
ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 1

Exceptions, Classes, objects with dynamic memory contents,
Optional - S 14 and 15 are redundant with C coverage and earlier handouts - skim them if you want another view of these
topics.
• S 13 Exception Handling. Skip 13.3.1, skim 13.4, 13.5.2.4, 13.5.2.5, skip 13.5.3, 13.6.
• S 16 Classes, skip 16.2.9.4.
• H: Incomplete Declarations
• H: C++ Header File Guidelines
• H: Static Members
• S 17 Construction, Cleanup, Copy, Move. Skip inheritance-related and initializer-list sections 17.2.3, 17.2.5, 17.3.4, 17.4.2,
17.5.1.2, 17.5.1.4

Lecture Outline - Basic Exceptions

how to do better error handling

if ignore possibility of errors, programs crash, fail, become hard to use

but trying to detect and handle errors greatly complicates the code

every single time something might go wrong, have to check for it

AND every function that calls a function in which something could go wrong has to deal with it again

standard programming problem

each function returns a code to say whether there is a problem

each function call must check the returned value to be sure everything is OK

Example sketch code using OK/Not-OK return codes
int main ()
{

....
if f1(....) {

cout << "error" << endl;
do something
}

return 0; // the return code! 1 or 0?
}

bool f1 (.....)
{

.....
if (f2(....))

return true;
....
return false;

}

bool f2 (.....)
{

.....
if (f3(....))

return true;
....
return false

}

bool f3 (.....)
{

.....
if (z < 0)

return true; // something's wrong!
....
return false;

}

either way, return a similar code to the caller

common traditional structure:

lose use of return value (or have to do something even more clunky)

if' - return all over the place

disadvantage:

yuch - there's got to be a better way

See example:
// overload the subscripting operator for this class
int& operator[] (int index)
{

if (index < 0 || index > size - 1) {
// this is simple, but there are better actions possible
cerr << "Attempt to access Smart_Array with illegal index = "

<< index << endl;
cerr << "Terminating program" << endl;
exit(EXIT_FAILURE);
}

return ptr[index];
}

Array a(20);

a[21] = 5;

what do we check?

if(a[21]) ?

terminate the program because nowhere to return or check the value:

Example Array class subscripting operator:

sometimes, there is no value to return:

what to do?

most of code can be written as if nothing would go wrong

separate flow of control if something does

Exception concept - an fairly old idea, developed and refined before in e.g. LISP, later C++

GENERAL IDEA: PROVIDE A SEPARATE FLOW OF CONTROL FOR ERROR SITUATIONS

Intro

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 2

how to do better error handling

if ignore possibility of errors, programs crash, fail, become hard to use

but trying to detect and handle errors greatly complicates the code

every single time something might go wrong, have to check for it

AND every function that calls a function in which something could go wrong has to deal with it again

standard programming problem

each function returns a code to say whether there is a problem

each function call must check the returned value to be sure everything is OK

Example sketch code using OK/Not-OK return codes
int main ()
{

....
if f1(....) {

cout << "error" << endl;
do something
}

return 0; // the return code! 1 or 0?
}

bool f1 (.....)
{

.....
if (f2(....))

return true;
....
return false;

}

bool f2 (.....)
{

.....
if (f3(....))

return true;
....
return false

}

bool f3 (.....)
{

.....
if (z < 0)

return true; // something's wrong!
....
return false;

}

either way, return a similar code to the caller

common traditional structure:

lose use of return value (or have to do something even more clunky)

if' - return all over the place

disadvantage:

yuch - there's got to be a better way

See example:
// overload the subscripting operator for this class
int& operator[] (int index)
{

if (index < 0 || index > size - 1) {
// this is simple, but there are better actions possible
cerr << "Attempt to access Smart_Array with illegal index = "

<< index << endl;
cerr << "Terminating program" << endl;
exit(EXIT_FAILURE);
}

return ptr[index];
}

Array a(20);

a[21] = 5;

what do we check?

if(a[21]) ?

terminate the program because nowhere to return or check the value:

Example Array class subscripting operator:

sometimes, there is no value to return:

what to do?

most of code can be written as if nothing would go wrong

separate flow of control if something does

Exception concept - an fairly old idea, developed and refined before in e.g. LISP, later C++

GENERAL IDEA: PROVIDE A SEPARATE FLOW OF CONTROL FOR ERROR SITUATIONS

Intro

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 3

how to do better error handling

if ignore possibility of errors, programs crash, fail, become hard to use

but trying to detect and handle errors greatly complicates the code

every single time something might go wrong, have to check for it

AND every function that calls a function in which something could go wrong has to deal with it again

standard programming problem

each function returns a code to say whether there is a problem

each function call must check the returned value to be sure everything is OK

Example sketch code using OK/Not-OK return codes
int main ()
{

....
if f1(....) {

cout << "error" << endl;
do something
}

return 0; // the return code! 1 or 0?
}

bool f1 (.....)
{

.....
if (f2(....))

return true;
....
return false;

}

bool f2 (.....)
{

.....
if (f3(....))

return true;
....
return false

}

bool f3 (.....)
{

.....
if (z < 0)

return true; // something's wrong!
....
return false;

}

either way, return a similar code to the caller

common traditional structure:

lose use of return value (or have to do something even more clunky)

if' - return all over the place

disadvantage:

yuch - there's got to be a better way

See example:
// overload the subscripting operator for this class
int& operator[] (int index)
{

if (index < 0 || index > size - 1) {
// this is simple, but there are better actions possible
cerr << "Attempt to access Smart_Array with illegal index = "

<< index << endl;
cerr << "Terminating program" << endl;
exit(EXIT_FAILURE);
}

return ptr[index];
}

Array a(20);

a[21] = 5;

what do we check?

if(a[21]) ?

terminate the program because nowhere to return or check the value:

Example Array class subscripting operator:

sometimes, there is no value to return:

what to do?

most of code can be written as if nothing would go wrong

separate flow of control if something does

Exception concept - an fairly old idea, developed and refined before in e.g. LISP, later C++

GENERAL IDEA: PROVIDE A SEPARATE FLOW OF CONTROL FOR ERROR SITUATIONS

Intro

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 4

class X {
... whatever you want
};

try {
bunch of statements
somewhere in here, or in the functions that are called:

throw X(); // create and throw an X object
}

catch (X& x) { // catch using a reference parameter is recommended
do something with an X exception
}

... continue processing
e.g. try again

Basic syntax:

Function calls proceed normally

stack is "unwound" back up to try block that is followed by the matching catch

the catch block is executed

execution then continues after the final catch

but if a "throw" is executed

like a return statement magically appears at the point of the throw, and after the call of each function
along the way.

unwinding the stack is equivalent to forcing a return from the function at the point of the throw, and for
every function in the calling stack up to the try block

control is transferred from the point of the throw to the matching catch, with all functions in between
immediately returning

What happens

Exception Concept

No need to tediously check return values!

Return values can now be used for the real work!

class X {
... whatever you want the exception class to have in it
};

int main ()
{

....
try {

...
 a= f1(...);
...
}

// catch block is ignored if no throw
catch (X& x) {

cout << "error" << endl;
do something

could quit
could change values

}
... continue if desired

}

int f1 (.....)
{

.....
b = f2()
return i; // get return values back!

}

int f2 (.....)
{

.....
b = f3()
return i; // get return values back!

}

int f3 (.....)
{

.....
if (z < 0)

throw X(); // something's wrong!
return i; // get return values back!

}

Compare to return-code sketch

Separate error flow of control now cleans things up!

Sketch example

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 5

No need to tediously check return values!

Return values can now be used for the real work!

class X {
... whatever you want the exception class to have in it
};

int main ()
{

....
try {

...
 a= f1(...);
...
}

// catch block is ignored if no throw
catch (X& x) {

cout << "error" << endl;
do something

could quit
could change values

}
... continue if desired

}

int f1 (.....)
{

.....
b = f2()
return i; // get return values back!

}

int f2 (.....)
{

.....
b = f3()
return i; // get return values back!

}

int f3 (.....)
{

.....
if (z < 0)

throw X(); // something's wrong!
return i; // get return values back!

}

Compare to return-code sketch

Separate error flow of control now cleans things up!

Sketch example

class X {
... whatever you want

class Y {
... whatever you want

};
try {

bunch of statements
somewhere in here, or in the functions that are called:

throw X();
or
throw Y();

}
catch (X& x) {

do something with an X exception
}

catch (Y& y) {
do something with a Y exception

}
... continue processing

e.g. try again

all of the catches are ignored unless there is a matching throw

when catch X is finished, skips over catch Y

Declare them, then catch them

Can have more than one kind of exception

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 6

class X {
... whatever you want

class Y {
... whatever you want

};
try {

bunch of statements
somewhere in here, or in the functions that are called:

throw X();
or
throw Y();

}
catch (X& x) {

do something with an X exception
}

catch (Y& y) {
do something with a Y exception

}
... continue processing

e.g. try again

all of the catches are ignored unless there is a matching throw

when catch X is finished, skips over catch Y

Declare them, then catch them

Can have more than one kind of exception

class X {
... whatever you want

class Y {
... whatever you want

};
try {

bunch of statements
try {

bunch of statements

somewhere in here, or in the functions that are called:
throw X();

somewhere in here, or in the functions that are called:
throw Y();

}
catch (X& x) {

do something with an X exception
throw;// rethrow the same exception
or
throw Y(); // throw a different exception
}

somewhere in here, or in the functions that are called:
throw X();
or
throw Y();

}
catch (X& x) {

do something with an X exception
}

catch (Y& y) {
do something with a Y exception
}

... continue processing
e.g. try again

Can catch, throw something else, rethrow the same exception

Can catch in more than one place

if nobody catches it, there is a default catcher hidden in the run-time environment that catches
everything and terminates the program

catch (...) { // three dots

cout << "some kind of exception caught" << endl;

}

you can catch all exceptions with

What happens with uncaught exception?

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 7

if nobody catches it, there is a default catcher hidden in the run-time environment that catches
everything and terminates the program

catch (...) { // three dots

cout << "some kind of exception caught" << endl;

}

you can catch all exceptions with

What happens with uncaught exception?

#include <new>
try {

code that might allocate too much memory
}

catch (bad_alloc& x) {
cout << "memory allocation failure" << endl;
// do whatever you want
}

catch the bad_alloc exception

In standard C++, memory allocation failure can be caught like this:

catch by base class type, etc

can have a class hierarchy of exception types

Tip: always catch an exception object by reference ...

try {
/* stuff */

}
catch (exception& x)
{

cout << x.what() << endl;
}
catch (...)
{

cout << "unknown exception caught" << endl;
}

not a bad idea: inherit from std::exception, override virtual char * what() const. Gives a uniform error
reporting facility for all exceptions:

derived classes can build an internal string having whatever info in it that you want, return the .c_str() for
what()

Exceptions can be in class hierarchies, can catch with the base:

e.g. bad_alloc

Standard library has some standard exception types that are thrown

basic idea is easy to use!

Lots of other possibilities

e.g. if getting initialization data from a file, what if some of the data is invalid?

note that constructors have no return value, so no obvious way to signal that it didn't work.

object is actually a zombie - not fully initialized, but walks anyway? What do you do with it?

without exceptions - only way to handle is to quit trying to construct the object and set some kind of
member variable to say the object is no good, and then insist that client code check it before using the
object.

better approach is to throw an exception - forces an exit from the constructor function

Any members that were successfully constructed are destroyed - their destructors are run

Any memory for the whole object that was allocated is deallocated.

Control leaves the constructor function at the point of the exception

What happens if an exception is thrown during construction of an object?

Example code:

Thing * p;
try { // try block defines a scope

Thing t;
p = new Thing;
}

catch(Thing_constructor_failure& x)
{

// what is status of Thing t or the p's pointed to Thing at this point and later?
}

Thing t is out of scope now - can't refer to it anyway!

Guru Sutter describes this in terms of the Monty Python dead parrot sketch.

There never was a parrot - it was never alive!

Both t, and p's pointed-to thing never existed!

p does not point to a valid object, or even a usable object - actually no object at all - don't try to use it
in any way, shape, or form

What is the status of Thing t and p's pointed-to Thing in the catch block and afterwards?

if an exception is thrown from a constructor, object does not exist!

if happens, terminate - exception handling is officially broken!

if an exception gets thrown out of a destructor, and we are already unwinding the stack, what is system
supposed to do with the TWO exceptions now going on? rule: shouldn't happen!

if exceptions might get thrown during destruction, you must catch them and deal with them yourself inside
the destructor function before returning from it

What about throwing an exception in a destructor?

What happens if something goes wrong with constructing an object?

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 8
e.g. if getting initialization data from a file, what if some of the data is invalid?

note that constructors have no return value, so no obvious way to signal that it didn't work.

object is actually a zombie - not fully initialized, but walks anyway? What do you do with it?

without exceptions - only way to handle is to quit trying to construct the object and set some kind of
member variable to say the object is no good, and then insist that client code check it before using the
object.

better approach is to throw an exception - forces an exit from the constructor function

Any members that were successfully constructed are destroyed - their destructors are run

Any memory for the whole object that was allocated is deallocated.

Control leaves the constructor function at the point of the exception

What happens if an exception is thrown during construction of an object?

Example code:

Thing * p;
try { // try block defines a scope

Thing t;
p = new Thing;
}

catch(Thing_constructor_failure& x)
{

// what is status of Thing t or the p's pointed to Thing at this point and later?
}

Thing t is out of scope now - can't refer to it anyway!

Guru Sutter describes this in terms of the Monty Python dead parrot sketch.

There never was a parrot - it was never alive!

Both t, and p's pointed-to thing never existed!

p does not point to a valid object, or even a usable object - actually no object at all - don't try to use it
in any way, shape, or form

What is the status of Thing t and p's pointed-to Thing in the catch block and afterwards?

if an exception is thrown from a constructor, object does not exist!

if happens, terminate - exception handling is officially broken!

if an exception gets thrown out of a destructor, and we are already unwinding the stack, what is system
supposed to do with the TWO exceptions now going on? rule: shouldn't happen!

if exceptions might get thrown during destruction, you must catch them and deal with them yourself inside
the destructor function before returning from it

What about throwing an exception in a destructor?

What happens if something goes wrong with constructing an object?

class Thing {
public:

Thing ();
~Thing() {does something}

};
void foo ()
{

int * p = new int[10000];
// use p for stuff
// use p some more
Thing t;
Thing * t_ptr;
t_ptr = new Thing;
goo();
...
delete[] p; // we're done with the array
delete t_ptr; //done with the Thing

}

memory leaks while unwinding the stack

if goo throws an exception, foo is forced to return from the point of the call.

t is a Thing, so its destructor ~Thing() is run

t_ptr is a pointer to Thing - it is popped off the stack, but because POINTERS ARE A BUILT-IN TYPE
(like int) t_ptr doesn't have distruconstructor, so the memory it is pointing to won't get deallocated. - can
have a memory leak

same situation with p and the block of 10000 ints we allocated

normal action on a return is to run the destructor function on local variables.

Problem:

catch all exceptions in foo and deallocate as needed

better - put such pointers inside an object with a destructor - "smart pointer" - or even vector<int> and
make them safer, better - later

Fixes

Only one thing to watch out for:

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 9

class Thing {
public:

Thing ();
~Thing() {does something}

};
void foo ()
{

int * p = new int[10000];
// use p for stuff
// use p some more
Thing t;
Thing * t_ptr;
t_ptr = new Thing;
goo();
...
delete[] p; // we're done with the array
delete t_ptr; //done with the Thing

}

memory leaks while unwinding the stack

if goo throws an exception, foo is forced to return from the point of the call.

t is a Thing, so its destructor ~Thing() is run

t_ptr is a pointer to Thing - it is popped off the stack, but because POINTERS ARE A BUILT-IN TYPE
(like int) t_ptr doesn't have distruconstructor, so the memory it is pointing to won't get deallocated. - can
have a memory leak

same situation with p and the block of 10000 ints we allocated

normal action on a return is to run the destructor function on local variables.

