303*t^3 -
   0.1298667*t^4 + 0.005028*t^5 - 7.743*10^-5*t^6
3 C = If(t<=4 and t>=0) then C1 else if(t>4 and t<=14) then C2 else 0
4 E = C/51

POLYMATH Report
Ordinary Differential Equations
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(f)

 

 The fraction of fluid that spends a time t or greater in the reactor is

therefore 80% of the fluid spends a time t or greater in the reactor.

The square of the standard deviation is �2 � 6.19 min2, so � � 2.49 min.

Analysis: In this example we calculated two important properties of the RTD, the
mean time molecules spend in the reactors, tm, and the variance about this mean, �2.
We will calculate these properties from the RTD of other nonideal reactors and then
show in Chapter 18 how to use them to formulate models of real reactors using
combinations of ideal reactors. We will use these models along with reaction-rate
data to predict the conversion in the nonideal reactor we obtained from the reactor
storage shed.

16.3.4 Normalized RTD Function, E(�)

Frequently, a normalized RTD is used instead of the function E (t ). If the param-
eter � is defined as

(16-19)

Figure E16-2.2  Fraction of material that spends between 3 and 6 minutes in the reactor.

0   
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0.20
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–1

)

Figure E16-2.3 Fraction of material that spends 3 minutes or less in the reactor.

The E curve
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than time t
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The quantity � represents the number of reactor volumes of fluid, based on
entrance conditions, that have flowed through the reactor in time t. The
dimensionless RTD function, E(�) is then defined as

E (�) � τE (t ) (16-20)

and plotted as a function of �, as shown in the margin.
The purpose of creating this normalized distribution function is that the

flow performance inside reactors of different sizes can be compared directly.
For example, if the normalized function E (�) is used, all perfectly mixed
CSTRs have numerically the same RTD. If the simple function E (t ) is used,
numerical values of E(t) can differ substantially for CSTRs different volumes, V,
and entering volumetric flow rates, υ0. As will be shown later in Section 16.4.2,
E(t) for a perfectly mixed CSTR

(16-21)

and therefore

E (�) � τE (t ) � e�� (16-22)

From these equations it can be seen that the value of E (t ) at identical times can
be quite different for two different volumetric flow rates, say υ1 and υ2. But for
the same value of �, the value of E (�) is the same irrespective of the size or
volumetric flow rate of a perfectly mixed CSTR.

It is a relatively easy exercise to show that

E (�) d� � 1 (16-23)

and is recommended as a 93-s divertissement. (Jofostan University chemical
engineers claim they can do it in 87 s.)

16.3.5 Internal-Age Distribution, I(�)

Although this section is not a prerequisite to the remaining sections, the inter-
nal-age distribution is introduced here because of its close analogy to the exter-
nal-age distribution. We shall let � represent the age of a molecule inside the
reactor. The internal-age distribution function I (�) is a function such that
I (�)�� is the fraction of material now inside the reactor that has been inside the
reactor for a period of time between � and (� � ��). It may be contrasted with
E (�)��, which is used to represent the material leaving the reactor that has spent
a time between � and (� � ��) in the reaction zone; I (�) characterizes the
time the material has been (and still is) in the reactor at a particular time. The
function E (�) is viewed outside the reactor and I (�) is viewed inside the reactor.
In unsteady-state problems, it can be important to know what the particular
state of a reaction mixture is, and I (�) supplies this information. For example,
in a catalytic reaction using a catalyst whose activity decays with time, the
internal-age distribution of the catalyst in the reactor I(�) is of importance and
can be of use in modeling the reactor.

Why we use a
normalized RTD

E(t)

υ2

υ1

υ1 > υ2

t

E (t ) for a CSTR

E t( ) 1
t
---  e � t t � �

v1, v2

 

0

  � 
�

Tombstone jail
How long have you

been here? I (�)Δ�
When do you

expect to get out?
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The internal-age distribution is discussed further on the 

 

Professional Refer-
ence Shelf (R16.2)

 

 where the following relationships between the cumulative
internal-age distribution 

 

I

 

(

 

�

 

) and the cumulative external-age distribution 

 

F

 

(

 

�

 

)

 

I

 

(

 

�

 

) = (1 – 

 

F

 

(

 

�

 

))/

 

τ

 

(16-24)

and between 

 

E

 

(

 

t

 

) and 

 

I

 

(

 

t

 

)

 

E

 

(

 

�

 

) = (16-25)

are derived. For a CSTR, it is shown that the internal-age distribution function is

 

I

 

(

 

α

 

) =  (16-26)

 

16.4 RTD in Ideal Reactors

 

16.4.1 RTDs in Batch and Plug-Flow Reactors

 

The RTDs in plug-flow reactors and ideal batch reactors are the simplest to
consider. All the atoms leaving such reactors have spent precisely the same
amount of time within the reactors. The distribution function in such a case is
a spike of infinite height and zero width, whose area is equal to 1; the spike
occurs at 

 

t

 

 

 

�

 

 

 

V

 

/  

 

�

 

 

 

τ

 

, or 

 

�

 

 

 

�

 

 1, as shown in Figure 16-6. 
The 

 

E

 

(

 

t

 

) function is shown in Figure 16-6(a), and 

 

F

 

(

 

t

 

) is shown in Figure
16-6(b).