Problem:

catch all exceptions in foo and deallocate as needed

better - put such pointers inside an object with a destructor - "smart pointer" - or even vector<int> and
make them safer, better - later

Fixes

Only one thing to watch out for:

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 10

Lecture Outline - Basics of Classes, Struct vs Class, How members really work

declare them: int i, j; double x;

operate on them: i = i + j;

use them as function arguments, parameters, and return values: foo(i) i = foo(j); int foo (int ii) { ...}

value of argument is copied into space on stack for parameter

return value is held temporarily and then copied back to caller's variable

Built-in types like int, double

represents a certain kind of data

a certain amount of memory required to represent the data

can be used in certain ways, with certain operators

A type

A user-defined type is a custom-made type that you define in order to represent things in the problem
domain

CoinMoney - a class that keeps track of money represented in coins - e.g. quarters, nickels, dimes, etc.

class CoinMoney {
public:
CoinMoney () :

nickels(0), dimes(0), quarters(0) {}
CoinMoney (int nickels_, int dimes_, int quarters_) :

nickels(nickels_), dimes(dimes_), quarters(quarters_) {}
// other public functions
private:

int nickels;
int dimes;
int quarters;

};

Sketch implementation:

An example (see examples on website for actual code)

Idea: User defined type is basis of OOP;

Basic Concepts

a C++ class is based on a C struct - what about structs in C++

"class" - all members are private by default

"struct" - all members are public by default

"struct" and "class" keywords can be used interchangeably. The only difference is:

because that is how the class should work anyway

especially if only data members - same way you use a struct in C

"POD" class - "plain old data"

use "struct" only where you want all members to be public

rule of thumb: Make all members private except for the public interface

use class everywhere else

in customary usage:

How a class is like a struct, and in fact a struct is a class!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 11

a C++ class is based on a C struct - what about structs in C++

"class" - all members are private by default

"struct" - all members are public by default

"struct" and "class" keywords can be used interchangeably. The only difference is:

because that is how the class should work anyway

especially if only data members - same way you use a struct in C

"POD" class - "plain old data"

use "struct" only where you want all members to be public

rule of thumb: Make all members private except for the public interface

use class everywhere else

in customary usage:

How a class is like a struct, and in fact a struct is a class!

Where are the member functions?

How does compiler know or represent which member function goes with what class?

How do you get access to the data members without the dot operator?

Three questions:

Member functions are actually just ordinary functions after the Compiler gets through with them.

Very first C++ actually did exactly that ... translated early C++ into C which was then compiled.

Compiler essentially rewrites your member functions in the process of compiling them.

first, class objects occupy a piece of memory

common pattern - function has a first parameter that is a pointer to the data in memory that represents the
object - the function works on that object

CoinMoney * ptr;

ptr = address of a piece of memory

ptr->dimes // (*ptr).dimes

access the int that lies at address in ptr + 4 bytes.

Remember using a pointer together with a struct - as in P1

double value() // in CoinMoney class
{

return (5 * nickels + 10 * dimes + 25 * quarters) / 100.;
}

Member functions actually have an implicit parameter, "this", a pointer to the piece of memory that the
current object occupies. Compiler compiles this member function

double value(CoinMoney * const this)
{

return (5 * this->nickels + 10 * this->dimes + 25 * this->quarters) / 100.;
}

as if you had written this function:

x = m1.value(); ==> x = value(&m1);

or if CoinMoney * ptr;

ptr = &m1;

ptr->value() ==> value(ptr);

in non member code, expression invoking the member function gets rewritten as:

compute_value();

compute_value(this);

Likewise, in member function, invoking another member function gets rewritten:

this == a const pointer to the current object, with type <this class> * const

*this == the current object itself - dereferencing the pointer.

BUT don't use it if you don't have to - just duplicating what the compiler does, wastes time, error prone,
looks ignorant

You can use the "this" pointer variable yourself - will see uses of it later.

Overloading mechanism:

suppose class Gizmo { int value() {....} };

value (CoinMoney * this)

CoinMoney's value has signature:

value (Gizmo * this)

Gizmo's value has signature:

Different signatures, different functions!

How does the compiler keep track of which function goes with what class?

linkers assume it is so ...

Normally, every function has to have a unique name

Most C++ implementations actually rewrite the function name to make it include the signature!

value_9CoinMoneyp

value_5Gizmop

called "name mangling" - same old linker logic can be used

no standard mangling scheme - up to compiler

but you will see it from time to time - read through the gobbledegook - you can usually figure out which
class and which function is involved

Most implementations try to hide the this parameter and the mangled name from you - supposed to be
under the hood.

How does overloading work? How does it tell those apart?

How do member functions really work?

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 12

Where are the member functions?

How does compiler know or represent which member function goes with what class?

How do you get access to the data members without the dot operator?

Three questions:

Member functions are actually just ordinary functions after the Compiler gets through with them.

Very first C++ actually did exactly that ... translated early C++ into C which was then compiled.

Compiler essentially rewrites your member functions in the process of compiling them.

first, class objects occupy a piece of memory

common pattern - function has a first parameter that is a pointer to the data in memory that represents the
object - the function works on that object

CoinMoney * ptr;

ptr = address of a piece of memory

ptr->dimes // (*ptr).dimes

access the int that lies at address in ptr + 4 bytes.

Remember using a pointer together with a struct - as in P1

double value() // in CoinMoney class
{

return (5 * nickels + 10 * dimes + 25 * quarters) / 100.;
}

Member functions actually have an implicit parameter, "this", a pointer to the piece of memory that the
current object occupies. Compiler compiles this member function

double value(CoinMoney * const this)
{

return (5 * this->nickels + 10 * this->dimes + 25 * this->quarters) / 100.;
}

as if you had written this function:

x = m1.value(); ==> x = value(&m1);

or if CoinMoney * ptr;

ptr = &m1;

ptr->value() ==> value(ptr);

in non member code, expression invoking the member function gets rewritten as:

compute_value();

compute_value(this);

Likewise, in member function, invoking another member function gets rewritten:

this == a const pointer to the current object, with type <this class> * const

*this == the current object itself - dereferencing the pointer.

BUT don't use it if you don't have to - just duplicating what the compiler does, wastes time, error prone,
looks ignorant

You can use the "this" pointer variable yourself - will see uses of it later.

Overloading mechanism:

suppose class Gizmo { int value() {....} };

value (CoinMoney * this)

CoinMoney's value has signature:

value (Gizmo * this)

Gizmo's value has signature:

Different signatures, different functions!

How does the compiler keep track of which function goes with what class?

linkers assume it is so ...

Normally, every function has to have a unique name

Most C++ implementations actually rewrite the function name to make it include the signature!

value_9CoinMoneyp

value_5Gizmop

called "name mangling" - same old linker logic can be used

no standard mangling scheme - up to compiler

but you will see it from time to time - read through the gobbledegook - you can usually figure out which
class and which function is involved

Most implementations try to hide the this parameter and the mangled name from you - supposed to be
under the hood.

How does overloading work? How does it tell those apart?

How do member functions really work?

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 13

Where are the member functions?

How does compiler know or represent which member function goes with what class?

How do you get access to the data members without the dot operator?

Three questions:

Member functions are actually just ordinary functions after the Compiler gets through with them.

Very first C++ actually did exactly that ... translated early C++ into C which was then compiled.

Compiler essentially rewrites your member functions in the process of compiling them.

first, class objects occupy a piece of memory

common pattern - function has a first parameter that is a pointer to the data in memory that represents the
object - the function works on that object

CoinMoney * ptr;

ptr = address of a piece of memory

ptr->dimes // (*ptr).dimes

access the int that lies at address in ptr + 4 bytes.

Remember using a pointer together with a struct - as in P1

double value() // in CoinMoney class
{

return (5 * nickels + 10 * dimes + 25 * quarters) / 100.;
}

Member functions actually have an implicit parameter, "this", a pointer to the piece of memory that the
current object occupies. Compiler compiles this member function

double value(CoinMoney * const this)
{

return (5 * this->nickels + 10 * this->dimes + 25 * this->quarters) / 100.;
}

as if you had written this function:

x = m1.value(); ==> x = value(&m1);

or if CoinMoney * ptr;

ptr = &m1;

ptr->value() ==> value(ptr);

in non member code, expression invoking the member function gets rewritten as:

compute_value();

compute_value(this);

Likewise, in member function, invoking another member function gets rewritten:

this == a const pointer to the current object, with type <this class> * const

*this == the current object itself - dereferencing the pointer.

BUT don't use it if you don't have to - just duplicating what the compiler does, wastes time, error prone,
looks ignorant

You can use the "this" pointer variable yourself - will see uses of it later.

Overloading mechanism:

suppose class Gizmo { int value() {....} };

value (CoinMoney * this)

CoinMoney's value has signature:

value (Gizmo * this)

Gizmo's value has signature:

Different signatures, different functions!

How does the compiler keep track of which function goes with what class?

linkers assume it is so ...

Normally, every function has to have a unique name

Most C++ implementations actually rewrite the function name to make it include the signature!

value_9CoinMoneyp

value_5Gizmop

called "name mangling" - same old linker logic can be used

no standard mangling scheme - up to compiler

but you will see it from time to time - read through the gobbledegook - you can usually figure out which
class and which function is involved

Most implementations try to hide the this parameter and the mangled name from you - supposed to be
under the hood.

How does overloading work? How does it tell those apart?

How do member functions really work?

Compiler must be told about a class before you can refer to it. Provide class declaration before code
refers to objects or members of the class.

As if the compiler overviews the whole class declaration before, notes the member variables and functions,
then goes through an compiles the member function code.

For this process, all it needs to digest the class declarations is the member variable names and types, and
the member function prototypes.

But within a class declaration, the code can refer to member variables or member functions before the
compiler has seen those members.

class Thing {
void foo ()

{ the code } // defined inside
};

but if define function outside, have to tell the compiler which class the function belongs to, using the "scope
resolution" operator, ::

class Thing {
void foo(); // function prototype
};

void Thing::foo()
{ the code}

the function definition can appear anywhere later in the file, or another file altogether (the usual case) since
the class declaration and member function prototype tell the compiler everything necessary to compile
code that uses the class.

Can define the functions themselves either inside or outside the class declaration.

Declaring and defining - member functions and variables

void foo()
{

CoinMoney m; // compiler will insert a constructor call
. . .
return;

} // m goes out of scope, compiler will insert a destructor call

void foo()
{

CoinMoney * p = new CoinMoney; // new will do a constructor call
. . .
delete p; // delete will do a destructor call

Compiler guarantees that constructor will be called when an object comes into being, and destructor
when it ceases to exist.

If you assign them in a constructor function, then that's that.

member variable is built-in type like double, int, etc - nothing happens

member variable is a user-defined type, then its DEFAULT CONSTRUCTOR is run

If not, two cases:

member variables are constructed in the order they appear in the class declaration!

What do constructors do with member variables?

CoinMoney() : nickels(0), dimes(0), quarters(0) {}

CoinMoney(int n, int d, int q) : nickels(n), dimes(d), quarters(q) {}

These are executed in the order that the member variables are declared, not in the order that you list them!
If you write initializer values that depend on each other, be very careful to get the order correct - may want
to reorder the member variable declarations. Many compilers will warn if the order mismatches.

Requirement : Start using now for all simple initializations

Optional for simple member variables, but essential for other things

Short-hand - constructor initializers

First, what happens if it is a built-in type, like int?

Answer: nothing, unless you do something in the constructor

But if member variable is a class type, its constructor will be called

class VendingMachine {
public:
VendingMachine()
 {}
 // other members

private:
CoinMoney coinbox;

};

VendingMachine v;
{...}

answer: default constructed - all zeros, in our example

if you construct a VendingMachine, what happens to the CoinMoney variable?

what if you want something else? VendingMachine constructor can arrange it

VendingMachine() : coinbox(1,1,1) {...} // compiler will call CoinMoney ctor with those parameters

VendingMachine(int n, int d, int q) : coinbox(n, d, q) {...}

e.g. vending machine class

VendingMachine(int n, int d, int q)
:{

// creates a local variable which is then ignored
CoinMoney coinbox(n, d, q);
// OR
// creates an un-named local Coinmoney object which is then tossed away
CoinMoney (n, d, q);

// this works, but why bother with it when ctor initializer will work for you?
coinbox = CoinMoney(n, d, q);

}

THE FOLLOWING WILL NOT WORK, BUT EVERYBODY TRIES IT ONCE!

What happens during construction if a member variable is a user-defined type?

CoinMoney int n = 0, int d = 0, int q = 0) : nickels(n), dimes(d), quarters(q) {}

the default constructor is one that can be CALLED with no arguments

Provides another way to define the default constructor

Default function parameters in constructors

C++98 - write a private helper function that doe the shared initializations; call from constructor body

Example from Stroustrup:
In C++98, if you want two constructors to do the same thing, repeat
yourself or call "an init() function." For example:

class X {
int a;
validate(int x) { if (0<x && x<=max) a=x; else

throw bad_X(x); }
public:

X(int x) { validate(x); }
X() { validate(42); }
X(string s) { int x = lexical_cast<int>(s);

validate(x); }

// ...
};

Verbosity hinders readability and repetition is error-prone. Both get in
the way of maintainability. So, in C++11, we can define one
constructor in terms of another:

class X {

int a;

public:

X(int x) { if (0<x && x<=max) a=x; else throw
bad_X(x); }

X() :X{42} { }

X(string s) :X{lexical_cast<int>(s)} { }

// ...

};

"Delegating constructors: - if you invoke another constructor of the same class in the constructor initializer
list, that runs on the new object, and intiialization continues with the constructor body. Only the delegating
constructor invocation can appear in the initializer list - you can't have any additional constructor initializers
in the list.

New in C++11. A common case: you need more than one constructor function and have several
member variables to set up in the same way. How do you avoid the duplication and get a single point
of maintenance?

From Stroustrup's FAQ:

In-class member initializers

In C++98, only static const members of integral types can be initialized in-class, and the initializer has to be a constant
expression. These restrictions ensure that we can do the initialization at compile-time. For example:

int var = 7;

class X {
static const int m1 = 7; // ok
const int m2 = 7; // error: not static
static int m3 = 7; // error: not const
static const int m4 = var; // error: initializer not constant

expression
static const string m5 = "odd"; // error: not integral type
// ...

};
The basic idea for C++11 is to allow a non-static data member to be initialized where it is declared (in its class). A constructor
can then use the initializer when run-time initialization is needed. Consider:

class A {
public:

int a = 7;
};

This is equivalent to:
class A {
public:

int a;
A() : a(7) {}

};
This saves a bit of typing, but the real benefits come in classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A {
public:

A(): a(7), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(int a_val) : a(a_val), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(D d) : a(7), b(g(d)), hash_algorithm("MD5"), s("Constructor run") {}
int a, b;

private:
HashingFunction hash_algorithm; // Cryptographic hash to be applied to all A

instances
std::string s; // String indicating state in object

lifecycle
};

The fact that hash_algorithm and s each has a single default is lost in the mess of code and could easily become a problem during
maintenance. Instead, we can factor out the initialization of the data members:

class A {
public:

A(): a(7), b(5) {}
A(int a_val) : a(a_val), b(5) {}
A(D d) : a(7), b(g(d)) {}
int a, b;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
};

If a member is initialized by both an in-class initializer and a constructor, only the constructor's initialization is done (it
"overrides" the default). So we can simplify further:

class A {
public:

A() {}
A(int a_val) : a(a_val) {}
A(D d) : b(g(d)) {}
int a = 7;
int b = 5;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
 };
See also

• the C++ draft section "one or two words all over the place"; see proposal.
• [N2628=08-0138] Michael Spertus and Bill Seymo

New in C++11. In-class member initializers

Constructors

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 14

void foo()
{

CoinMoney m; // compiler will insert a constructor call
. . .
return;

} // m goes out of scope, compiler will insert a destructor call

void foo()
{

CoinMoney * p = new CoinMoney; // new will do a constructor call
. . .
delete p; // delete will do a destructor call

Compiler guarantees that constructor will be called when an object comes into being, and destructor
when it ceases to exist.

If you assign them in a constructor function, then that's that.

member variable is built-in type like double, int, etc - nothing happens

member variable is a user-defined type, then its DEFAULT CONSTRUCTOR is run

If not, two cases:

member variables are constructed in the order they appear in the class declaration!

What do constructors do with member variables?

CoinMoney() : nickels(0), dimes(0), quarters(0) {}

CoinMoney(int n, int d, int q) : nickels(n), dimes(d), quarters(q) {}

These are executed in the order that the member variables are declared, not in the order that you list them!
If you write initializer values that depend on each other, be very careful to get the order correct - may want
to reorder the member variable declarations. Many compilers will warn if the order mismatches.

Requirement : Start using now for all simple initializations

Optional for simple member variables, but essential for other things

Short-hand - constructor initializers

First, what happens if it is a built-in type, like int?

Answer: nothing, unless you do something in the constructor

But if member variable is a class type, its constructor will be called

class VendingMachine {
public:
VendingMachine()
 {}
 // other members

private:
CoinMoney coinbox;

};

VendingMachine v;
{...}

answer: default constructed - all zeros, in our example

if you construct a VendingMachine, what happens to the CoinMoney variable?

what if you want something else? VendingMachine constructor can arrange it

VendingMachine() : coinbox(1,1,1) {...} // compiler will call CoinMoney ctor with those parameters

VendingMachine(int n, int d, int q) : coinbox(n, d, q) {...}

e.g. vending machine class

VendingMachine(int n, int d, int q)
:{

// creates a local variable which is then ignored
CoinMoney coinbox(n, d, q);
// OR
// creates an un-named local Coinmoney object which is then tossed away
CoinMoney (n, d, q);

// this works, but why bother with it when ctor initializer will work for you?
coinbox = CoinMoney(n, d, q);

}

THE FOLLOWING WILL NOT WORK, BUT EVERYBODY TRIES IT ONCE!

What happens during construction if a member variable is a user-defined type?

CoinMoney int n = 0, int d = 0, int q = 0) : nickels(n), dimes(d), quarters(q) {}

the default constructor is one that can be CALLED with no arguments

Provides another way to define the default constructor

Default function parameters in constructors

C++98 - write a private helper function that doe the shared initializations; call from constructor body

Example from Stroustrup:
In C++98, if you want two constructors to do the same thing, repeat
yourself or call "an init() function." For example:

class X {
int a;
validate(int x) { if (0<x && x<=max) a=x; else

throw bad_X(x); }
public:

X(int x) { validate(x); }
X() { validate(42); }
X(string s) { int x = lexical_cast<int>(s);

validate(x); }

// ...
};

Verbosity hinders readability and repetition is error-prone. Both get in
the way of maintainability. So, in C++11, we can define one
constructor in terms of another:

class X {

int a;

public:

X(int x) { if (0<x && x<=max) a=x; else throw
bad_X(x); }

X() :X{42} { }

X(string s) :X{lexical_cast<int>(s)} { }

// ...

};

"Delegating constructors: - if you invoke another constructor of the same class in the constructor initializer
list, that runs on the new object, and intiialization continues with the constructor body. Only the delegating
constructor invocation can appear in the initializer list - you can't have any additional constructor initializers
in the list.

New in C++11. A common case: you need more than one constructor function and have several
member variables to set up in the same way. How do you avoid the duplication and get a single point
of maintenance?

From Stroustrup's FAQ:

In-class member initializers

In C++98, only static const members of integral types can be initialized in-class, and the initializer has to be a constant
expression. These restrictions ensure that we can do the initialization at compile-time. For example:

int var = 7;

class X {
static const int m1 = 7; // ok
const int m2 = 7; // error: not static
static int m3 = 7; // error: not const
static const int m4 = var; // error: initializer not constant

expression
static const string m5 = "odd"; // error: not integral type
// ...

};
The basic idea for C++11 is to allow a non-static data member to be initialized where it is declared (in its class). A constructor
can then use the initializer when run-time initialization is needed. Consider:

class A {
public:

int a = 7;
};

This is equivalent to:
class A {
public:

int a;
A() : a(7) {}

};
This saves a bit of typing, but the real benefits come in classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A {
public:

A(): a(7), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(int a_val) : a(a_val), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(D d) : a(7), b(g(d)), hash_algorithm("MD5"), s("Constructor run") {}
int a, b;

private:
HashingFunction hash_algorithm; // Cryptographic hash to be applied to all A

instances
std::string s; // String indicating state in object

lifecycle
};

The fact that hash_algorithm and s each has a single default is lost in the mess of code and could easily become a problem during
maintenance. Instead, we can factor out the initialization of the data members:

class A {
public:

A(): a(7), b(5) {}
A(int a_val) : a(a_val), b(5) {}
A(D d) : a(7), b(g(d)) {}
int a, b;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
};

If a member is initialized by both an in-class initializer and a constructor, only the constructor's initialization is done (it
"overrides" the default). So we can simplify further:

class A {
public:

A() {}
A(int a_val) : a(a_val) {}
A(D d) : b(g(d)) {}
int a = 7;
int b = 5;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
 };
See also

• the C++ draft section "one or two words all over the place"; see proposal.
• [N2628=08-0138] Michael Spertus and Bill Seymo

New in C++11. In-class member initializers

Constructors

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 15

void foo()
{

CoinMoney m; // compiler will insert a constructor call
. . .
return;

} // m goes out of scope, compiler will insert a destructor call

void foo()
{

CoinMoney * p = new CoinMoney; // new will do a constructor call
. . .
delete p; // delete will do a destructor call

Compiler guarantees that constructor will be called when an object comes into being, and destructor
when it ceases to exist.

If you assign them in a constructor function, then that's that.

member variable is built-in type like double, int, etc - nothing happens

member variable is a user-defined type, then its DEFAULT CONSTRUCTOR is run

If not, two cases:

member variables are constructed in the order they appear in the class declaration!

What do constructors do with member variables?

CoinMoney() : nickels(0), dimes(0), quarters(0) {}

CoinMoney(int n, int d, int q) : nickels(n), dimes(d), quarters(q) {}

These are executed in the order that the member variables are declared, not in the order that you list them!
If you write initializer values that depend on each other, be very careful to get the order correct - may want
to reorder the member variable declarations. Many compilers will warn if the order mismatches.

Requirement : Start using now for all simple initializations

Optional for simple member variables, but essential for other things

Short-hand - constructor initializers

First, what happens if it is a built-in type, like int?

Answer: nothing, unless you do something in the constructor

But if member variable is a class type, its constructor will be called

class VendingMachine {
public:
VendingMachine()
 {}
 // other members

private:
CoinMoney coinbox;

};

VendingMachine v;
{...}

answer: default constructed - all zeros, in our example

if you construct a VendingMachine, what happens to the CoinMoney variable?

what if you want something else? VendingMachine constructor can arrange it

VendingMachine() : coinbox(1,1,1) {...} // compiler will call CoinMoney ctor with those parameters

VendingMachine(int n, int d, int q) : coinbox(n, d, q) {...}

e.g. vending machine class

VendingMachine(int n, int d, int q)
:{

// creates a local variable which is then ignored
CoinMoney coinbox(n, d, q);
// OR
// creates an un-named local Coinmoney object which is then tossed away
CoinMoney (n, d, q);

// this works, but why bother with it when ctor initializer will work for you?
coinbox = CoinMoney(n, d, q);

}

THE FOLLOWING WILL NOT WORK, BUT EVERYBODY TRIES IT ONCE!

What happens during construction if a member variable is a user-defined type?

CoinMoney int n = 0, int d = 0, int q = 0) : nickels(n), dimes(d), quarters(q) {}

the default constructor is one that can be CALLED with no arguments

Provides another way to define the default constructor

Default function parameters in constructors

C++98 - write a private helper function that doe the shared initializations; call from constructor body

Example from Stroustrup:
In C++98, if you want two constructors to do the same thing, repeat
yourself or call "an init() function." For example:

class X {
int a;
validate(int x) { if (0<x && x<=max) a=x; else

throw bad_X(x); }
public:

X(int x) { validate(x); }
X() { validate(42); }
X(string s) { int x = lexical_cast<int>(s);

validate(x); }

// ...
};

Verbosity hinders readability and repetition is error-prone. Both get in
the way of maintainability. So, in C++11, we can define one
constructor in terms of another:

class X {

int a;

public:

X(int x) { if (0<x && x<=max) a=x; else throw
bad_X(x); }

X() :X{42} { }

X(string s) :X{lexical_cast<int>(s)} { }

// ...

};

"Delegating constructors: - if you invoke another constructor of the same class in the constructor initializer
list, that runs on the new object, and intiialization continues with the constructor body. Only the delegating
constructor invocation can appear in the initializer list - you can't have any additional constructor initializers
in the list.

New in C++11. A common case: you need more than one constructor function and have several
member variables to set up in the same way. How do you avoid the duplication and get a single point
of maintenance?

From Stroustrup's FAQ:

In-class member initializers

In C++98, only static const members of integral types can be initialized in-class, and the initializer has to be a constant
expression. These restrictions ensure that we can do the initialization at compile-time. For example:

int var = 7;

class X {
static const int m1 = 7; // ok
const int m2 = 7; // error: not static
static int m3 = 7; // error: not const
static const int m4 = var; // error: initializer not constant

expression
static const string m5 = "odd"; // error: not integral type
// ...

};
The basic idea for C++11 is to allow a non-static data member to be initialized where it is declared (in its class). A constructor
can then use the initializer when run-time initialization is needed. Consider:

class A {
public:

int a = 7;
};

This is equivalent to:
class A {
public:

int a;
A() : a(7) {}

};
This saves a bit of typing, but the real benefits come in classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A {
public:

A(): a(7), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(int a_val) : a(a_val), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(D d) : a(7), b(g(d)), hash_algorithm("MD5"), s("Constructor run") {}
int a, b;

private:
HashingFunction hash_algorithm; // Cryptographic hash to be applied to all A

instances
std::string s; // String indicating state in object

lifecycle
};

The fact that hash_algorithm and s each has a single default is lost in the mess of code and could easily become a problem during
maintenance. Instead, we can factor out the initialization of the data members:

class A {
public:

A(): a(7), b(5) {}
A(int a_val) : a(a_val), b(5) {}
A(D d) : a(7), b(g(d)) {}
int a, b;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
};

If a member is initialized by both an in-class initializer and a constructor, only the constructor's initialization is done (it
"overrides" the default). So we can simplify further:

class A {
public:

A() {}
A(int a_val) : a(a_val) {}
A(D d) : b(g(d)) {}
int a = 7;
int b = 5;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
 };
See also

• the C++ draft section "one or two words all over the place"; see proposal.
• [N2628=08-0138] Michael Spertus and Bill Seymo

New in C++11. In-class member initializers

Constructors

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 16

void foo()
{

CoinMoney m; // compiler will insert a constructor call
. . .
return;

} // m goes out of scope, compiler will insert a destructor call

void foo()
{

CoinMoney * p = new CoinMoney; // new will do a constructor call
. . .
delete p; // delete will do a destructor call

Compiler guarantees that constructor will be called when an object comes into being, and destructor
when it ceases to exist.

If you assign them in a constructor function, then that's that.

member variable is built-in type like double, int, etc - nothing happens

member variable is a user-defined type, then its DEFAULT CONSTRUCTOR is run

If not, two cases:

member variables are constructed in the order they appear in the class declaration!

What do constructors do with member variables?

CoinMoney() : nickels(0), dimes(0), quarters(0) {}

CoinMoney(int n, int d, int q) : nickels(n), dimes(d), quarters(q) {}

These are executed in the order that the member variables are declared, not in the order that you list them!
If you write initializer values that depend on each other, be very careful to get the order correct - may want
to reorder the member variable declarations. Many compilers will warn if the order mismatches.

Requirement : Start using now for all simple initializations

Optional for simple member variables, but essential for other things

Short-hand - constructor initializers

First, what happens if it is a built-in type, like int?

Answer: nothing, unless you do something in the constructor

But if member variable is a class type, its constructor will be called

class VendingMachine {
public:
VendingMachine()
 {}
 // other members

private:
CoinMoney coinbox;

};

VendingMachine v;
{...}

answer: default constructed - all zeros, in our example

if you construct a VendingMachine, what happens to the CoinMoney variable?

what if you want something else? VendingMachine constructor can arrange it

VendingMachine() : coinbox(1,1,1) {...} // compiler will call CoinMoney ctor with those parameters

VendingMachine(int n, int d, int q) : coinbox(n, d, q) {...}

e.g. vending machine class

VendingMachine(int n, int d, int q)
:{

// creates a local variable which is then ignored
CoinMoney coinbox(n, d, q);
// OR
// creates an un-named local Coinmoney object which is then tossed away
CoinMoney (n, d, q);

// this works, but why bother with it when ctor initializer will work for you?
coinbox = CoinMoney(n, d, q);

}

THE FOLLOWING WILL NOT WORK, BUT EVERYBODY TRIES IT ONCE!

What happens during construction if a member variable is a user-defined type?

CoinMoney int n = 0, int d = 0, int q = 0) : nickels(n), dimes(d), quarters(q) {}

the default constructor is one that can be CALLED with no arguments

Provides another way to define the default constructor

Default function parameters in constructors

C++98 - write a private helper function that doe the shared initializations; call from constructor body

Example from Stroustrup:
In C++98, if you want two constructors to do the same thing, repeat
yourself or call "an init() function." For example:

class X {
int a;
validate(int x) { if (0<x && x<=max) a=x; else

throw bad_X(x); }
public:

X(int x) { validate(x); }
X() { validate(42); }
X(string s) { int x = lexical_cast<int>(s);

validate(x); }

// ...
};

Verbosity hinders readability and repetition is error-prone. Both get in
the way of maintainability. So, in C++11, we can define one
constructor in terms of another:

class X {

int a;

public:

X(int x) { if (0<x && x<=max) a=x; else throw
bad_X(x); }

X() :X{42} { }

X(string s) :X{lexical_cast<int>(s)} { }

// ...

};

"Delegating constructors: - if you invoke another constructor of the same class in the constructor initializer
list, that runs on the new object, and intiialization continues with the constructor body. Only the delegating
constructor invocation can appear in the initializer list - you can't have any additional constructor initializers
in the list.

New in C++11. A common case: you need more than one constructor function and have several
member variables to set up in the same way. How do you avoid the duplication and get a single point
of maintenance?

From Stroustrup's FAQ:

In-class member initializers

In C++98, only static const members of integral types can be initialized in-class, and the initializer has to be a constant
expression. These restrictions ensure that we can do the initialization at compile-time. For example:

int var = 7;

class X {
static const int m1 = 7; // ok
const int m2 = 7; // error: not static
static int m3 = 7; // error: not const
static const int m4 = var; // error: initializer not constant

expression
static const string m5 = "odd"; // error: not integral type
// ...

};
The basic idea for C++11 is to allow a non-static data member to be initialized where it is declared (in its class). A constructor
can then use the initializer when run-time initialization is needed. Consider:

class A {
public:

int a = 7;
};

This is equivalent to:
class A {
public:

int a;
A() : a(7) {}

};
This saves a bit of typing, but the real benefits come in classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A {
public:

A(): a(7), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(int a_val) : a(a_val), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(D d) : a(7), b(g(d)), hash_algorithm("MD5"), s("Constructor run") {}
int a, b;

private:
HashingFunction hash_algorithm; // Cryptographic hash to be applied to all A

instances
std::string s; // String indicating state in object

lifecycle
};

The fact that hash_algorithm and s each has a single default is lost in the mess of code and could easily become a problem during
maintenance. Instead, we can factor out the initialization of the data members:

class A {
public:

A(): a(7), b(5) {}
A(int a_val) : a(a_val), b(5) {}
A(D d) : a(7), b(g(d)) {}
int a, b;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
};

If a member is initialized by both an in-class initializer and a constructor, only the constructor's initialization is done (it
"overrides" the default). So we can simplify further:

class A {
public:

A() {}
A(int a_val) : a(a_val) {}
A(D d) : b(g(d)) {}
int a = 7;
int b = 5;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
 };
See also

• the C++ draft section "one or two words all over the place"; see proposal.
• [N2628=08-0138] Michael Spertus and Bill Seymo

New in C++11. In-class member initializers

Constructors

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 17

void foo()
{

CoinMoney m; // compiler will insert a constructor call
. . .
return;

} // m goes out of scope, compiler will insert a destructor call

void foo()
{

CoinMoney * p = new CoinMoney; // new will do a constructor call
. . .
delete p; // delete will do a destructor call

Compiler guarantees that constructor will be called when an object comes into being, and destructor
when it ceases to exist.

If you assign them in a constructor function, then that's that.

member variable is built-in type like double, int, etc - nothing happens

member variable is a user-defined type, then its DEFAULT CONSTRUCTOR is run

If not, two cases:

member variables are constructed in the order they appear in the class declaration!

What do constructors do with member variables?

CoinMoney() : nickels(0), dimes(0), quarters(0) {}

CoinMoney(int n, int d, int q) : nickels(n), dimes(d), quarters(q) {}

These are executed in the order that the member variables are declared, not in the order that you list them!
If you write initializer values that depend on each other, be very careful to get the order correct - may want
to reorder the member variable declarations. Many compilers will warn if the order mismatches.

Requirement : Start using now for all simple initializations

Optional for simple member variables, but essential for other things

Short-hand - constructor initializers

First, what happens if it is a built-in type, like int?

Answer: nothing, unless you do something in the constructor

But if member variable is a class type, its constructor will be called

class VendingMachine {
public:
VendingMachine()
 {}
 // other members

private:
CoinMoney coinbox;

};

VendingMachine v;
{...}

answer: default constructed - all zeros, in our example

if you construct a VendingMachine, what happens to the CoinMoney variable?

what if you want something else? VendingMachine constructor can arrange it

VendingMachine() : coinbox(1,1,1) {...} // compiler will call CoinMoney ctor with those parameters

VendingMachine(int n, int d, int q) : coinbox(n, d, q) {...}

e.g. vending machine class

VendingMachine(int n, int d, int q)
:{

// creates a local variable which is then ignored
CoinMoney coinbox(n, d, q);
// OR
// creates an un-named local Coinmoney object which is then tossed away
CoinMoney (n, d, q);

// this works, but why bother with it when ctor initializer will work for you?
coinbox = CoinMoney(n, d, q);

}

THE FOLLOWING WILL NOT WORK, BUT EVERYBODY TRIES IT ONCE!