Mathematically, this spike is represented by the Dirac delta function:

(16-27)

The Dirac delta function has the following properties:

(16-28)

(16-29)

(16-30)

d
d�
------� τI �( )[ ]

1
τ
---� e � τ��

υ

In

0

(a) (b)

t t

E(t) F(t)

1.0

0

∞
Out
∞

≈ ≈

Figure 16-6 Ideal plug-flow response to a pulse tracer input.
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To calculate 

 

τ

 

 the mean residence time, we set g(x) 

 

�

 

 t

 

t

 

m

 

 

 

�

 

 

 

tE

 

(

 

t

 

) 

 

dt

 

 

 

�

 

  

 

t

 

�

 

(

 

t 

 

� 

 

τ) 

 

dt

 

 

 

� 

 

τ (16

 

-

 

31)

 

But we already knew this result, as did all chemical reaction engineering
students at the university in Riça, Jofostan. To calculate the variance, we set

 

g

 

(

 

t

 

) = (

 

t

 

 – 

 

τ

 

)

 

2

 

, and the variance, 

 

σ

 

2

 

, is

 

�

 

2

 

 

 

�

 

 (

 

t

 

�

 

τ)

 

2

 

�

 

(

 

t 

 

� 

 

τ) 

 

dt

 

 

 

� 

 

0

 

All material spends exactly a time 

 

τ

 

 in the reactor, so there is no variance
[

 

�

 

2

 

 

 

�

 

 0]!
The cumulative distribution function 

 

F

 

(

 

t

 

) is 

 

F

 

(

 

t

 

)

 

 

 

�

 

 

 

 

 

�

 

(

 

t  

 

� 

 

τ

 

)

 

dt

 

 

 

16.4.2 Single-CSTR RTD

 

In an ideal CSTR the concentration of any substance in the effluent stream is
identical to the concentration throughout the reactor. Consequently, it is possi-
ble to obtain the RTD from conceptual considerations in a fairly straightfor-
ward manner. A material balance on an inert tracer that has been injected as a
pulse at time 

 

t

 

 

 

�

 

 0 into a CSTR yields for 

 

t

 

 

 




 

 0

(16-33)

Because the reactor is perfectly mixed, 

 

C

 

 in this equation is the concentration
of the tracer both in the effluent and within the reactor. Separating the vari-
ables and integrating with 

 

C

 

 

 

�

 

 

 

C

 

0

 

 at 

 

t

 

 

 

�

 

 0 yields

 

C

 

(

 

t

 

) 

 

�

 

 

 

C

 

0

 

e

 

�

 

t

 

/

 

τ

 

(16-34)

The 

 

C

 

-curve can be plotted from Equation (16-34), which is the concentration
of tracer in the effluent at any time 

 

t

 

.
To find 

 

E

 

(

 

t

 

) for an ideal CSTR, we first recall Equation (16-7) and then
substitute for 

 

C

 

(

 

t

 

) using Equation (16-34). That is

 

E

 

(

 

t

 

) 

 

�

 

 (16-35)

Evaluating the integral in the denominator completes the derivation of the
RTD for an ideal CSTR and one notes they are the same as previously given by
Equations (16-21) and (16-22)

 

E

 

(

 

t

 

) 

 

�

 

(16-21)

 E  (  �  )  �  e  ��  (16-22)
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From a tracer
balance we can
determine E (t ).
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the cumulative distribution is

(16-32)

Recall that  and 

 

E

 

(

 

�

 

) = 

 

τ

 

E

 

(

 

t

 

).

The cumulative distribution 
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(16-36)

The 

 

E

 

(

 

�

 

) and 

 

F

 

(

 

�

 

) functions for an ideal CSTR are shown in Figure 16-7 (a) and (b),
respectively.

Earlier it was shown that for a constant volumetric flow rate, the mean resi-
dence time in a reactor is equal to (

 

V

 

/ ), or 

 

τ

 

. This relationship can be shown in a
simpler fashion for the CSTR. Applying the definition of the mean residence time to
the RTD for a CSTR, we obtain
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(16-14)

Thus, the nominal holding time (space time) 

 

τ

 

 

 

�

 

 (

 

V

 

/ ) is also the mean resi-
dence time that the material spends in the reactor.

The second moment about the mean is the variance and is a measure of
the spread of the distribution about the mean. The variance of residence times
in a perfectly mixed tank reactor is (let 
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)

 

�

 

2

 

 

 

�  e�t/τ dt � τ2 (x � 1)2 e�x dx � τ2 (16-37)

Then, � � τ. The standard deviation is the square root of the variance. For a
CSTR, the standard deviation of the residence time distribution is as large as
the mean itself!!

16.4.3 Laminar-Flow Reactor (LFR)

Before proceeding to show how the RTD can be used to estimate conversion in
a reactor, we shall derive E (t ) for a laminar-flow reactor. For laminar flow in a
tubular (i.e. cylindrical) reactor, the velocity profile is parabolic, with the fluid
in the center of the tube spending the shortest time in the reactor. A schematic

F t( ) E t( ) td
0

t

� e t� τ�

τ
----------

0

t

� 1 e t� τ�
�� � �

� t t��

Response of an
ideal CSTR 1.0

0

(a) (b)

1.0

1.0

0 1.0

Figure 16-7 E(Θ) and F(Θ) for an Ideal CSTR.
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diagram of the fluid movement after a time 

 

t

 

 is shown in Figure 16-8. The fig-
ure at the left shows how far down the reactor each concentric fluid element
has traveled after a time 

 

t

 

.

The velocity profile in a pipe of outer radius 

 

R

 

 is

(16-38)

where 

 

U

 

max

 

 is the centerline velocity and 

 

U

 

avg

 

 is the average velocity through
the tube. 

 

U

 

avg

 

 is just the volumetric flow rate divided by the cross-sectional
area.

The time of passage of an element of fluid at a radius 

 

r

 

 is

(16-39)

(16-40)

The volumetric flow rate of fluid out of the reactor between 

 

r

 

 and (

 

r

 

 + 

 

dr

 

), 

 

d

 

υ

 

, is

 

d

 

υ

 

 = 

 

U

 

(

 

r

 

) 2

 

π

 

rdr

 

(16-41)

The fraction of total fluid passing out between 

 

r

 

 and (

 

r 

 

+ 

 

dr

 

) is 

 

d

 

υ

 

/

 

υ

 

0

 

, i.e.