What happens during construction if a member variable is a user-defined type?

CoinMoney int n = 0, int d = 0, int q = 0) : nickels(n), dimes(d), quarters(q) {}

the default constructor is one that can be CALLED with no arguments

Provides another way to define the default constructor

Default function parameters in constructors

C++98 - write a private helper function that doe the shared initializations; call from constructor body

Example from Stroustrup:
In C++98, if you want two constructors to do the same thing, repeat
yourself or call "an init() function." For example:

class X {
int a;
validate(int x) { if (0<x && x<=max) a=x; else

throw bad_X(x); }
public:

X(int x) { validate(x); }
X() { validate(42); }
X(string s) { int x = lexical_cast<int>(s);

validate(x); }

// ...
};

Verbosity hinders readability and repetition is error-prone. Both get in
the way of maintainability. So, in C++11, we can define one
constructor in terms of another:

class X {

int a;

public:

X(int x) { if (0<x && x<=max) a=x; else throw
bad_X(x); }

X() :X{42} { }

X(string s) :X{lexical_cast<int>(s)} { }

// ...

};

"Delegating constructors: - if you invoke another constructor of the same class in the constructor initializer
list, that runs on the new object, and intiialization continues with the constructor body. Only the delegating
constructor invocation can appear in the initializer list - you can't have any additional constructor initializers
in the list.

New in C++11. A common case: you need more than one constructor function and have several
member variables to set up in the same way. How do you avoid the duplication and get a single point
of maintenance?

From Stroustrup's FAQ:

In-class member initializers

In C++98, only static const members of integral types can be initialized in-class, and the initializer has to be a constant
expression. These restrictions ensure that we can do the initialization at compile-time. For example:

int var = 7;

class X {
static const int m1 = 7; // ok
const int m2 = 7; // error: not static
static int m3 = 7; // error: not const
static const int m4 = var; // error: initializer not constant

expression
static const string m5 = "odd"; // error: not integral type
// ...

};
The basic idea for C++11 is to allow a non-static data member to be initialized where it is declared (in its class). A constructor
can then use the initializer when run-time initialization is needed. Consider:

class A {
public:

int a = 7;
};

This is equivalent to:
class A {
public:

int a;
A() : a(7) {}

};
This saves a bit of typing, but the real benefits come in classes with multiple constructors. Often, all constructors use a common
initializer for a member:

class A {
public:

A(): a(7), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(int a_val) : a(a_val), b(5), hash_algorithm("MD5"), s("Constructor run") {}
A(D d) : a(7), b(g(d)), hash_algorithm("MD5"), s("Constructor run") {}
int a, b;

private:
HashingFunction hash_algorithm; // Cryptographic hash to be applied to all A

instances
std::string s; // String indicating state in object

lifecycle
};

The fact that hash_algorithm and s each has a single default is lost in the mess of code and could easily become a problem during
maintenance. Instead, we can factor out the initialization of the data members:

class A {
public:

A(): a(7), b(5) {}
A(int a_val) : a(a_val), b(5) {}
A(D d) : a(7), b(g(d)) {}
int a, b;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
};

If a member is initialized by both an in-class initializer and a constructor, only the constructor's initialization is done (it
"overrides" the default). So we can simplify further:

class A {
public:

A() {}
A(int a_val) : a(a_val) {}
A(D d) : b(g(d)) {}
int a = 7;
int b = 5;

private:
HashingFunction hash_algorithm{"MD5"}; // Cryptographic hash to be applied

to all A instances
std::string s{"Constructor run"}; // String indicating state in object

lifecycle
 };
See also

• the C++ draft section "one or two words all over the place"; see proposal.
• [N2628=08-0138] Michael Spertus and Bill Seymo

New in C++11. In-class member initializers

Constructors

Make member functions const if they don't change the state of the object.

Member variables can be const, but if so, they can only be initialized in the constructor initializer list!

Mark member function as const

Mark modified member variable as mutable - can be modified by a const member function.

THIS IS RARE - DO NOT USE IN THIS COURSE.

Rare case: a member function is logically const - looks const to the outside world - but does its work
by modifying certain private members. For example, saving computation time by caching a result
internally.

Const correctness with class members

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 18
Make member functions const if they don't change the state of the object.

Member variables can be const, but if so, they can only be initialized in the constructor initializer list!

Mark member function as const

Mark modified member variable as mutable - can be modified by a const member function.

THIS IS RARE - DO NOT USE IN THIS COURSE.

Rare case: a member function is logically const - looks const to the outside world - but does its work
by modifying certain private members. For example, saving computation time by caching a result
internally.

Const correctness with class members

can save time and space

body of a function is inserted at the point of the call

no function call overhead

total size of code imay be larger, but code is faster

C++ compiler has capability of doing function "in lining"

by default, functions defined inside a class declaration will be inlined (if the compiler can do it)

e.g. readers and writers - they will almost certainly be inlined, so no function call overhead!

by custom, only simple functions have their definitions in class declaration

double value();

still a member function, because that is where it is declared

put function declaration - prototype - in the class declaration

define function outside using "scope resolution operator"

double CoinMoney::value() {...}

complicated function defined outside the class declaration

e.g. there may be no separate statements to step through or set a break point on

often want to set "don't inline" compiler option while debugging

Inline functions - why reader and writer functions don't hurt.

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 19

Some terminology needed for two ways in which the contents of one object are supplied by another.

shallow copy - we simply copy the values of the declared member variables.

deep copy - we copy the data referred to by member variables (especially data referred to by a
pointer).

Two notions of copy applied to member variables:

Thing t2(t1); // create t2 and initialize it to have a copy of the contents of t1;
Thing t2 = t1; // same effect - not an assignment because t2 is a newly defined object

Copy construction - create and initialize an object containing a copy of an existing object's data

Thing t1, t2;
. . . // stuff is done to t1 and t2

t1 = t2; // whatever was in t1 is gone, replaced by a copy of t2;

Copy assignment - discard the current contents of lhs object and change it to a copy of rhs's contents

Copy - one object gets a copy of the data in another object

always a "shallow" move - no such thing as a "deep" move - only member variable values are changed.

move construction - new object gets the existing object's data, original object left in an "empty" state

move assignment - lhs gets the data in rhs; rhs left in "empty" state

But original object must be left in a state in which it can be destroyed correctly - like an "empty" state,
or some other valid contents.

Also, good if it is left in a state where it can be assigned to - usually the case with a valid state.

Moving data is much faster than copying data, and works just fine if original owner of the data is no longer
going to be used for anything

Another concept - instead of copying the data, we move the data (new in C++11)

a.swap(b) - the value of member variables of a are replaced with those of b, and vice-versa. Object a now
has b's values, and b now has a's original values.

implement as a member function so it has access to all of the member variables.

A final concept - swap of member variable values in two objects

We'll start with traditional copy construction and copy assignment

Objects with dynamic memory contents

If you don't define these, the compiler will create ones for you - "compiler-supplied" member
functions: Defaut constructor, destructor, copy constructor, assignment operator
New in C++11: move constructor, move assignment operator

class Thing {
public:

void print();
oid set_name(const string& new_name);

private:
int ID;
string name;
Gizmo the_gizmo;
Thing * buddy_ptr;

};

Example:

Compiler automatically calls it for Thing thing1; Thing * p = new Thingl

built-in types: ints, doubles, chars, etc., especially: all pointer types (char*, int*, int**, Thing*, whatever).

Does nothing, nada, zero, zilch for member variables of built-in types.

Automagically calls the default constructors for any class-type member variables that have one.

eg. int x{}; initializes x to 0

to t's ID member gets initialized to 0, buddy_ptr to nullptr;

Thing t{}; // does {} initialization on ALL members, including built-in types

But can't be sure user will intialize a Thing this way (at least for some years), so best to supply a default
ctor of your own.

But in C++11, new possibility:

Compiler-supplied constructor - a default constructor - no arguments

Compiler automatically calls it when a Thing goes out of scope, or deleted

Does nothing, nada, zero, zilch with member variables of built-in types.

Automagically calls the destructors for any class-type member variables that have one.

Compiler-supplied destructor

Explicit copy: Thing clone_thing(existing_thing);
implicit: call or return by value: void foo (Thing t); Thing foo().
Compiler calls it to create the copy on the call stack or return value location.

Simply nitializes built-in type member variables with the values in the original object.

Automagically copy-constructs any class-type member variables from the corresponding variables in the
original object.

Compiler-supplied copy constructor

Simply assigns built-in type lhs member variables from the values in the rhs object.

Automagically calls assignment operator for any class-type member variables to assign values from the
corresponding variables in the rhs object.

Compiler-supplied assignment operator

Come back to the C++11 move constructor and assignment operator

The compiler will automatically create certain class member functions for you!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 20

If you don't define these, the compiler will create ones for you - "compiler-supplied" member
functions: Defaut constructor, destructor, copy constructor, assignment operator
New in C++11: move constructor, move assignment operator

class Thing {
public:

void print();
oid set_name(const string& new_name);

private:
int ID;
string name;
Gizmo the_gizmo;
Thing * buddy_ptr;

};

Example:

Compiler automatically calls it for Thing thing1; Thing * p = new Thingl

built-in types: ints, doubles, chars, etc., especially: all pointer types (char*, int*, int**, Thing*, whatever).

Does nothing, nada, zero, zilch for member variables of built-in types.

Automagically calls the default constructors for any class-type member variables that have one.

eg. int x{}; initializes x to 0

to t's ID member gets initialized to 0, buddy_ptr to nullptr;

Thing t{}; // does {} initialization on ALL members, including built-in types

But can't be sure user will intialize a Thing this way (at least for some years), so best to supply a default
ctor of your own.

But in C++11, new possibility:

Compiler-supplied constructor - a default constructor - no arguments

Compiler automatically calls it when a Thing goes out of scope, or deleted

Does nothing, nada, zero, zilch with member variables of built-in types.

Automagically calls the destructors for any class-type member variables that have one.

Compiler-supplied destructor

Explicit copy: Thing clone_thing(existing_thing);
implicit: call or return by value: void foo (Thing t); Thing foo().
Compiler calls it to create the copy on the call stack or return value location.

Simply nitializes built-in type member variables with the values in the original object.

Automagically copy-constructs any class-type member variables from the corresponding variables in the
original object.

Compiler-supplied copy constructor

Simply assigns built-in type lhs member variables from the values in the rhs object.

Automagically calls assignment operator for any class-type member variables to assign values from the
corresponding variables in the rhs object.

Compiler-supplied assignment operator

Come back to the C++11 move constructor and assignment operator

The compiler will automatically create certain class member functions for you!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 21

If you don't define these, the compiler will create ones for you - "compiler-supplied" member
functions: Defaut constructor, destructor, copy constructor, assignment operator
New in C++11: move constructor, move assignment operator

class Thing {
public:

void print();
oid set_name(const string& new_name);

private:
int ID;
string name;
Gizmo the_gizmo;
Thing * buddy_ptr;

};

Example:

Compiler automatically calls it for Thing thing1; Thing * p = new Thingl

built-in types: ints, doubles, chars, etc., especially: all pointer types (char*, int*, int**, Thing*, whatever).

Does nothing, nada, zero, zilch for member variables of built-in types.

Automagically calls the default constructors for any class-type member variables that have one.

eg. int x{}; initializes x to 0

to t's ID member gets initialized to 0, buddy_ptr to nullptr;

Thing t{}; // does {} initialization on ALL members, including built-in types

But can't be sure user will intialize a Thing this way (at least for some years), so best to supply a default
ctor of your own.

But in C++11, new possibility:

Compiler-supplied constructor - a default constructor - no arguments

Compiler automatically calls it when a Thing goes out of scope, or deleted

Does nothing, nada, zero, zilch with member variables of built-in types.

Automagically calls the destructors for any class-type member variables that have one.

Compiler-supplied destructor

Explicit copy: Thing clone_thing(existing_thing);
implicit: call or return by value: void foo (Thing t); Thing foo().
Compiler calls it to create the copy on the call stack or return value location.

Simply nitializes built-in type member variables with the values in the original object.

Automagically copy-constructs any class-type member variables from the corresponding variables in the
original object.

Compiler-supplied copy constructor

Simply assigns built-in type lhs member variables from the values in the rhs object.

Automagically calls assignment operator for any class-type member variables to assign values from the
corresponding variables in the rhs object.

Compiler-supplied assignment operator

Come back to the C++11 move constructor and assignment operator

The compiler will automatically create certain class member functions for you!

And you shouldn't define them- only do it when you need to - defining these unnecessarily is a source of
errors!

The most reliable code is code that doesn't exist! It can't be wrong!

If the compiler-supplied versions will do what you need, then you don't have to define them!

e.g. no need to explicitly initialize a std::string member variable to the empty string.

shouldn't do it - just clutter

In your constructor, if you don't explicitly initialize class-type member variables, compiler will automagically
call the default constructor for them - isn't that handy!

Thing(int ID_, const string& name_, Thing * buddy_ptr_) : ID(ID_), name(name_),
buddy_ptr(buddy_ptr_) {} // the_gizmo is default_constructed

example:

e.g

Thing() : id(0), name("unidentified"), buddy_ptr(nullptr) {}

If you definite any constructor at all, the compiler will not create a default constructor for you.

Usually you need to write one or more constructors with parameters just to get your member variables
intialized to their desired values.

If you need to write a destructor, then you almost certainly need to write your own copy constructor and
assignment operator.

Why a destructor? Because the object owns something that got allocated, and it needs to be released
when the object goes away.

If so, then the ownership is going to get confused if the object is copy and assigned by the compiler-
supplied default memberwise assignment.

So if you write a destructor, also write copy constructor and assignment operator - or rule them out by
making them unavailable.

Rule of Three: "Law of the Big Three"

If your new class has only member variables that already have correct destruction, copy, and assignment
behavior then you do not need to write them for this new class!

With good use of the Standard Library, and careful design of your own custom components, you rarely
have to define the big three, and when you do, it is usually very easy.

Basic Rule of Virtue Rewarded

When do you need to define constructors, destructors, and the assignment operator?

Constructor usually allocates the memory

Some additional member functions involved

automatically called when either a local variable goes out of scope - e.g. function returns, or when a
dynamically allocated variable is deallocated with delete

Destructor - deallocate the memory

Copy constructor, assignment operator prevent dangling pointers, double deletion, or memory leak
possibilities

e.g. I/O device, network connection, etc.

An example of issues involved with an class that allocates/deallocates some resource

similar in some ways to standard library vector class, new Array class

similar in many ways to your String class for Project 2

See example code for Array

start with reminder of several limitations about C/C++ built-in arrays

show how build a class that allows an array-like type to be used like a regular variable type

Objects that contain a pointer to dynamic memory

The "rule of three"

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 22

Constructor usually allocates the memory

Some additional member functions involved

automatically called when either a local variable goes out of scope - e.g. function returns, or when a
dynamically allocated variable is deallocated with delete

Destructor - deallocate the memory

Copy constructor, assignment operator prevent dangling pointers, double deletion, or memory leak
possibilities

e.g. I/O device, network connection, etc.

An example of issues involved with an class that allocates/deallocates some resource

similar in some ways to standard library vector class, new Array class

similar in many ways to your String class for Project 2

See example code for Array

start with reminder of several limitations about C/C++ built-in arrays

show how build a class that allows an array-like type to be used like a regular variable type

Objects that contain a pointer to dynamic memory

The "rule of three"

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 23

A class of objects that can be used like an array, but also behave like regular variables.

memory is automatically freed when object is no longer in use

write this class once, use everywhere you need something better than built in array

Example encapsulates a dynamically allocated array of integers

First version - missing some key pieces! But get started.

a size - how many cells in the array

class Array {
public:
private:
 int size;

int* ptr;
};

a pointer to integers - a poitner to the dynamically allocated memory for the array

two private member variables

size and pointer are 0

 Array() : size(0), ptr(nullptr) {}

Default constructor - callable with no parameters - construct an empty Array

keep the size, allocate a piece of memory that big

Array(int size_) : size(size_) {
 if(size <= 0)
 throw Array_Exception(size, "size must be greater than 0");

ptr = new int[size];
}

constructof function integer parameter - how many cells in the array

program termination, inside a function

when delete is used (later)

when popped off a function call stack

name is class name with a tilde in front

no return type - like constructor, you don't call it, compiler does it for you

compiler puts in a call to DESTRUCTOR function for you

destructor will deallocate the memory with delete[]

~Array() {
delete[] ptr;
}

When object is deallocated, free the memory

int get_size() const {return size;}

a reader function for the size

pull the plug if out of range - other approaches later

we will check the index

can use on both the left and right hand size of an assignment

const int& operator[] (int index) const {
if (index < 0 || index > size - 1) {

// throw a bad-subscript exception
throw Array_Exception(index, "Index out of range");
}

return ptr[index];
}

rhs - fetch the value - compiler knows it needs to be the const version

int& operator[] (int index) {
if (index < 0 || index > size - 1) {

// throw a bad-subscript exception
throw Array_Exception(index, "Index out of range");
}

return ptr[index];
}

lhs - "lvalue" want to be able to set the value, so reference to the memory location

return a reference to the cell of the array

an overloaded subscripting operator

ask user for size

create an object using the size

fill it up - subscripted object returns reference to corresponding place in the internal array

subscript operator checks it for correct value

ask user for an index

See example code

call zap

local object created on stack, memory allocated by constructor

object used

then object deallocated from stack - memory deallocated by destructor automagically

see constructor/destructor call

Also, could allocate a Array object with new, then delete later see Array_v1p.cpp

Array version 1 - Array_v1.cpp

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 24

A class of objects that can be used like an array, but also behave like regular variables.

memory is automatically freed when object is no longer in use

write this class once, use everywhere you need something better than built in array

Example encapsulates a dynamically allocated array of integers

First version - missing some key pieces! But get started.

a size - how many cells in the array

class Array {
public:
private:
 int size;

int* ptr;
};

a pointer to integers - a poitner to the dynamically allocated memory for the array

two private member variables

size and pointer are 0

 Array() : size(0), ptr(nullptr) {}

Default constructor - callable with no parameters - construct an empty Array

keep the size, allocate a piece of memory that big

Array(int size_) : size(size_) {
 if(size <= 0)
 throw Array_Exception(size, "size must be greater than 0");

ptr = new int[size];
}

constructof function integer parameter - how many cells in the array

program termination, inside a function

when delete is used (later)

when popped off a function call stack

name is class name with a tilde in front

no return type - like constructor, you don't call it, compiler does it for you

compiler puts in a call to DESTRUCTOR function for you

destructor will deallocate the memory with delete[]

~Array() {
delete[] ptr;
}

When object is deallocated, free the memory

int get_size() const {return size;}

a reader function for the size

pull the plug if out of range - other approaches later

we will check the index

can use on both the left and right hand size of an assignment

const int& operator[] (int index) const {
if (index < 0 || index > size - 1) {

// throw a bad-subscript exception
throw Array_Exception(index, "Index out of range");
}

return ptr[index];
}

rhs - fetch the value - compiler knows it needs to be the const version

int& operator[] (int index) {
if (index < 0 || index > size - 1) {

// throw a bad-subscript exception
throw Array_Exception(index, "Index out of range");
}

return ptr[index];
}

lhs - "lvalue" want to be able to set the value, so reference to the memory location

return a reference to the cell of the array

an overloaded subscripting operator

ask user for size

create an object using the size

fill it up - subscripted object returns reference to corresponding place in the internal array

subscript operator checks it for correct value

ask user for an index

See example code

call zap

local object created on stack, memory allocated by constructor

object used

then object deallocated from stack - memory deallocated by destructor automagically

see constructor/destructor call

Also, could allocate a Array object with new, then delete later see Array_v1p.cpp

Array version 1 - Array_v1.cpp

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 25

A class of objects that can be used like an array, but also behave like regular variables.

memory is automatically freed when object is no longer in use

write this class once, use everywhere you need something better than built in array

Example encapsulates a dynamically allocated array of integers

First version - missing some key pieces! But get started.

a size - how many cells in the array

class Array {
public:
private:
 int size;

int* ptr;
};

a pointer to integers - a poitner to the dynamically allocated memory for the array

two private member variables

size and pointer are 0

 Array() : size(0), ptr(nullptr) {}

Default constructor - callable with no parameters - construct an empty Array

keep the size, allocate a piece of memory that big

Array(int size_) : size(size_) {
 if(size <= 0)
 throw Array_Exception(size, "size must be greater than 0");

ptr = new int[size];
}

constructof function integer parameter - how many cells in the array

program termination, inside a function

when delete is used (later)

when popped off a function call stack

name is class name with a tilde in front

no return type - like constructor, you don't call it, compiler does it for you

compiler puts in a call to DESTRUCTOR function for you

destructor will deallocate the memory with delete[]

~Array() {
delete[] ptr;
}

When object is deallocated, free the memory

int get_size() const {return size;}

a reader function for the size

pull the plug if out of range - other approaches later

we will check the index

can use on both the left and right hand size of an assignment

const int& operator[] (int index) const {
if (index < 0 || index > size - 1) {

// throw a bad-subscript exception
throw Array_Exception(index, "Index out of range");
}

return ptr[index];
}

rhs - fetch the value - compiler knows it needs to be the const version

int& operator[] (int index) {
if (index < 0 || index > size - 1) {

// throw a bad-subscript exception
throw Array_Exception(index, "Index out of range");
}

return ptr[index];
}

lhs - "lvalue" want to be able to set the value, so reference to the memory location

return a reference to the cell of the array

an overloaded subscripting operator

ask user for size

create an object using the size

fill it up - subscripted object returns reference to corresponding place in the internal array

subscript operator checks it for correct value

ask user for an index

See example code

call zap

local object created on stack, memory allocated by constructor

object used

then object deallocated from stack - memory deallocated by destructor automagically

see constructor/destructor call

Also, could allocate a Array object with new, then delete later see Array_v1p.cpp

Array version 1 - Array_v1.cpp

a1 = a2;

a1.size = a2.size;

a1.ptr = a2.ptr;

default assignment operator does memberwise assignment:

a1 and a2 share the same data - is this what we mean by assignment?

int2 = 3;

int1 = int2; // int1 is now 3

int2 = 5;

is int1 now 5? NO!

not usually

a2[i] = 3;

a1 = a2; // sa1[i] is now 3

a2[i] = 5;

should a1[i] now be 5? NO!

but Array.v1 will behave that way:

"copy semantics"

no way to free that memory up now

a1's ptr value has been overwritten

a1 and a2 point to the same piece of memory

whoever's destructor runs first will free it

second object is pointing to memory that is now deallocated

second object's destructor will try to free it again - bad news - why? memory allocation/deallocation
is fast but dumb! Will get confused by a double delete. Debug mode often available that keeps track
of allocations and deletions and complains if they don't match up. But takes run time!

dangling pointer and memory leak

OK, but two problems:

What happens if you assign one to another?

example code
a2 = squarem (a1)

Array squarem(Array a)
{

Array b(a.get_size());

for (int i = 0; i < a.get_size(); i++)
b[i] = a[i] * a[i];

return b;
}

function call stack loaded as normally with a copy of the argument:

"a" object has copy of a1's member values

inside function create b, set its values

done with b, destroy it

copy tempory stack value into a2

destroy the tempory object - more dangling pointer, memory leak problems

return b - copy b out onto stack,

What happens if you try to call with Array as function argument and'/or returned value?

"a" is destroyed on way out - problem since it was copy of sa1's values

Problems with version 1:

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 26

a1 = a2;

a1.size = a2.size;

a1.ptr = a2.ptr;

default assignment operator does memberwise assignment:

a1 and a2 share the same data - is this what we mean by assignment?

int2 = 3;

int1 = int2; // int1 is now 3

int2 = 5;

is int1 now 5? NO!

not usually

a2[i] = 3;

a1 = a2; // sa1[i] is now 3

a2[i] = 5;

should a1[i] now be 5? NO!

but Array.v1 will behave that way:

"copy semantics"

no way to free that memory up now

a1's ptr value has been overwritten

a1 and a2 point to the same piece of memory

whoever's destructor runs first will free it

second object is pointing to memory that is now deallocated

second object's destructor will try to free it again - bad news - why? memory allocation/deallocation
is fast but dumb! Will get confused by a double delete. Debug mode often available that keeps track
of allocations and deletions and complains if they don't match up. But takes run time!

dangling pointer and memory leak

OK, but two problems:

What happens if you assign one to another?

example code
a2 = squarem (a1)

Array squarem(Array a)
{

Array b(a.get_size());

for (int i = 0; i < a.get_size(); i++)
b[i] = a[i] * a[i];

return b;
}

function call stack loaded as normally with a copy of the argument:

"a" object has copy of a1's member values

inside function create b, set its values

done with b, destroy it

copy tempory stack value into a2

destroy the tempory object - more dangling pointer, memory leak problems

return b - copy b out onto stack,

What happens if you try to call with Array as function argument and'/or returned value?

"a" is destroyed on way out - problem since it was copy of sa1's values

Problems with version 1:

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 27

compiler's rule - find the relevant function first, then check on whether access is permitted

just need to declare the function and make it private

don't have to define it, since it won't ever be called - linker won't go looking for it

Fix by making assignment operator and COPY CONSTRUCTOR private or otherwise rule them out

assignment operator - compiler will seek to apply this, discover it can't, and signal an error

X(const X&);

describes how to make a initialize an object as a COPY of another object

in function call, a copy of the object is made and put on the stack as the function parameter

in returned value, a copy of the returned object is made and put on the stack somewhere

If we make it private, we are saying that an object can not be used in a function call argument or as a
returned value

avoids dangling pointer/memory leak problem

could still call by reference if we wanted to - no copy involved

if we don't supply one, compiler just does memberwise copy

Copy constructor

Making it private might be right idea if doesn't make sense to do call/return by value or assignment.

In C++11, instead of making private, add = delete; to the declaration to show that the member function
should be "suppressed" - not automatically declared and defined, so again it can't be called.

 // C++11 style for forbidding copy and assignment
Array(const Array& source) = delete;
Array& operator= (const Array& source) = delete;

private:
 // C++98 (or C++03) style for forbidding copy and assignment
 // Array(const Array& source); // forbid use of copy constructor
 // Array& operator= (const Array& source); // forbid use of
assignment operator

Array version 2 - Array_v2.cpp - fixed so that Array class is safe to use, but limited and inconvenient

How to prevent problems with copy and assignment

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 28

Have to decide what meaning of copy and assignment should be

contain same set of values

independent - changing one does not affect the other

independent lifetimes - either object can be destroyed without affecting other

e.g. if obj1 = obj2 or obj1 is a copy of obj2, after copy or assignment

simple way to do this is to give each object its own copy of the data

How to provide copy and assignment

class-name(const class-name& original_object);

notice that the argument is by const reference! Can't define copying with a function that requres copying of
its argument!

Form of copy constructor prototype is

Be sure ALL member variables are properly initialized!

Getting values for initialization from the object being copied.

Notice we are initializing a new object!

in constructor initializer list, initialize rest of this object's appropriate member variables from
original_object's values

allocate enough memory for ths object, copy original_object's data into it

make a copy of original_object's data for this object

Array(const Array& original) : size(original.size),
ptr(new int[size])
{

for (int i = 0; i < size; i++)
ptr[i] = original.ptr[i];

}

Example of copy constructor for Array

See Array example Array_v3.cpp

Basic scheme

How to define the copy constructor

class-name& operator= (const class-name& rhs);

the left-hand-side is "this" object

the argument of the overloaded operator function is the right-hand-side

define as a member function

Form of overloaded assignment operator prototype is

Two approaches to defining the assignment function, one traditional, the other new.

See Array example Array_v3.cpp

Compare their addresses - every individual object lives at a distinct address in memory, by definition!

if(this != &rhs) // if different object, proceed with assignment; if not, do nothing

Might seem bizarre - it is very rare for the objects to be the same, but can happen if pointers and
references being used a lot; must be checked for because if it it does happen, and you do the
assignment anyway, heap will get corrupted instantly.

Checking for it every time actually is inefficient because it almost never happens - there is a better way
to handle this.

First check for aliasing - make sure that the l.h.s. and r.h.s. are different objects

Deallocate the memory pointed to by the lhs

Allocate a new peice of memory big enough to hold the data from the rhs and Set the lhs pointer to
point to it

Copy the rhs data into the new lhs memory space

Set the other lhs member variables to the rhs values

If the objects are different, copy the data

Return *this; // always the last line of a normal assignment operator definition

thing3 = thing2 = thing1;

Allows "chaining" of assignments like for built-in types:

Return a reference to "this" object

Array& operator= (const Array& rhs) {
if(this != &rhs) {

delete[] ptr;
size = rhs.size;
ptr = new int[size];
for (int i = 0; i < size; i++)

ptr[i] = rhs.ptr[i];
}

return *this;
}

Example of traditional assignment operator for Array

Traditional assignment operator

e.g. if memory allocation for copy of data fails.

Provides "exception safety" - lhs side object is unchanged if assignment fails.

Takes advantage of fact that copy constructor and destructor already does almost all of the work we
need to do.

This approach wastes time only if the rare case happens, and the result is still correct.

Don't waste time checking for aliasing when it almost never happens.

Overall better than traditional assognment operator

Reuse the code!

if this throws an exception, we exit the assignment operator, but then "this" object is unchanged!

 Basic and strong "Exception safety" - result of failure is no memory leak, and unchanged objects.

Step 1. Use copy constructor to construct a termporary object that is a copy of the rhs.

Study this carefully!

Using code that cannot throw an exception, so if we get to this point, we will succeed.

While tedious to write, is usually very fast because only built-in types are involved.

Common for modern classes to have a "swap" member function - see Standard Library containers -
they all have it!

Interchange the values of the individual member variables.

Now "this" object has the new copy, and temp object has what "this" object used to have.

Step 2. Swap the "guts" of "this" object with the temp object

Return *this

Destructor will automatically clean up the temp object, thereby freeing the resources that used to
belong to "this" object.

That's all!

Example of copy-swap for Array

Array& operator= (const Array& rhs)
{

Array temp(rhs);
swap(temp);
return *this;

}

void swap(Array& other) noexcept
{

int t_size = size;
size = other.size;
other.size = t_size;
int * t_ptr = ptr;
ptr = other.ptr;
other.ptr = t_ptr;

}

// using std::swap function template
void swap(Array& other) noexcept
{

swap(size, other.size);
swap(ptr, other.ptr);

}

Better idiom for assignment operators: copy-swap

How to provide assignment

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 29class-name& operator= (const class-name& rhs);

the left-hand-side is "this" object

the argument of the overloaded operator function is the right-hand-side

define as a member function

Form of overloaded assignment operator prototype is

Two approaches to defining the assignment function, one traditional, the other new.

See Array example Array_v3.cpp

Compare their addresses - every individual object lives at a distinct address in memory, by definition!

if(this != &rhs) // if different object, proceed with assignment; if not, do nothing

Might seem bizarre - it is very rare for the objects to be the same, but can happen if pointers and
references being used a lot; must be checked for because if it it does happen, and you do the
assignment anyway, heap will get corrupted instantly.

Checking for it every time actually is inefficient because it almost never happens - there is a better way
to handle this.

First check for aliasing - make sure that the l.h.s. and r.h.s. are different objects

Deallocate the memory pointed to by the lhs

Allocate a new peice of memory big enough to hold the data from the rhs and Set the lhs pointer to
point to it

Copy the rhs data into the new lhs memory space

Set the other lhs member variables to the rhs values

If the objects are different, copy the data

Return *this; // always the last line of a normal assignment operator definition

thing3 = thing2 = thing1;

Allows "chaining" of assignments like for built-in types:

Return a reference to "this" object

Array& operator= (const Array& rhs) {
if(this != &rhs) {

delete[] ptr;
size = rhs.size;
ptr = new int[size];
for (int i = 0; i < size; i++)

ptr[i] = rhs.ptr[i];
}

return *this;
}

Example of traditional assignment operator for Array

Traditional assignment operator

e.g. if memory allocation for copy of data fails.

Provides "exception safety" - lhs side object is unchanged if assignment fails.

Takes advantage of fact that copy constructor and destructor already does almost all of the work we
need to do.

This approach wastes time only if the rare case happens, and the result is still correct.

Don't waste time checking for aliasing when it almost never happens.

Overall better than traditional assognment operator

Reuse the code!

if this throws an exception, we exit the assignment operator, but then "this" object is unchanged!

 Basic and strong "Exception safety" - result of failure is no memory leak, and unchanged objects.

Step 1. Use copy constructor to construct a termporary object that is a copy of the rhs.

Study this carefully!

Using code that cannot throw an exception, so if we get to this point, we will succeed.

While tedious to write, is usually very fast because only built-in types are involved.

Common for modern classes to have a "swap" member function - see Standard Library containers -
they all have it!

Interchange the values of the individual member variables.

Now "this" object has the new copy, and temp object has what "this" object used to have.

Step 2. Swap the "guts" of "this" object with the temp object

Return *this

Destructor will automatically clean up the temp object, thereby freeing the resources that used to
belong to "this" object.

That's all!