 (16-42)

The fraction of fluid between 

 

r

 

 and (

 

r

 

 + 

 

dr

 

) that has a flow rate between 

 

υ

 

 and
(

 

υ

 

 + 

 

d

 

υ

 

) and spends a time between 

 

t

 

 and (

 

t

 

 + 

 

dt

 

) in the reactor is

 (16-43)

We now need to relate the fluid fraction, Equation (16-43), to the fraction
of fluid spending between time 

 

t

 

 and 

 

t

 

 

 

�

 

 

 

dt

 

 in the reactor. First we differentiate
Equation (16-40)

(16-44)

and then use Equation (16-40) to substitute 

 

t

 

 for the term in brackets to yield

(16-45)

Figure 16-8 Schematic diagram of fluid elements in a laminar-flow reactor.
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Combining Equations (16-42) and (16-45), and then using Equation
(16-40) that relates for 

 

U

 

(

 

r

 

) and 

 

t

 

(

 

r

 

), we now have the fraction of fluid spending
between time 

 

t

 

 and 

 

t

 

 

 

�

 

 

 

dt

 

 in the reactor

(16-46)

The minimum time the fluid may spend in the reactor is

Consequently, the complete RTD function for a laminar-flow reactor is

(16-47)

The cumulative distribution function for 

 

t
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/2 is

(16-48)

The mean residence time 

 

t

 

m

 

 is

This result was shown previously to be true for any reactor 

 

without dispersion

 

.
The mean residence time is just the space time 

 

τ

 

.
The dimensionless form of the RTD function is

(16-49)
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and is plotted in Figure 16-9.

The dimensionless cumulative distribution, F(

 

Θ

 

) for 

 

Θ

 

 ≥ 1/2, is

(16-50)

Figure 16-9(a) shows 

 

E

 

(

 

Θ

 

) for a laminar flow reactor (LFR), while Figure 9-9(b)
compares 

 

F

 

(

 

Θ

 

) for a PFR, CSTR, and LFR.
Experimentally injecting and measuring the tracer in a laminar-flow reac-

tor can be a difficult task if not a nightmare. For example, if one uses as a
tracer chemicals that are photo-activated as they enter the reactor, the analysis
and interpretation of 

 

E

 

(

 

t

 

) from the data become much more involved.

 

7

 

16.5 PFR/CSTR Series RTD

 

In some stirred tank reactors, there is a highly agitated zone in the vicinity of
the impeller that can be modeled as a perfectly mixed CSTR. Depending on the
location of the inlet and outlet pipes, the reacting mixture may follow a some-
what tortuous path either before entering or after leaving the perfectly mixed
zone—or even both. This tortuous path may be modeled as a plug-flow reac-
tor. Thus, this type of reactor may be modeled as a CSTR in series with a
plug-flow reactor, and the PFR may either precede or follow the CSTR. In this
section we develop the RTD for a series arrangement of a CSTR and a PFR.

First consider the CSTR followed by the PFR (Figure 16-10). The mean
residence time in the CSTR will be denoted by 

 

τ

 

s

 

 and the mean residence time
in the PFR by 

 

τ

 

p

 

. If a pulse of tracer is injected into the entrance of the CSTR,

 

7

 

D. Levenspiel, 

 

Chemical Reaction Engineering,

 

 3rd ed. (New York: Wiley, 1999), p. 342.

(a) (b)

Figure 16-9  (a) E(Θ) for an LFR; (b) F(Θ) for a  PFR, CSTR, and LFR.
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the CSTR output concentration as a function of time will be

 

C

 

 

 

�

 

 

 

C

 

0

 

This output will be delayed by a time 

 

τ

 

p

 

 at the outlet of the plug-flow section of
the reactor system. Thus, the RTD of the reactor system is

(16-51)

See Figure 16-11.

Next, consider a reactor system in which the CSTR is preceded by the PFR
will be treated. If the pulse of tracer is introduced into the entrance of the
plug-flow section, then the same pulse will appear at the entrance of the perfectly
mixed section 

 

τ

 

p

 

 seconds later, meaning that the RTD of the reactor system will
again be

(16-51)

which is 

 

exactly

 

 the same as when the CSTR was followed by the PFR.
It turns out that no matter where the CSTR occurs within the PFR/CSTR

reactor sequence, the same RTD results. Nevertheless, this is not the entire
story as we will see in Example 16-3.

CSTR
PFR

Figure 16-10 Real reactor modeled as a CSTR and PFR in series.
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Figure 16-11 RTD curves E(t) and F(t) for a CSTR and a PFR in series.
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Example 16–3 Comparing Second-Order Reaction Systems

Consider a second-order reaction being carried out in a real CSTR that can be mod-
eled as two different reactor systems: In the first system an ideal CSTR is followed by
an ideal PFR (Figure E16-3.1); in the second system the PFR precedes the CSTR
(Figure E16-3.2). To simplify the calculations, let τs and τp each equal 1 min, let the
reaction rate constant equal 1.0 m3/kmolmin, and let the initial concentration of
liquid reactant, CA0 , equal 1.0 kmol/m3. Find the conversion in each system.

For the parameters given, we note that in these two arrangements (see Figures
E16-3.1 and E16-3.2), the RTD function, E(t), is the same

Solution

(a) Let’s first consider the case of early mixing when the CSTR is followed by the
plug-flow section (Figure E16-3.1). 