Example of copy-swap for Array

Array& operator= (const Array& rhs)
{

Array temp(rhs);
swap(temp);
return *this;

}

void swap(Array& other) noexcept
{

int t_size = size;
size = other.size;
other.size = t_size;
int * t_ptr = ptr;
ptr = other.ptr;
other.ptr = t_ptr;

}

// using std::swap function template
void swap(Array& other) noexcept
{

swap(size, other.size);
swap(ptr, other.ptr);

}

Better idiom for assignment operators: copy-swap

How to provide assignment

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 30

class-name& operator= (const class-name& rhs);

the left-hand-side is "this" object

the argument of the overloaded operator function is the right-hand-side

define as a member function

Form of overloaded assignment operator prototype is

Two approaches to defining the assignment function, one traditional, the other new.

See Array example Array_v3.cpp

Compare their addresses - every individual object lives at a distinct address in memory, by definition!

if(this != &rhs) // if different object, proceed with assignment; if not, do nothing

Might seem bizarre - it is very rare for the objects to be the same, but can happen if pointers and
references being used a lot; must be checked for because if it it does happen, and you do the
assignment anyway, heap will get corrupted instantly.

Checking for it every time actually is inefficient because it almost never happens - there is a better way
to handle this.

First check for aliasing - make sure that the l.h.s. and r.h.s. are different objects

Deallocate the memory pointed to by the lhs

Allocate a new peice of memory big enough to hold the data from the rhs and Set the lhs pointer to
point to it

Copy the rhs data into the new lhs memory space

Set the other lhs member variables to the rhs values

If the objects are different, copy the data

Return *this; // always the last line of a normal assignment operator definition

thing3 = thing2 = thing1;

Allows "chaining" of assignments like for built-in types:

Return a reference to "this" object

Array& operator= (const Array& rhs) {
if(this != &rhs) {

delete[] ptr;
size = rhs.size;
ptr = new int[size];
for (int i = 0; i < size; i++)

ptr[i] = rhs.ptr[i];
}

return *this;
}

Example of traditional assignment operator for Array

Traditional assignment operator

e.g. if memory allocation for copy of data fails.

Provides "exception safety" - lhs side object is unchanged if assignment fails.

Takes advantage of fact that copy constructor and destructor already does almost all of the work we
need to do.

This approach wastes time only if the rare case happens, and the result is still correct.

Don't waste time checking for aliasing when it almost never happens.

Overall better than traditional assognment operator

Reuse the code!

if this throws an exception, we exit the assignment operator, but then "this" object is unchanged!

 Basic and strong "Exception safety" - result of failure is no memory leak, and unchanged objects.

Step 1. Use copy constructor to construct a termporary object that is a copy of the rhs.

Study this carefully!

Using code that cannot throw an exception, so if we get to this point, we will succeed.

While tedious to write, is usually very fast because only built-in types are involved.

Common for modern classes to have a "swap" member function - see Standard Library containers -
they all have it!

Interchange the values of the individual member variables.

Now "this" object has the new copy, and temp object has what "this" object used to have.

Step 2. Swap the "guts" of "this" object with the temp object

Return *this

Destructor will automatically clean up the temp object, thereby freeing the resources that used to
belong to "this" object.

That's all!

Example of copy-swap for Array

Array& operator= (const Array& rhs)
{

Array temp(rhs);
swap(temp);
return *this;

}

void swap(Array& other) noexcept
{

int t_size = size;
size = other.size;
other.size = t_size;
int * t_ptr = ptr;
ptr = other.ptr;
other.ptr = t_ptr;

}

// using std::swap function template
void swap(Array& other) noexcept
{

swap(size, other.size);
swap(ptr, other.ptr);

}

Better idiom for assignment operators: copy-swap

How to provide assignment

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 31

class-name& operator= (const class-name& rhs);

the left-hand-side is "this" object

the argument of the overloaded operator function is the right-hand-side

define as a member function

Form of overloaded assignment operator prototype is

Two approaches to defining the assignment function, one traditional, the other new.

See Array example Array_v3.cpp

Compare their addresses - every individual object lives at a distinct address in memory, by definition!

if(this != &rhs) // if different object, proceed with assignment; if not, do nothing

Might seem bizarre - it is very rare for the objects to be the same, but can happen if pointers and
references being used a lot; must be checked for because if it it does happen, and you do the
assignment anyway, heap will get corrupted instantly.

Checking for it every time actually is inefficient because it almost never happens - there is a better way
to handle this.

First check for aliasing - make sure that the l.h.s. and r.h.s. are different objects

Deallocate the memory pointed to by the lhs

Allocate a new peice of memory big enough to hold the data from the rhs and Set the lhs pointer to
point to it

Copy the rhs data into the new lhs memory space

Set the other lhs member variables to the rhs values

If the objects are different, copy the data

Return *this; // always the last line of a normal assignment operator definition

thing3 = thing2 = thing1;

Allows "chaining" of assignments like for built-in types:

Return a reference to "this" object

Array& operator= (const Array& rhs) {
if(this != &rhs) {

delete[] ptr;
size = rhs.size;
ptr = new int[size];
for (int i = 0; i < size; i++)

ptr[i] = rhs.ptr[i];
}

return *this;
}

Example of traditional assignment operator for Array

Traditional assignment operator

e.g. if memory allocation for copy of data fails.

Provides "exception safety" - lhs side object is unchanged if assignment fails.

Takes advantage of fact that copy constructor and destructor already does almost all of the work we
need to do.

This approach wastes time only if the rare case happens, and the result is still correct.

Don't waste time checking for aliasing when it almost never happens.

Overall better than traditional assognment operator

Reuse the code!

if this throws an exception, we exit the assignment operator, but then "this" object is unchanged!

 Basic and strong "Exception safety" - result of failure is no memory leak, and unchanged objects.

Step 1. Use copy constructor to construct a termporary object that is a copy of the rhs.

Study this carefully!

Using code that cannot throw an exception, so if we get to this point, we will succeed.

While tedious to write, is usually very fast because only built-in types are involved.

Common for modern classes to have a "swap" member function - see Standard Library containers -
they all have it!

Interchange the values of the individual member variables.

Now "this" object has the new copy, and temp object has what "this" object used to have.

Step 2. Swap the "guts" of "this" object with the temp object

Return *this

Destructor will automatically clean up the temp object, thereby freeing the resources that used to
belong to "this" object.

That's all!

Example of copy-swap for Array

Array& operator= (const Array& rhs)
{

Array temp(rhs);
swap(temp);
return *this;

}

void swap(Array& other) noexcept
{

int t_size = size;
size = other.size;
other.size = t_size;
int * t_ptr = ptr;
ptr = other.ptr;
other.ptr = t_ptr;

}

// using std::swap function template
void swap(Array& other) noexcept
{

swap(size, other.size);
swap(ptr, other.ptr);

}

Better idiom for assignment operators: copy-swap

How to provide assignment

Reuse constructor/destructor code more widely, making consistent behavior easier to code - common
in Standard Library classes.

Thing& operator= (const OtherType& rhs)
{

Thing temp(rhs);
swap(temp);
return *this;

}

For assignment from another type: if you have a constructor for the other type, then create a temp
object from it and swap.

void Thing::reset()
{

Thing temp; // default constructed
swap(temp);

}

For "reset" or clear - put this object back into its default state - create an empty object (the default
constructor), then swap.

Further swap-based ideas: create and swap

Thing another_thing(existing_thing);

not an assignment, an initialization.

rhs has to be same type as new object being declared:

create a temporary unnamed string initialized with "abc", then copy-construct s from it.

temporary object is then destroyed.

string s = "abc";

Can be involved in initialization:

Explicit copy construction

void foo(Thing t);
...
Thing my_thing;
…
foo(my_thing);
...

make a copy of caller's argument and push it on the stack, where it becomes function's parameter
variable; gets destroyed when function returns.

Call-by-value

Thing foo()
{

Thing result(blah, blah); // or otherwise get data into result;
return result;

}

...
Thing a_thing;
…
a_thing = fool();

if an object is returned from a function, the function typically creates a local variable for the object, puts
the data in it, and returns it. The compiler sets aside a special place on function call stack in the
caller's stack area to hold the returned value before calling the function. The compiler puts in a call to
the copy constructor to copy the returned value into that special place before the function finally
returns. The local object is destroyed when the function returns.

The caller typically asigns the returned value to another variable, and the returned value is destroyed
when control leaves the assignment statement (full expression).

Return-by-value

Technically, copy constructor gets called in the following cases:

Copy constructor elision … elision means "leave out" - compiler can elide redundant copy constructor calls

string s = "abc" - just give the "abc" to the string constructor directly instead of build and copy.

a no- brainer

Initialization:

void foo(string s);
…
string s1, s2;
…
foo(s1+s2);

compiler will make space on the stack for a temporary unnamed string object to hold the concatenation
of s1 and s2. Why copy this out into another space to be foo's argument s? Instead build it where s will
be, saving a call to copy constructor!

Call by value using a temporary

If the compiler can tell that a local object is going to be the return value, instead of building it locally,
build it in the special return value place on the stack so it is already where it needs to be!

In above example, "result" is built outside foo's stack frame so it doesn't have to be copied out!

almost universal in C++ compilers!

return by value - so common and important that it has a name: Returned Value Optimization (RVO)

in gcc/g++, use -fno-elide-constructors option

In some compilers you can turn this optimization off so that you can see "by the book" copy construction
going on.

E.g. the demonstration messages in some of the Array examples.

The optimization is allowed by the Standard even if some side effects are missing because the copy
constructor did not get called.

HOWEVER, for a long time C++ Compilers have been allowed to do an optimization by default!

When does the Copy Constructor get called? Compiler often "elides" it!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 32

Thing another_thing(existing_thing);

not an assignment, an initialization.

rhs has to be same type as new object being declared:

create a temporary unnamed string initialized with "abc", then copy-construct s from it.

temporary object is then destroyed.

string s = "abc";

Can be involved in initialization:

Explicit copy construction

void foo(Thing t);
...
Thing my_thing;
…
foo(my_thing);
...

make a copy of caller's argument and push it on the stack, where it becomes function's parameter
variable; gets destroyed when function returns.

Call-by-value

Thing foo()
{

Thing result(blah, blah); // or otherwise get data into result;
return result;

}

...
Thing a_thing;
…
a_thing = fool();

if an object is returned from a function, the function typically creates a local variable for the object, puts
the data in it, and returns it. The compiler sets aside a special place on function call stack in the
caller's stack area to hold the returned value before calling the function. The compiler puts in a call to
the copy constructor to copy the returned value into that special place before the function finally
returns. The local object is destroyed when the function returns.

The caller typically asigns the returned value to another variable, and the returned value is destroyed
when control leaves the assignment statement (full expression).

Return-by-value

Technically, copy constructor gets called in the following cases:

Copy constructor elision … elision means "leave out" - compiler can elide redundant copy constructor calls

string s = "abc" - just give the "abc" to the string constructor directly instead of build and copy.

a no- brainer

Initialization:

void foo(string s);
…
string s1, s2;
…
foo(s1+s2);

compiler will make space on the stack for a temporary unnamed string object to hold the concatenation
of s1 and s2. Why copy this out into another space to be foo's argument s? Instead build it where s will
be, saving a call to copy constructor!

Call by value using a temporary

If the compiler can tell that a local object is going to be the return value, instead of building it locally,
build it in the special return value place on the stack so it is already where it needs to be!

In above example, "result" is built outside foo's stack frame so it doesn't have to be copied out!

almost universal in C++ compilers!

return by value - so common and important that it has a name: Returned Value Optimization (RVO)

in gcc/g++, use -fno-elide-constructors option

In some compilers you can turn this optimization off so that you can see "by the book" copy construction
going on.

E.g. the demonstration messages in some of the Array examples.

The optimization is allowed by the Standard even if some side effects are missing because the copy
constructor did not get called.

HOWEVER, for a long time C++ Compilers have been allowed to do an optimization by default!

When does the Copy Constructor get called? Compiler often "elides" it!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 33

Thing another_thing(existing_thing);

not an assignment, an initialization.

rhs has to be same type as new object being declared:

create a temporary unnamed string initialized with "abc", then copy-construct s from it.

temporary object is then destroyed.

string s = "abc";

Can be involved in initialization:

Explicit copy construction

void foo(Thing t);
...
Thing my_thing;
…
foo(my_thing);
...

make a copy of caller's argument and push it on the stack, where it becomes function's parameter
variable; gets destroyed when function returns.

Call-by-value

Thing foo()
{

Thing result(blah, blah); // or otherwise get data into result;
return result;

}

...
Thing a_thing;
…
a_thing = fool();

if an object is returned from a function, the function typically creates a local variable for the object, puts
the data in it, and returns it. The compiler sets aside a special place on function call stack in the
caller's stack area to hold the returned value before calling the function. The compiler puts in a call to
the copy constructor to copy the returned value into that special place before the function finally
returns. The local object is destroyed when the function returns.

The caller typically asigns the returned value to another variable, and the returned value is destroyed
when control leaves the assignment statement (full expression).

Return-by-value

Technically, copy constructor gets called in the following cases:

Copy constructor elision … elision means "leave out" - compiler can elide redundant copy constructor calls

string s = "abc" - just give the "abc" to the string constructor directly instead of build and copy.

a no- brainer

Initialization:

void foo(string s);
…
string s1, s2;
…
foo(s1+s2);

compiler will make space on the stack for a temporary unnamed string object to hold the concatenation
of s1 and s2. Why copy this out into another space to be foo's argument s? Instead build it where s will
be, saving a call to copy constructor!

Call by value using a temporary

If the compiler can tell that a local object is going to be the return value, instead of building it locally,
build it in the special return value place on the stack so it is already where it needs to be!

In above example, "result" is built outside foo's stack frame so it doesn't have to be copied out!

almost universal in C++ compilers!

return by value - so common and important that it has a name: Returned Value Optimization (RVO)

in gcc/g++, use -fno-elide-constructors option

In some compilers you can turn this optimization off so that you can see "by the book" copy construction
going on.

E.g. the demonstration messages in some of the Array examples.

The optimization is allowed by the Standard even if some side effects are missing because the copy
constructor did not get called.

HOWEVER, for a long time C++ Compilers have been allowed to do an optimization by default!

When does the Copy Constructor get called? Compiler often "elides" it!

Actually we are "stealing" the data and leaving something destructible or assignable in its place.

move construction and assignment steals the data instead of copying it

we now call regular assignment "copy assignment"

Key idea: A lot of times, we do work in copy construction or assignment that is wasted because we are
copying data from an object that is going to go away - it is a temporary object and is slated for
destruction right away. Basic idea is to MOVE the data instead of copying it.

s = s1 + s2; // rhs is temporary object

vector<string> make_big_vector(); // create and return a vector<string> in a temporary object
...
vector<string> vs;
...
vs = make_big_vector(); // assign from a temp vector object (even if RVO happened)

assigning from an object that is going to get destroyed

We just have to make sure the object could be destroyed correctly (or assigned to correctly, in some
cases).

Basic idea: why copy data from an object that is going to be deleted? We could just "steal" the data - the
object doesn't need it anymore!

Move assignment

How can we tell that the rhs object is going to go away? The compiler knows!

lvalue - roughly speaking, something that can be on lhs of an assignment - or "location value" it has a
name or location where you can put something. variables are lvalues. Can also appear in rhs of an
assignment, obviously.

rvalue - roughly speaking, somethat that can only appear on the rhs of an assignment - a "read only" value.
Temporary unnamed variables are rvalues.

New type in C++11 - an "rvalue reference" - written as && - can be called only if argument can be treated
as an rvalue.

We can define an overloaded version of operator= that only gets called if rhs is an rvalue; this can move
the data; copy operator= will copy the data if rhs is not an rvalue.

suppose we call foo(something); where something is an lvalue or rvalue.

then compiler will choose the first one for an lvalue, and second for an rvalue.

If you define both foo(X& x) and foo(X&& x)

then foo can be called only on lvalues, not rvalues - an rvalue is not allowed to bind to a reference
to non-const (previous C++98 rule).

If you define only foo(X& x)

then foo will be called on both lvalues and rvalues

if you define only foo(const X& x)

foo can be called on rvalues, but not on lvalues

if you define only foo(X&&),

then foo(const X& x) will be called on lvalues, and foo(X&&) will be called on rvalues

this is the combination we want!

if you define both foo(const X& x) and foo(X&& x)

works for foo(anything) -compiler will consider the other possibilities ambiguous -

not usually an issue because to implement copy and move functions, we only declare constX& and
X&& versions

if you define foo(X x) - call by value

Overloading rules are pretty kinky when rvalue references are involved. More specifically:

New type: rvalue references

form of move assignment operator overload function:
class-name& operator= (class-name&& rhs);

example - for Array, if we just swap the guts then rhs will deallocate our original stuff, and we get the data
that was inside the original rhs. Like copy-swap, but no copy! steal-by-swap!