A mole balance on the CSTR section gives

Rearrranging

(E16-3.1)

Dividing by υ
0
 and rearranging, we have quadric equation to solve for the interme-

diate concentration C
Ai

 

τsk  � CAi � CA0 � 0

Substituting for τs and k

Solving for CAi gives

 (E16-3.2)

This concentration will be fed into the PFR. The PFR mole balance is

(E16-3.3)

Examples of early
and late mixing for

a given RTD
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t
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1.0

F
(t

)
CA0

CAi CA

Figure E16-3.1 Early mixing scheme.
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Integrating Equation (16-3.3)

(E16-3.4)

Substituting 
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i
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 0.618 kmol/m

 

3

 

, 
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 1 min, k 
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 1 m
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/kmol/min and 
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 1 m
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/kmol in Equation (E16-3.4) yields
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�

 

 0.382 kmol/m

 

3

 

as the concentration of reactant in the effluent from the reaction system.
The conversion is

 

(b)

 

 Now, let’s consider the case of late mixing.

When the perfectly mixed section is preceded by the plug-flow section (Figure
E16-3.2), the outlet of the PFR is the inlet to the CSTR, 
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A

 

i

 

. Again, solving Equation
(E16-3.3)

Solving for intermediate concentration, 
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, given 
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/mol and a
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Next, solve for C
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 exiting the CSTR.
A material balance on the perfectly mixed section (CSTR) gives
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 (E16-3.6)

as the concentration of reactant in the effluent from the reaction system. The corre-

sponding conversion is 63.4%; that is, .

 

Analysis:

 

 The RTD curves are identical for both configurations. However, the con-
version was not the same. In the first configuration, a conversion of 61.8% was
obtained; in the second configuration, 63.4%. While the difference in the conver-
sions is small for the parameter values chosen, 

 

the point is that there is a differ-
ence

 

. Let me say that again, 

 

the point is there is a difference 

 

and we will explore it further
in Chapters 17 and 18.
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Figure E16-3.2 Late mixing scheme.
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The conclusion from this example is of extreme importance in reactor
analysis: The RTD is not a complete description of structure for a
particular reactor or system of reactors. The RTD is unique for a particular
or given reactor. However, as we just saw, the reactor or reaction system is not
unique for a particular RTD. When analyzing nonideal reactors, the RTD alone
is not sufficient to determine its performance, and more information is needed.
It will be shown in Chapter 17 that in addition to the RTD, an adequate model
of the nonideal reactor flow pattern and knowledge of the quality of mixing or
“degree of segregation” are both required to characterize a reactor properly.

At this point, the reader has the necessary background to go directly to Chapter 17
where we use the RTD to calculate the mean conversion in a real reactor using different
models of ideal chemical reactors.

16.6 Diagnostics and Troubleshooting

16.6.1 General Comments

As discussed in Section 16.1, the RTD can be used to diagnose problems in exist-
ing reactors. As we will see in further detail in Chapter 18, the RTD functions E(t)
and F(t) can be used to model the real reactor as combinations of ideal reactors.

Figure 16-12 illustrates typical RTDs resulting from different nonideal
reactor situations. Figures 16-12(a) and (b) correspond to “nearly” ideal PFRs

While E (t ) was
the same for both
reaction systems,

the conversion
was not.

Chance Card:
Do not pass go,
proceed directly to

Chapter 17.

GO 

(a) (b)

(c)

(d)

(f)

0 τ

τ

τ

t

Ideal

E(t) E(t)

E(t)

E(t)

Actual

Ideal

Actual

0 t

(e)

0 t

0 t

Bypassing

Long tail
dead zone

Channeling

Dead Zones

z = 0 z = L

Channeling
Channeling

Dead Zones

Dead
Zone

Figure 16-12 (a) RTD for near plug-flow reactor; (b) RTD for near perfectly mixed CSTR;
(c) packed-bed reactor with dead zones and channeling; (d) RTD for packed-bed reactor in (c);
(e) tank reactor with short-circuiting flow (bypass); (f) RTD for tank reactor with channeling
(bypassing or short circuiting) and a dead zone in which the tracer slowly diffuses in and out.

RTDs that are com-
monly observed
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and CSTRs, respectively. The RTD for the nonideal reactor in Figure 16-12(c)
modeled as a PBR with channeling and dead zones is shown in Figure 16-12(d).
In Figure 16-12(d) one observes that a principal peak occurs at a time smaller
than the space time (τ= V/υ0) (i.e., early exit of fluid) and also that some fluid
exits at a time greater than space-time τ. This curve is consistent with the RTD
for a packed-bed reactor with channeling (i.e., by-passing) and stagnant zones
(i.e., not mixed with bulk flow) as discussed earlier in Figure 16-1. Figure
16-12(f) shows the RTD for the nonideal CSTR in Figure 16-12(e), which has
dead zones and bypassing. The dead zone serves not only to reduce the effec-
tive reactor volume, so the active reactor volume is smaller than expected, but
also results in longer residence times for the tracer molecules to diffuse in and
out of these “dead or stagnant” zones.

16.6.2 Simple Diagnostics and Troubleshooting Using the RTD for 
Ideal Reactors

16.6.2A The CSTR

We now consider three CSTRs: (a) one that operates normally, (b) one with
bypassing, and (c) one with a dead volume. For a well-mixed CSTR, as we saw
in Section 16.4.2, the response to a pulse tracer is

Concentration: (16-34)

RTD function: (16-35)

Cumulative function: (16-36)

where τ is the space time—the case of perfect operation.
a. Perfect Operation (P) Model

Here, we will measure our reactor with a yardstick to find V and our
flow rate with a flow meter to find υ0 in order to calculate τ = V/υ0.
We can then compare the curves for imperfect operation (cf. Figures
16-14 and 16-15) with the curves shown below in Figure 16-13 for
perfect (i.e., ideal) CSTR operation
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If τ is large, there will be a slow decay of the output transient, C(t), and
E(t) for a pulse input. If τ is small, there will be rapid decay of the
transient, C(t), and E(t) for a pulse input.

b. Bypassing (BP) Model
In Figure 16-14, the real reactor on the left is modeled by an ideal
reactor with bypassing, as shown on the right.