// move assignment just swaps rhs with this.
Array& operator= (Array&& rhs) {

swap(rhs);
return *this;

}

Example move assignment operator - see Array_final

Note that after the swap, the rhs destructor will have valid data to destroy, and in fact that object could
also be assigned to correctly as well.

When temporary rhs object is destroyed, our original data gets deallocated. Perfect!

Compiler will automatically call copy-swap operator= if rhs is an lvalue, the steal-by-swap operator= if rhs
is an rvalue!

We get a potentially huge performance improvement with no change to the client code!

Implementing move assignment

Similarly, if we copy-construct from an rvalue, we are copying data from an object that is going to be
destroyed right away - what a waste when we could steal the data instead!

Same implementation concept: move constructor takes an rvalue reference parameter; compiler calls it
instead of regular copy constructor if source is an rvalue.

Often can be simpler than move assignment because we don't have anything that needs deallocation in
the object being initialized. We just have to leave the source in a deletable/assignable state.

Move construction

form of move constructor
class-name(class-name&& source);

Array(Array&& original) : size(original.size), ptr(original.ptr)
{

original.size = 0;
// delete[] of 0 pointer defined as "do nothing"
original.ptr = nullptr;

}

see Array_final example

Potential big performance boost with no change in client code!

Compiler will automatically call regular copy constructor if source is an lvalue, the move version that steals
the data if rhs is an rvalue!

Array(Array&& original) : size(0), ptr(nullptrr)
{

swap(original);
}

However, if you like swap logic, consider the following implementation

Implementing move construction

One special case: a function returns its call-by-value parameter by value. Compiler is not allowed to try to
build these objects in the same place, so is forced to copy/move construct its result - can't elide that
constructor!

Array increment_cells(Array a)
{
 int n = a.get_size();

for(int i = 0; i < n; i++) {
 a[i] = a[i] + 1;
 }
 return a;
}
// copy or move constructor will definitely get called on the return of
a!

HOWEVER move construction is hard to see taking effect because normally happens only when copy
construction would happen. Compilers often elide copy construction, so move construction is often
not visible unless you turn off constructor elision.

You won't automatically get a move because once inside the move function, a named variable for the
source is involved, and these are themselves lvalues, not rvalues. (Whoa!)

rule of thumb: if it has a name in that scope, it's an lvalue!

class Gizmo {

private:
std::string name;
Thing the_Thing;
int id;

};

Example:

Gizmo g(foo()); // foo returns a Gizmo, used to initialize g - move constructor!

the compiler might see an rvalue and know to call this constructor, but once inside the function, the
rvalue becomes a location with a name:

Gizmo::Gizmo(Gizmo&& original) : //original is a named location, so it is an lvalue in the function
name(original.name), // original.name is an lvalue also - so we do a copy, not a move
the_Thing(original. the_Thing), // ditto
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

OOPS - we ended up copying the member data, not moving it!

Consider move constructor:

this creates an unnamed temporary object of rvalue reference type!

use static_cast<T&&>() to tell compiler to treat as an rvalue

if there is a constructor that takes an rvalue, then it will get called, otherwise copy constructor is called;

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(static_cast<std::string&&>(original.name)), // std::string has move constructor, so gets

called
the_Thing(static_cast<Thing&&>(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

defined in <utility>

instead of static_cast, use std::move() which is a function template that casts its argument to an rvalue
no matter what the referfence-type status of it is. Does same thing here as the static_cast, but is more
expressive and works correctly in other situations.

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(std::move(original.name)), // std::string has move constructor, so gets called
the_Thing(std::move(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

Idea: tell the compiler that it should try to apply the move constructor instead - cast these to rvalues:

Gizmo& Gizmo::operator= (Gizmo&& rhs)
{

name = std::move(rhs.name); // calls string's move assignment
the_Thing = std::move(rhs.the_Thing); // calls Thing's move assignment
id = rhs.id; // just simple assignment

}

For move assignment operator, do similarly:

What if class type member variables are involved - how do you implement move construction or
assignment with them?

New in C++11: move construction and assignment!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 34

Actually we are "stealing" the data and leaving something destructible or assignable in its place.

move construction and assignment steals the data instead of copying it

we now call regular assignment "copy assignment"

Key idea: A lot of times, we do work in copy construction or assignment that is wasted because we are
copying data from an object that is going to go away - it is a temporary object and is slated for
destruction right away. Basic idea is to MOVE the data instead of copying it.

s = s1 + s2; // rhs is temporary object

vector<string> make_big_vector(); // create and return a vector<string> in a temporary object
...
vector<string> vs;
...
vs = make_big_vector(); // assign from a temp vector object (even if RVO happened)

assigning from an object that is going to get destroyed

We just have to make sure the object could be destroyed correctly (or assigned to correctly, in some
cases).

Basic idea: why copy data from an object that is going to be deleted? We could just "steal" the data - the
object doesn't need it anymore!

Move assignment

How can we tell that the rhs object is going to go away? The compiler knows!

lvalue - roughly speaking, something that can be on lhs of an assignment - or "location value" it has a
name or location where you can put something. variables are lvalues. Can also appear in rhs of an
assignment, obviously.

rvalue - roughly speaking, somethat that can only appear on the rhs of an assignment - a "read only" value.
Temporary unnamed variables are rvalues.

New type in C++11 - an "rvalue reference" - written as && - can be called only if argument can be treated
as an rvalue.

We can define an overloaded version of operator= that only gets called if rhs is an rvalue; this can move
the data; copy operator= will copy the data if rhs is not an rvalue.

suppose we call foo(something); where something is an lvalue or rvalue.

then compiler will choose the first one for an lvalue, and second for an rvalue.

If you define both foo(X& x) and foo(X&& x)

then foo can be called only on lvalues, not rvalues - an rvalue is not allowed to bind to a reference
to non-const (previous C++98 rule).

If you define only foo(X& x)

then foo will be called on both lvalues and rvalues

if you define only foo(const X& x)

foo can be called on rvalues, but not on lvalues

if you define only foo(X&&),

then foo(const X& x) will be called on lvalues, and foo(X&&) will be called on rvalues

this is the combination we want!

if you define both foo(const X& x) and foo(X&& x)

works for foo(anything) -compiler will consider the other possibilities ambiguous -

not usually an issue because to implement copy and move functions, we only declare constX& and
X&& versions

if you define foo(X x) - call by value

Overloading rules are pretty kinky when rvalue references are involved. More specifically:

New type: rvalue references

form of move assignment operator overload function:
class-name& operator= (class-name&& rhs);

example - for Array, if we just swap the guts then rhs will deallocate our original stuff, and we get the data
that was inside the original rhs. Like copy-swap, but no copy! steal-by-swap!

// move assignment just swaps rhs with this.
Array& operator= (Array&& rhs) {

swap(rhs);
return *this;

}

Example move assignment operator - see Array_final

Note that after the swap, the rhs destructor will have valid data to destroy, and in fact that object could
also be assigned to correctly as well.

When temporary rhs object is destroyed, our original data gets deallocated. Perfect!

Compiler will automatically call copy-swap operator= if rhs is an lvalue, the steal-by-swap operator= if rhs
is an rvalue!

We get a potentially huge performance improvement with no change to the client code!

Implementing move assignment

Similarly, if we copy-construct from an rvalue, we are copying data from an object that is going to be
destroyed right away - what a waste when we could steal the data instead!

Same implementation concept: move constructor takes an rvalue reference parameter; compiler calls it
instead of regular copy constructor if source is an rvalue.

Often can be simpler than move assignment because we don't have anything that needs deallocation in
the object being initialized. We just have to leave the source in a deletable/assignable state.

Move construction

form of move constructor
class-name(class-name&& source);

Array(Array&& original) : size(original.size), ptr(original.ptr)
{

original.size = 0;
// delete[] of 0 pointer defined as "do nothing"
original.ptr = nullptr;

}

see Array_final example

Potential big performance boost with no change in client code!

Compiler will automatically call regular copy constructor if source is an lvalue, the move version that steals
the data if rhs is an rvalue!

Array(Array&& original) : size(0), ptr(nullptrr)
{

swap(original);
}

However, if you like swap logic, consider the following implementation

Implementing move construction

One special case: a function returns its call-by-value parameter by value. Compiler is not allowed to try to
build these objects in the same place, so is forced to copy/move construct its result - can't elide that
constructor!

Array increment_cells(Array a)
{
 int n = a.get_size();

for(int i = 0; i < n; i++) {
 a[i] = a[i] + 1;
 }
 return a;
}
// copy or move constructor will definitely get called on the return of
a!

HOWEVER move construction is hard to see taking effect because normally happens only when copy
construction would happen. Compilers often elide copy construction, so move construction is often
not visible unless you turn off constructor elision.

You won't automatically get a move because once inside the move function, a named variable for the
source is involved, and these are themselves lvalues, not rvalues. (Whoa!)

rule of thumb: if it has a name in that scope, it's an lvalue!

class Gizmo {

private:
std::string name;
Thing the_Thing;
int id;

};

Example:

Gizmo g(foo()); // foo returns a Gizmo, used to initialize g - move constructor!

the compiler might see an rvalue and know to call this constructor, but once inside the function, the
rvalue becomes a location with a name:

Gizmo::Gizmo(Gizmo&& original) : //original is a named location, so it is an lvalue in the function
name(original.name), // original.name is an lvalue also - so we do a copy, not a move
the_Thing(original. the_Thing), // ditto
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

OOPS - we ended up copying the member data, not moving it!

Consider move constructor:

this creates an unnamed temporary object of rvalue reference type!

use static_cast<T&&>() to tell compiler to treat as an rvalue

if there is a constructor that takes an rvalue, then it will get called, otherwise copy constructor is called;

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(static_cast<std::string&&>(original.name)), // std::string has move constructor, so gets

called
the_Thing(static_cast<Thing&&>(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

defined in <utility>

instead of static_cast, use std::move() which is a function template that casts its argument to an rvalue
no matter what the referfence-type status of it is. Does same thing here as the static_cast, but is more
expressive and works correctly in other situations.

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(std::move(original.name)), // std::string has move constructor, so gets called
the_Thing(std::move(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

Idea: tell the compiler that it should try to apply the move constructor instead - cast these to rvalues:

Gizmo& Gizmo::operator= (Gizmo&& rhs)
{

name = std::move(rhs.name); // calls string's move assignment
the_Thing = std::move(rhs.the_Thing); // calls Thing's move assignment
id = rhs.id; // just simple assignment

}

For move assignment operator, do similarly:

What if class type member variables are involved - how do you implement move construction or
assignment with them?

New in C++11: move construction and assignment!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 35

Actually we are "stealing" the data and leaving something destructible or assignable in its place.

move construction and assignment steals the data instead of copying it

we now call regular assignment "copy assignment"

Key idea: A lot of times, we do work in copy construction or assignment that is wasted because we are
copying data from an object that is going to go away - it is a temporary object and is slated for
destruction right away. Basic idea is to MOVE the data instead of copying it.

s = s1 + s2; // rhs is temporary object

vector<string> make_big_vector(); // create and return a vector<string> in a temporary object
...
vector<string> vs;
...
vs = make_big_vector(); // assign from a temp vector object (even if RVO happened)

assigning from an object that is going to get destroyed

We just have to make sure the object could be destroyed correctly (or assigned to correctly, in some
cases).

Basic idea: why copy data from an object that is going to be deleted? We could just "steal" the data - the
object doesn't need it anymore!

Move assignment

How can we tell that the rhs object is going to go away? The compiler knows!

lvalue - roughly speaking, something that can be on lhs of an assignment - or "location value" it has a
name or location where you can put something. variables are lvalues. Can also appear in rhs of an
assignment, obviously.

rvalue - roughly speaking, somethat that can only appear on the rhs of an assignment - a "read only" value.
Temporary unnamed variables are rvalues.

New type in C++11 - an "rvalue reference" - written as && - can be called only if argument can be treated
as an rvalue.

We can define an overloaded version of operator= that only gets called if rhs is an rvalue; this can move
the data; copy operator= will copy the data if rhs is not an rvalue.

suppose we call foo(something); where something is an lvalue or rvalue.

then compiler will choose the first one for an lvalue, and second for an rvalue.

If you define both foo(X& x) and foo(X&& x)

then foo can be called only on lvalues, not rvalues - an rvalue is not allowed to bind to a reference
to non-const (previous C++98 rule).

If you define only foo(X& x)

then foo will be called on both lvalues and rvalues

if you define only foo(const X& x)

foo can be called on rvalues, but not on lvalues

if you define only foo(X&&),

then foo(const X& x) will be called on lvalues, and foo(X&&) will be called on rvalues

this is the combination we want!

if you define both foo(const X& x) and foo(X&& x)

works for foo(anything) -compiler will consider the other possibilities ambiguous -

not usually an issue because to implement copy and move functions, we only declare constX& and
X&& versions

if you define foo(X x) - call by value

Overloading rules are pretty kinky when rvalue references are involved. More specifically:

New type: rvalue references

form of move assignment operator overload function:
class-name& operator= (class-name&& rhs);

example - for Array, if we just swap the guts then rhs will deallocate our original stuff, and we get the data
that was inside the original rhs. Like copy-swap, but no copy! steal-by-swap!

// move assignment just swaps rhs with this.
Array& operator= (Array&& rhs) {

swap(rhs);
return *this;

}

Example move assignment operator - see Array_final

Note that after the swap, the rhs destructor will have valid data to destroy, and in fact that object could
also be assigned to correctly as well.

When temporary rhs object is destroyed, our original data gets deallocated. Perfect!

Compiler will automatically call copy-swap operator= if rhs is an lvalue, the steal-by-swap operator= if rhs
is an rvalue!

We get a potentially huge performance improvement with no change to the client code!

Implementing move assignment

Similarly, if we copy-construct from an rvalue, we are copying data from an object that is going to be
destroyed right away - what a waste when we could steal the data instead!

Same implementation concept: move constructor takes an rvalue reference parameter; compiler calls it
instead of regular copy constructor if source is an rvalue.

Often can be simpler than move assignment because we don't have anything that needs deallocation in
the object being initialized. We just have to leave the source in a deletable/assignable state.

Move construction

form of move constructor
class-name(class-name&& source);

Array(Array&& original) : size(original.size), ptr(original.ptr)
{

original.size = 0;
// delete[] of 0 pointer defined as "do nothing"
original.ptr = nullptr;

}

see Array_final example

Potential big performance boost with no change in client code!

Compiler will automatically call regular copy constructor if source is an lvalue, the move version that steals
the data if rhs is an rvalue!

Array(Array&& original) : size(0), ptr(nullptrr)
{

swap(original);
}

However, if you like swap logic, consider the following implementation

Implementing move construction

One special case: a function returns its call-by-value parameter by value. Compiler is not allowed to try to
build these objects in the same place, so is forced to copy/move construct its result - can't elide that
constructor!

Array increment_cells(Array a)
{
 int n = a.get_size();

for(int i = 0; i < n; i++) {
 a[i] = a[i] + 1;
 }
 return a;
}
// copy or move constructor will definitely get called on the return of
a!

HOWEVER move construction is hard to see taking effect because normally happens only when copy
construction would happen. Compilers often elide copy construction, so move construction is often
not visible unless you turn off constructor elision.

You won't automatically get a move because once inside the move function, a named variable for the
source is involved, and these are themselves lvalues, not rvalues. (Whoa!)

rule of thumb: if it has a name in that scope, it's an lvalue!

class Gizmo {

private:
std::string name;
Thing the_Thing;
int id;

};

Example:

Gizmo g(foo()); // foo returns a Gizmo, used to initialize g - move constructor!

the compiler might see an rvalue and know to call this constructor, but once inside the function, the
rvalue becomes a location with a name:

Gizmo::Gizmo(Gizmo&& original) : //original is a named location, so it is an lvalue in the function
name(original.name), // original.name is an lvalue also - so we do a copy, not a move
the_Thing(original. the_Thing), // ditto
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

OOPS - we ended up copying the member data, not moving it!

Consider move constructor:

this creates an unnamed temporary object of rvalue reference type!

use static_cast<T&&>() to tell compiler to treat as an rvalue

if there is a constructor that takes an rvalue, then it will get called, otherwise copy constructor is called;

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(static_cast<std::string&&>(original.name)), // std::string has move constructor, so gets

called
the_Thing(static_cast<Thing&&>(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

defined in <utility>

instead of static_cast, use std::move() which is a function template that casts its argument to an rvalue
no matter what the referfence-type status of it is. Does same thing here as the static_cast, but is more
expressive and works correctly in other situations.