The entering volumetric flow rate is divided into a volumetric flow
rate that enters the reacting system, υ

SB
, and a volumetric flow rate

that bypasses the reacting mixture system completely υ
b
. Where

υ
0
 = υ

SB
 + υ

b
. The subscript SB denotes a model of a reactor system

with bypassing. The reactor system volume V
S
 is the well-mixed por-

tion of the reactor.
The analysis of a bypass to the CSTR may be elucidated by observ-

ing the output to a step tracer input to the real reactor. The CSTR with
bypassing will have RTD curves similar to those in Figure 16-14.

We see the concentration output in the form C(t)/C0 for a step input
will be the F-curve and the initial jump will be equal to the fraction
bypassed. The corresponding equation for the F-curve is

  

t t

transient

E
(t

)

1.0

F
(t

)e

Yardstick

v0

v0

Figure 16-13 Perfect operation of a CSTR.
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Figure 16-14 Ideal CSTR with bypass.
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Figure 16-14(a) Inlet and outlet concentration curves correspond to Figure 16-14.
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differentiating the F-Curve we obtain the E-curve

  

Here, a fraction of the tracer (υb/υ0) will exit immediately while the
rest of the tracer will mix and become diluted with volume V and
exponentially increase up to C

out
(t), where F(t) = 1.0.

Because some of the fluid bypasses, the flow passing through
the system will be less than the total volumetric rate, υ

SB
 < υ

0
; conse-

quently, τ
SB

 > τ. For example, let’s say the volumetric flow rate, which
bypasses the reactor, υ

b
, is 25% of the total (e.g., υ

b
 � 0.25 υ

0
). The

volumetric flow rate entering the reactor system, υ
SB

, is 75% of the
total (υ

SB
 = 0.75 υ

0
) and the corresponding true space time (τ

SB
) for

the system volume with bypassing is

The space time, τ
SB

, will be greater than it would be if there were no
bypassing. Because τSB is greater than τ, there will be a slower decay of
the transients C(t) and E(t) than there would be with perfect operation.

c. Dead Volume (DV) Model
Consider the CSTR in Figure 16-15 without bypassing but instead
with a stagnant or dead volume.

The total volume, V, is the same as that for perfect operation,
V = VDV + VSD. The subscript DV in VDV represents the dead volume in
the model, and the subscript SD in VSD is the reacting system volume
in the model. Here, the dead volume where absolutely no reaction
takes place, VDV, acts like a fictitious brick at the bottom taking up
precious reactor volume. The system volume where the reaction can
take place, i.e., VSD, is reduced because of this dead volume and there-
fore less conversion can be expected. 

We see that because there is a dead volume that the fluid does
not enter, there is less system volume, VSD, available for reaction than
in the case of perfect operation, i.e., VSD < V. Consequently, the fluid
will pass through the reactor with the dead volume more quickly than
that of perfect operation, i.e., τSD < τ.

If  

E t( )
υb

υ0
-----δ t 0�( )

υ2
SB

Vυ0
---------e

υSBt

V
----------⎝ ⎠

⎛ ⎞�

��

τSB
V

υSB
------- V

0.75υ0
---------------- 1.33τ� � �

t t

Dead
volume VDV

E(t)

1.0

F(t)System
volume VSD

υ0

υ0

Figure 16-15 Ideal CSTR with dead volume.

VDV 0.2V, � VSD 0.8V,�  then  τSD
0.8V
υ0

----------- 0.8τ� �
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Also as a result, the transients C(t) and E(t) will decay more rapidly
than that for perfect operation because there is a smaller system
volume.

Summary

A summary for ideal CSTR mixing volume is shown in Figure 16-16.

Knowing the volume V measured with a yardstick and the flow rate υ0 entering
the reactor measured with a flow meter, one can calculate and plot E(t) and F(t)
for the ideal case (P) and then compare with the measured RTD E(t) to see if the
RTD suggests either bypassing (BP) or dead zones (DV).

16.6.2B Tubular Reactor

A similar analysis to that for a CSTR can be carried out on a tubular reactor.
a. Perfect Operation of PFR (P) Model

We again measure the volume V with a yardstick and υ0 with a flow
meter. The E(t) and F(t) curves are shown in Figure 16-17. The trian-
gles drawn in Figures 16-17 and 16-18 should really be Dirac delta
functions with zero width at the base. The space time for a perfect
PFR is

τ = V/υ0

b. PFR with Channeling (Bypassing, BP) Model
Let’s consider channeling (bypassing), as shown in Figure 16-18, simi-
lar to that shown in Figures 16-2 and 16-12(d). The space time for the
reactor system with bypassing (channeling) τSB is 

t t

BP

BP 0

DV P
DV

PE(t)

1

1
F(t)

υ
υ

V

2
SBυ

τ

τ

υ
υ

υ

Figure 16-16 Comparison of E(t) and F(t) for CSTR under perfect operation, bypassing, 
and dead volume. (BP � bypassing model, P � perfect operation model, and 

DV � dead volume model).

E(t)

1.0

00 t t

F(t)

Yardstick

Vυ υ

Figure 16-17 Perfect operation of a PFR.

τSB
V

υSB
-------�
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Because υSB < υ0, the space time for the case of bypassing is greater
when compared to perfect operation, i.e.,

τSB > τ
If 25% is bypassing (i.e., υb = 0.25 υ0) and only 75% is entering the
reactor system (i.e., υSB = 0.75 υ0), then τSB = V/(0.75υ0) = 1.33τ. The
fluid that does enter the reactor system flows in a plug flow. Here, we
have two spikes in the E(t) curve: one spike at the origin and one spike
at τSB that comes after τ for perfect operation. Because the volumetric
flow rate is reduced, the time of the second spike will be greater than
τ for perfect operation.

c. PFR with Dead Volume (DV) Model
The dead volume, VDV, could be manifested by internal circulation at
the entrance to the reactor as shown in Figure 16-19.

The system volume, VSD, is where the reaction takes place and the
total reactor volume is (V = VSD + VDV). The space time, τSD, for the
reactor system with only dead volume is 

Compared to perfect operation, the space time τSD is smaller and the
tracer spike will occur before τ for perfect operation.

τSD < τ

Here again, the dead volume takes up space that is not accessible. As
a result, the tracer will exit early because the system volume, VSD,
through which it must pass is smaller than the perfect operation case.

E(t)

1.0

00

F(t)
Vυ

υ

υ

υ
υ
υ

t t

Figure 16-18 PFR with bypassing similar to the CSTR.

E(t) F(t)

VDV

VSD

Dead
zones

v0 v0

Figure 16-19 PFR with dead volume.

τSD
VSD

υ0
--------�

Fogler_Ch16.fm  Page 32  Tuesday, March 14, 2017  6:24 PM



Section 16.6 Diagnostics and Troubleshooting 16-33

Summary

Figure 16-20 is a summary of these three cases.

In addition to its use in diagnosis, the RTD can be used to predict conver-
sion in existing reactors when a new reaction is tried in an old reactor. How-
ever, as we saw in Section 16.5, the RTD is not unique for a given system, and
we need to develop models for the RTD to predict conversion.

There are many situations where the fluid in a reactor is neither well
mixed nor approximates plug flow. The idea is this: We have seen that the RTD
can be used to diagnose or interpret the type of mixing, bypassing, etc., that
occurs in an existing reactor that is currently on stream and is not yielding the
conversion predicted by the ideal reactor models. Now let's envision another
use of the RTD. Suppose we have a nonideal reactor either on line or sitting in
storage. We have characterized this reactor and obtained the RTD function.
What will be the conversion of a reaction with a known rate law that is carried
out in a reactor with a known RTD?

In Chapter 17 we show how this question can be answered in a number
of ways.

F(t)

DV P

t

BP

Figure 16-20 Comparison of PFR under perfect operation, bypassing, and dead volume 
(DV = dead volume model, P = perfect PFR model, BP = bypassing model).

How can we use the RTD to predict conversion in a real reactor?The question

Closure.  After completing this chapter the reader will be able to use the
tracer concentration time data to calculate the external-age distribution
function E(t), the cumulative distribution function F(t), the mean residence
time, tm, and the variance, �2. The reader will be able to sketch E(t) for ideal
reactors, and by comparing E(t) from the experiment with E(t) for ideal reac-
tors (PFR, PBR, CSTR, laminar-flow reactor (LFR)), be able to diagnose prob-
lems in real reactors. The reader will be able to use the RTD curves to
identify the nonideal reactor problems of dead volume and bypassing.
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τ 

 

for constant volumetric flow, 

 

υ

 

 = 

 

υ

 

0

 

.
3. The variance about the mean residence time is
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4. The cumulative distribution function 
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5. The RTD functions for an ideal reactor are

PFR:

 

E

 

(

 

t

 

) 

 

�

 

 

 

�

 

(

 

t 

 

�

 

 

 

τ

 

)

 

(S16-4)

CSTR:

 

E

 

(

 

t

 

) 

 

�

 

 

 

(S16-5)

LFR:

 

E

 

(

 

t

 

) 

 

�

 

 0

 

t

 

 

 

�

 

 

 

(S16-6)

 

E

 

(

 

t

 

) 

 

�

 

 

 

t

 

 

 

�

 

 

 

(S16-7)

6. The dimensionless residence time is
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7. Diagnosing nonideal reactors with dead volume and bypassing 
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the reactor a time 
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(a) F(t) for non-ideal CSTR (b) F(t ) for non-ideal tubular reactor

DV = dead volume model, P = perfect operation model, BP = bypassing model

 

Fogler_Ch16.fm  Page 34  Tuesday, March 14, 2017  6:36 PM



 

Chapter 16 Questions and Problems

 

35

C R E  W E B  S I T E  M A T E R I A L S

 

• Expanded Materials

 

 (

 

http://umich.edu/~elements/5e/16chap/expanded.html

 

)

 

Web Example 16-1 Gas-Liquid Reactor

 

 (

 

http://umich.edu/~elements/5e/16chap/live.html

 

)

 

Proof That in the Absence of Dispersion, the Mean Residence Time, t

 

m

 

, is Equal to Space Time, i.e., t
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 =

 

 

 

τ

 

(

 

http://umich.edu/~elements/5e/16chap/expanded_ch16_exampleB.pdf
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Solved Problems WP16-14
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 and WP16-15
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http://umich.edu/~elements/5e/16chap/expanded_ch16_homeproblem.pdf
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• Learning Resources 
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http://umich.edu/~elements/5e/16chap/learn.html
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Summary Notes
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http://umich.edu/~elements/5e/16chap/summary.html

 

) 

 

Self Tests 

 

(

 

http://umich.edu/~elements/5e/16chap/summary-selftest.html

 

)
A. Exercises (

 

http://umich.edu/~elements/5e/16chap/all-selftest.html

 

)
B. i>clicker Questions (

 

http://umich.edu/~elements/5e/16chap/iclicker_ch16_q1.html

 

) 

 

Web Material Links

 

The Attainable Region Analysis

 

http://www.umich.edu/~elements/5e/16chap/learn-attainableregions.html
http://hermes.wits.ac.za/attainableregions/ 

 

• Living Example Problems

 

 (

 

http://umich.edu/~elements/5e/16chap/live.html

 

) 
1.

 

Living Example 16-1  Determining E(t)

 2.  Living Example 16-2T: Tutorial to Find E(t) from C(t)  
3.

 
Living Example 16-2  (a) and (b) Finding t

 

m
 

 and 
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• Professional Reference Shelf (

 

http://umich.edu/~elements/5e/16chap/prof.html

 

)

 

R16.1.

 

Fitting the Tail 

 

(

 

http://umich.edu/~elements/5e/16chap/pdf/CD-Ch13-FittingTheTail.pdf

 

)

 

Whenever there are dead zones into which the material diffuses in and out, the 

 

C-

 

 and 

 

E

 

-curves may
exhibit long tails. This section shows how to analytically describe fitting these tails to the curves. 

R16.2.

 

Internal-Age Distribution 

 

(

 

http://umich.edu/~elements/5e/16chap/pdf/CD-Ch13-InternalAge.pdf

 

)

 

The internal-age distribution currently in the reactor is given by the distribution of ages with respect
to how long the molecules have been in the reactor. 

The equation for the internal-age distribution is derived and an example is given showing how it is
applied to catalyst deactivation in a “fluidized CSTR.”

 

Q U E S T I O N S  A N D  P R O B L E M S

 

The subscript to each of the problem numbers indicates the level of difficulty: A, least difficult; D, most difficult.

 

Questions

 

Q16-1

 

A

 

Read over the problems of this chapter. Discuss with a classmate ideas for making up an original prob-
lem that uses the concepts presented in this chapter. The guidelines are given in Problem P5-1

 

A

 

. RTDs
from real reactors can be found in 

 

Ind. Eng. Chem.

 

, 49, 1000 (1957); 

 

Ind. Eng. Chem. Process Des. Dev.

 

, 3,
381 (1964); 

 

Can. J. Chem. Eng.

 

, 37, 107 (1959); 

 

Ind. Eng. Chem.

 

, 44, 218 (1952); 

 

Chem. Eng. Sci.

 

, 3, 26 (1954);
and 

 

Ind. Eng. Chem.

 

, 53, 381 (1961).
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Problems

 

P16-1

 

B

 

What if. . .
(a) Example 16-1.

 

 What fraction of the fluid spends 9 minutes or longer in the reactor? What frac-
tion spends 2 minutes or less?

 

(b) Example 16-3.

 

 How would the 

 

E

 

(

 

t

 

) change if the PFR space time, 

 

τ

 

p

 

, was reduced by 50% and 

 

τ

 

s

 

was increased by 50%? What fraction spends 2 minutes or less in the reactor?

 

P16-2

 

B

 

(a)

 

Suggest a diagnosis (e.g., bypassing, dead volume, multiple mixing zones, internal circulation) for
each of the following real reactors in Figure P16-2

 

B

 

 (a) (1 through 7 curves) that had the following
RTD [

 

E
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t

 

), 

 

E

 

(

 

Θ

 

), 

 

F
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t

 

), 

 

F

 

(

 

Θ

 

) or (1

 

�

 

F

 

(

 

Θ

 

))] curves: 

 

(b)

 

Suggest a model (e.g. combinations of ideal reactors, bypassing) for each RTD function shown in

 

Figure P16-2

 

B

 

(a)

 

 (1 through 10) that would give the RTD function. For example, for the real tubu-
lar reactor, whose 

 

E

 

(

 

Θ

 

) curve is shown in Figure 

 

P16-2

 

B

 

 (a) (5) above, the model is shown in
Figure P16-2B (b) below. The real reactor is modeled as having bypassing, a back mix zone, and a
PFR zone that mimics the real CSTR.

Suggest a model for each figure.

(1) (2) (3) (4)

1.0

0.5 1.0

(5)

(9) (10)

(6) (7) (8)

Area = A1

1.0

In

0

1.0

1.0

F(t)

θ

θθ

θ

θθ

θθ

E(θ)

E(θ)E(θ)

E(θ)E(θ)

1−F(θ)F(θ)

t

F(t)

0
t

θ

F(θ)

A2

A3

A4

Figure P16-2B (a) RTD curves.

VCSTR

VPFR

b

0
SB

VPFR

F( )

�0 � �SB � �b

V � VCSTR � VPFR

Figure P16-2B (b) Real reactor modeled as CSTR and PFR with bypass.
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P16-3C Consider the E(t) curve below.

Mathematically this hemi circle is described by these equations:

For 2τ ≥ t ≥ 0, then E(t) = min–1(hemi circle)
For t > 2τ, then E(t) = 0

(a) What is the mean residence time?
(b) What is the variance? (Ans.: �2 = 0.159 min2)

P16-4B A step tracer input was used on a real reactor with the following results:
For t ≤ 10 min, then CT = 0
For 10 ≤ t ≤ 30 min, then CT = 10 g/dm3

For t ≥ 30 min, then CT = 40 g/dm3

(a) What is the mean residence time tm? 
(b) What is the variance �2?

P16-5B The following E(t) curves were obtained from a tracer test on two tubular reactors in which dispersion
is believed to occur.

(a) What is the final time t1 (in minutes) for the reactor shown in Figure P16-5B (a)? 
In Figure P16-5B (b)? 

(b) What is the mean residence time, tm, and variance, �2, for the reactor shown in Figure P16-5B (a)?
In Figure P16-5B (b)? 

(c) What is the fraction of the fluid that spends 7 minutes or longer in Figure P16-5B (a)? 
In Figure P16-5B (b)? 

P16-6B An RTD experiment was carried out in a nonideal reactor that gave the following results: 

E(t) = 0 for t �1 min
E(t) = 1.0 min–1 for 1 � t � 2 min
E(t) = 0 for t 
 2 min

(a) What are the mean residence time, tm, and variance σ2?
(b) What is the fraction of the fluid that spends a time 1.5 minutes or longer in the reactor?
(c) What fraction of fluid spends 2 minutes or less in the reactor?
(d) What fraction of fluid spends between 1.5 and 2 minutes in the reactor? (Ans.: Fraction = 0.5)

E(t) min –1

τ t, min
0

0

Hemi (half) circle

2τ 

τ2 t τ�( )2
�

0.2

E(t)
(min–1)

t(min)t1

Figure P16-5B (a) RTD Reactor A; (b) RTD Reactor B.

(a) (b)

5

0.2

E(t)
(min–1)

t(min)t1
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P16-7 Derive E(t), F(t), tm, and �2 for a turbulent flow reactor with 1/7 the power law, i.e., 

P16-8 Consider the RTD function

(a) Sketch E(t) and F(t).
(b) Calculate tm and �2.
(c) What are the restrictions (if any) on A, B and to? Hint: .

P16-9A Evaluate the first moment about the mean  E(t)dt for an ideal PFR, a CSTR, and a
laminar-flow reactor.

P16-10B Gasoline shortages in the United States have produced long lines of motorists at service stations. The
table below shows a distribution of the times required to obtain gasoline at 23 Center County service
stations.

(a) What is the average time required?
(b) If you were to ask randomly among those people waiting in line, “How long have you been wait-

ing?” what would be the average of their answers?

(c) Can you generalize your results to predict how long you would have to wait to enter a five-story
parking garage that has a 4-hour time limit?

(R. L. Kabel, Pennsylvania State University)
P16-11B The volumetric flow rate through a reactor is 10 dm3/min. A pulse test gave the following concentra-

tion measurements at the outlet:

Total Waiting 
Time (min)

Number of Stations 
Having That Total 

Waiting Time

0 0
3 4
6 3
9 5

12 8
15 2
18 1
21 0

t (min) c 	 105 t (min) c 	 105

00 000 15 238
00.4 329 20 136
01.0 622 25 077
02 812 30 044
03 831 35 025
04 785 40 014
05 720 45 008
06 650 50 005
08 523 60 001
10 418

U Umax 1 r
R
---�⎝ ⎠

⎛ ⎞1 7�

�

E t( ) A B t0 t�( )3
�

0⎩ ⎭
⎨ ⎬
⎧ ⎫ for 0 t 2t0��

for t 2t0

�

E t( ) td
0

�� 1�

m1 t τ�( )
0

�

��
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(a) Plot the external-age distribution E (t ) as a function of time.
(b) Plot the external-age cumulative distribution F (t ) as a function of time.
(c) What are the mean residence time tm  and the variance, �2?
(d) What fraction of the material spends between 2 and 4 minutes in the reactor? (Ans.: Fraction = 0.16)
(e) What fraction of the material spends longer than 6 minutes in the reactor?
(f) What fraction of the material spends less than 3 minutes in the reactor? (Ans.: Fraction = 0.192)
(g) Plot the normalized distributions E (�) and F (�) as a function of �.
(h) What is the reactor volume?
(i) Plot the internal-age distribution I (t ) as a function of time.
(j) What is the mean internal age �m ?
(k) This problem is continued in Problems P17-14B and P18-12C.

P16-12B An RTD analysis was carried out on a liquid-phase reactor [Chem. Eng. J. 1, 76 (1970)]. Analyze the fol-
lowing data:  

(a) Plot the E(t) curve for these data.
(b) What fraction of the material spends between 230 and 270 seconds in the reactor?
(c) Plot the F(t) curve for these data.
(d) What fraction of the material spends less than 250 seconds in the reactor?
(e) What is the mean residence time?
(f) What is the variance �2?
(g) Plot E(�) and F(�) as a function of �.

P16-13C (Distributions in a stirred tank) Using a negative step tracer input, Cholette and Cloutier [Can. J. Chem. Eng.,
37, 107 (1959)] studied the RTD in a tank for different stirring speeds. Their tank had a 30-in. diameter
and a fluid depth of 30 in. indide the tank. The inlet and exit flow rates were 1.15 gal/min. Here are
some of their tracer results for the relative concentration, C/C0 (courtesy of the Canadian Society for
Chemical Engineering):   

Calculate and plot the cumulative exit-age distribution, the intensity function, and the internal-age dis-
tributions as a function of time for this stirred tank at the two impeller speeds. Can you tell anything
about the dead zones and bypassing at the different stirrer rates?

 t(s) 0 150 175 200 225 240 250

 C 	 103 (g/m3) 0 0 1 3 7.4 9.4 9.7

 t(s) 275 300 325 350 375 400 450

 C 	 103 (g/m3) 8.2 5.0 2.5 1.2 0.5 0.2 0

Yardstick

v0

v0

NEGATIVE STEPS TRACER TEST

Impeller Speed (rpm)

Time (min) 170 100

10 0.761 0.653
15 0.695 0.566
20 0.639 0.513
25 0.592 0.454
30 0.543 0.409
35 0.502 0.369
40 0.472 0.333
45 0.436 0.307
50 0.407 0.276
55 0.376 0.248
60 0.350 0.226
65 0.329 0.205
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• Additional Homework Problems on the CRE Web Site

WEBP16-1A Determine E (t ) from data taken from a pulse test in which the pulse is not perfect and the inlet
concentration varies with time. [2nd Ed. P13-15]

WEBP16-2B Review the data by Murphree on a Pilot Plant Scale Reactor.
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