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(std::move(original.name)), // std::string has move constructor, so gets called
the_Thing(std::move(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

Idea: tell the compiler that it should try to apply the move constructor instead - cast these to rvalues:

Gizmo& Gizmo::operator= (Gizmo&& rhs)
{

name = std::move(rhs.name); // calls string's move assignment
the_Thing = std::move(rhs.the_Thing); // calls Thing's move assignment
id = rhs.id; // just simple assignment

}

For move assignment operator, do similarly:

What if class type member variables are involved - how do you implement move construction or
assignment with them?

New in C++11: move construction and assignment!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 36

Actually we are "stealing" the data and leaving something destructible or assignable in its place.

move construction and assignment steals the data instead of copying it

we now call regular assignment "copy assignment"

Key idea: A lot of times, we do work in copy construction or assignment that is wasted because we are
copying data from an object that is going to go away - it is a temporary object and is slated for
destruction right away. Basic idea is to MOVE the data instead of copying it.

s = s1 + s2; // rhs is temporary object

vector<string> make_big_vector(); // create and return a vector<string> in a temporary object
...
vector<string> vs;
...
vs = make_big_vector(); // assign from a temp vector object (even if RVO happened)

assigning from an object that is going to get destroyed

We just have to make sure the object could be destroyed correctly (or assigned to correctly, in some
cases).

Basic idea: why copy data from an object that is going to be deleted? We could just "steal" the data - the
object doesn't need it anymore!

Move assignment

How can we tell that the rhs object is going to go away? The compiler knows!

lvalue - roughly speaking, something that can be on lhs of an assignment - or "location value" it has a
name or location where you can put something. variables are lvalues. Can also appear in rhs of an
assignment, obviously.

rvalue - roughly speaking, somethat that can only appear on the rhs of an assignment - a "read only" value.
Temporary unnamed variables are rvalues.

New type in C++11 - an "rvalue reference" - written as && - can be called only if argument can be treated
as an rvalue.

We can define an overloaded version of operator= that only gets called if rhs is an rvalue; this can move
the data; copy operator= will copy the data if rhs is not an rvalue.

suppose we call foo(something); where something is an lvalue or rvalue.

then compiler will choose the first one for an lvalue, and second for an rvalue.

If you define both foo(X& x) and foo(X&& x)

then foo can be called only on lvalues, not rvalues - an rvalue is not allowed to bind to a reference
to non-const (previous C++98 rule).

If you define only foo(X& x)

then foo will be called on both lvalues and rvalues

if you define only foo(const X& x)

foo can be called on rvalues, but not on lvalues

if you define only foo(X&&),

then foo(const X& x) will be called on lvalues, and foo(X&&) will be called on rvalues

this is the combination we want!

if you define both foo(const X& x) and foo(X&& x)

works for foo(anything) -compiler will consider the other possibilities ambiguous -

not usually an issue because to implement copy and move functions, we only declare constX& and
X&& versions

if you define foo(X x) - call by value

Overloading rules are pretty kinky when rvalue references are involved. More specifically:

New type: rvalue references

form of move assignment operator overload function:
class-name& operator= (class-name&& rhs);

example - for Array, if we just swap the guts then rhs will deallocate our original stuff, and we get the data
that was inside the original rhs. Like copy-swap, but no copy! steal-by-swap!

// move assignment just swaps rhs with this.
Array& operator= (Array&& rhs) {

swap(rhs);
return *this;

}

Example move assignment operator - see Array_final

Note that after the swap, the rhs destructor will have valid data to destroy, and in fact that object could
also be assigned to correctly as well.

When temporary rhs object is destroyed, our original data gets deallocated. Perfect!

Compiler will automatically call copy-swap operator= if rhs is an lvalue, the steal-by-swap operator= if rhs
is an rvalue!

We get a potentially huge performance improvement with no change to the client code!

Implementing move assignment

Similarly, if we copy-construct from an rvalue, we are copying data from an object that is going to be
destroyed right away - what a waste when we could steal the data instead!

Same implementation concept: move constructor takes an rvalue reference parameter; compiler calls it
instead of regular copy constructor if source is an rvalue.

Often can be simpler than move assignment because we don't have anything that needs deallocation in
the object being initialized. We just have to leave the source in a deletable/assignable state.

Move construction

form of move constructor
class-name(class-name&& source);

Array(Array&& original) : size(original.size), ptr(original.ptr)
{

original.size = 0;
// delete[] of 0 pointer defined as "do nothing"
original.ptr = nullptr;

}

see Array_final example

Potential big performance boost with no change in client code!

Compiler will automatically call regular copy constructor if source is an lvalue, the move version that steals
the data if rhs is an rvalue!

Array(Array&& original) : size(0), ptr(nullptrr)
{

swap(original);
}

However, if you like swap logic, consider the following implementation

Implementing move construction

One special case: a function returns its call-by-value parameter by value. Compiler is not allowed to try to
build these objects in the same place, so is forced to copy/move construct its result - can't elide that
constructor!

Array increment_cells(Array a)
{
 int n = a.get_size();

for(int i = 0; i < n; i++) {
 a[i] = a[i] + 1;
 }
 return a;
}
// copy or move constructor will definitely get called on the return of
a!

HOWEVER move construction is hard to see taking effect because normally happens only when copy
construction would happen. Compilers often elide copy construction, so move construction is often
not visible unless you turn off constructor elision.

You won't automatically get a move because once inside the move function, a named variable for the
source is involved, and these are themselves lvalues, not rvalues. (Whoa!)

rule of thumb: if it has a name in that scope, it's an lvalue!

class Gizmo {

private:
std::string name;
Thing the_Thing;
int id;

};

Example:

Gizmo g(foo()); // foo returns a Gizmo, used to initialize g - move constructor!

the compiler might see an rvalue and know to call this constructor, but once inside the function, the
rvalue becomes a location with a name:

Gizmo::Gizmo(Gizmo&& original) : //original is a named location, so it is an lvalue in the function
name(original.name), // original.name is an lvalue also - so we do a copy, not a move
the_Thing(original. the_Thing), // ditto
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

OOPS - we ended up copying the member data, not moving it!

Consider move constructor:

this creates an unnamed temporary object of rvalue reference type!

use static_cast<T&&>() to tell compiler to treat as an rvalue

if there is a constructor that takes an rvalue, then it will get called, otherwise copy constructor is called;

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(static_cast<std::string&&>(original.name)), // std::string has move constructor, so gets

called
the_Thing(static_cast<Thing&&>(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

defined in <utility>

instead of static_cast, use std::move() which is a function template that casts its argument to an rvalue
no matter what the referfence-type status of it is. Does same thing here as the static_cast, but is more
expressive and works correctly in other situations.

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(std::move(original.name)), // std::string has move constructor, so gets called
the_Thing(std::move(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

Idea: tell the compiler that it should try to apply the move constructor instead - cast these to rvalues:

Gizmo& Gizmo::operator= (Gizmo&& rhs)
{

name = std::move(rhs.name); // calls string's move assignment
the_Thing = std::move(rhs.the_Thing); // calls Thing's move assignment
id = rhs.id; // just simple assignment

}

For move assignment operator, do similarly:

What if class type member variables are involved - how do you implement move construction or
assignment with them?

New in C++11: move construction and assignment!

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 37

Actually we are "stealing" the data and leaving something destructible or assignable in its place.

move construction and assignment steals the data instead of copying it

we now call regular assignment "copy assignment"

Key idea: A lot of times, we do work in copy construction or assignment that is wasted because we are
copying data from an object that is going to go away - it is a temporary object and is slated for
destruction right away. Basic idea is to MOVE the data instead of copying it.

s = s1 + s2; // rhs is temporary object

vector<string> make_big_vector(); // create and return a vector<string> in a temporary object
...
vector<string> vs;
...
vs = make_big_vector(); // assign from a temp vector object (even if RVO happened)

assigning from an object that is going to get destroyed

We just have to make sure the object could be destroyed correctly (or assigned to correctly, in some
cases).

Basic idea: why copy data from an object that is going to be deleted? We could just "steal" the data - the
object doesn't need it anymore!

Move assignment

How can we tell that the rhs object is going to go away? The compiler knows!

lvalue - roughly speaking, something that can be on lhs of an assignment - or "location value" it has a
name or location where you can put something. variables are lvalues. Can also appear in rhs of an
assignment, obviously.

rvalue - roughly speaking, somethat that can only appear on the rhs of an assignment - a "read only" value.
Temporary unnamed variables are rvalues.

New type in C++11 - an "rvalue reference" - written as && - can be called only if argument can be treated
as an rvalue.

We can define an overloaded version of operator= that only gets called if rhs is an rvalue; this can move
the data; copy operator= will copy the data if rhs is not an rvalue.

suppose we call foo(something); where something is an lvalue or rvalue.

then compiler will choose the first one for an lvalue, and second for an rvalue.

If you define both foo(X& x) and foo(X&& x)

then foo can be called only on lvalues, not rvalues - an rvalue is not allowed to bind to a reference
to non-const (previous C++98 rule).

If you define only foo(X& x)

then foo will be called on both lvalues and rvalues

if you define only foo(const X& x)

foo can be called on rvalues, but not on lvalues

if you define only foo(X&&),

then foo(const X& x) will be called on lvalues, and foo(X&&) will be called on rvalues

this is the combination we want!

if you define both foo(const X& x) and foo(X&& x)

works for foo(anything) -compiler will consider the other possibilities ambiguous -

not usually an issue because to implement copy and move functions, we only declare constX& and
X&& versions

if you define foo(X x) - call by value

Overloading rules are pretty kinky when rvalue references are involved. More specifically:

New type: rvalue references

form of move assignment operator overload function:
class-name& operator= (class-name&& rhs);

example - for Array, if we just swap the guts then rhs will deallocate our original stuff, and we get the data
that was inside the original rhs. Like copy-swap, but no copy! steal-by-swap!

// move assignment just swaps rhs with this.
Array& operator= (Array&& rhs) {

swap(rhs);
return *this;

}

Example move assignment operator - see Array_final

Note that after the swap, the rhs destructor will have valid data to destroy, and in fact that object could
also be assigned to correctly as well.

When temporary rhs object is destroyed, our original data gets deallocated. Perfect!

Compiler will automatically call copy-swap operator= if rhs is an lvalue, the steal-by-swap operator= if rhs
is an rvalue!

We get a potentially huge performance improvement with no change to the client code!

Implementing move assignment

Similarly, if we copy-construct from an rvalue, we are copying data from an object that is going to be
destroyed right away - what a waste when we could steal the data instead!

Same implementation concept: move constructor takes an rvalue reference parameter; compiler calls it
instead of regular copy constructor if source is an rvalue.

Often can be simpler than move assignment because we don't have anything that needs deallocation in
the object being initialized. We just have to leave the source in a deletable/assignable state.

Move construction

form of move constructor
class-name(class-name&& source);

Array(Array&& original) : size(original.size), ptr(original.ptr)
{

original.size = 0;
// delete[] of 0 pointer defined as "do nothing"
original.ptr = nullptr;

}

see Array_final example

Potential big performance boost with no change in client code!

Compiler will automatically call regular copy constructor if source is an lvalue, the move version that steals
the data if rhs is an rvalue!

Array(Array&& original) : size(0), ptr(nullptrr)
{

swap(original);
}

However, if you like swap logic, consider the following implementation

Implementing move construction

One special case: a function returns its call-by-value parameter by value. Compiler is not allowed to try to
build these objects in the same place, so is forced to copy/move construct its result - can't elide that
constructor!

Array increment_cells(Array a)
{
 int n = a.get_size();

for(int i = 0; i < n; i++) {
 a[i] = a[i] + 1;
 }
 return a;
}
// copy or move constructor will definitely get called on the return of
a!

HOWEVER move construction is hard to see taking effect because normally happens only when copy
construction would happen. Compilers often elide copy construction, so move construction is often
not visible unless you turn off constructor elision.

You won't automatically get a move because once inside the move function, a named variable for the
source is involved, and these are themselves lvalues, not rvalues. (Whoa!)

rule of thumb: if it has a name in that scope, it's an lvalue!

class Gizmo {

private:
std::string name;
Thing the_Thing;
int id;

};

Example:

Gizmo g(foo()); // foo returns a Gizmo, used to initialize g - move constructor!

the compiler might see an rvalue and know to call this constructor, but once inside the function, the
rvalue becomes a location with a name:

Gizmo::Gizmo(Gizmo&& original) : //original is a named location, so it is an lvalue in the function
name(original.name), // original.name is an lvalue also - so we do a copy, not a move
the_Thing(original. the_Thing), // ditto
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

OOPS - we ended up copying the member data, not moving it!

Consider move constructor:

this creates an unnamed temporary object of rvalue reference type!

use static_cast<T&&>() to tell compiler to treat as an rvalue

if there is a constructor that takes an rvalue, then it will get called, otherwise copy constructor is called;

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(static_cast<std::string&&>(original.name)), // std::string has move constructor, so gets

called
the_Thing(static_cast<Thing&&>(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

defined in <utility>

instead of static_cast, use std::move() which is a function template that casts its argument to an rvalue
no matter what the referfence-type status of it is. Does same thing here as the static_cast, but is more
expressive and works correctly in other situations.

Gizmo::Gizmo(const Gizmo&& original) : //original is a name location, so it is an lvalue in the function
name(std::move(original.name)), // std::string has move constructor, so gets called
the_Thing(std::move(original. the_Thing), // move ctor if defined, copy ctor if not.
id(original.id) // a built-in type so it doesn't matter whether we copy or move

{}

Idea: tell the compiler that it should try to apply the move constructor instead - cast these to rvalues:

Gizmo& Gizmo::operator= (Gizmo&& rhs)
{

name = std::move(rhs.name); // calls string's move assignment
the_Thing = std::move(rhs.the_Thing); // calls Thing's move assignment
id = rhs.id; // just simple assignment

}

For move assignment operator, do similarly:

What if class type member variables are involved - how do you implement move construction or
assignment with them?

New in C++11: move construction and assignment!

default move construction: if original is an rvalue, does memberwise move initialization from original.

default move assignment: if original is an rvalue, does memberwise move assignment from original.

members with built-in types: move assignment/construction is same as copy assignment/construction

members of class types: move assignment/construction using whatever those classes have.

If you don't tell the compiler what you want, it will also supply default versions of move construction
and assignment along with copy construction and assignment.

If your class manages no resources itselt, and if it has class-type member variables that have correct
copy and move behavior, then compiler supplied defaults should be just fine!

Can mix and match in special cases

declare and define which ones you need special treatment for

declare others with = delete; to tell compiler to not create it for you, and you aren't going to define it.

declare others with = default; to tell compiler explicitly to create the default version.

Finer control if needed:

explicitly specify -> declare it, define it, say = default or =delete

any move -> move constructor or move assignment

any copy -> copy constructor or copy asignment

If you explicitly specify destructor, or any move or any copy, the compiler will not generate any moves by
default.

current deprecated rule: if you explicitly specify destructor, or any move or any copy, the compiler will
generate default version of undeclared copy operations. (Backwards compatibility).

Compiler follows this rule:

Copy constructor

Copy assignment

move constructor

move assignment

destructor

Replace old rule of three with new rule of five:

If you have to explicitly specify one of these, you need to think about and probably explicitly specify
all five.

What does the compiler generate for you, and how should you choose what you want
your class to have?

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 38

default move construction: if original is an rvalue, does memberwise move initialization from original.

default move assignment: if original is an rvalue, does memberwise move assignment from original.

members with built-in types: move assignment/construction is same as copy assignment/construction

members of class types: move assignment/construction using whatever those classes have.

If you don't tell the compiler what you want, it will also supply default versions of move construction
and assignment along with copy construction and assignment.

If your class manages no resources itselt, and if it has class-type member variables that have correct
copy and move behavior, then compiler supplied defaults should be just fine!

Can mix and match in special cases

declare and define which ones you need special treatment for

declare others with = delete; to tell compiler to not create it for you, and you aren't going to define it.

declare others with = default; to tell compiler explicitly to create the default version.

Finer control if needed:

explicitly specify -> declare it, define it, say = default or =delete

any move -> move constructor or move assignment

any copy -> copy constructor or copy asignment

If you explicitly specify destructor, or any move or any copy, the compiler will not generate any moves by
default.

current deprecated rule: if you explicitly specify destructor, or any move or any copy, the compiler will
generate default version of undeclared copy operations. (Backwards compatibility).

Compiler follows this rule:

Copy constructor

Copy assignment

move constructor

move assignment

destructor

Replace old rule of three with new rule of five:

If you have to explicitly specify one of these, you need to think about and probably explicitly specify
all five.

What does the compiler generate for you, and how should you choose what you want
your class to have?

Usual example: memory exhaustion, but it could be something else - like failure to establish network
connections.

Usually will happen due to some time of contruction failure - e.g. when trying to make a copy of an object,
something fails.

Possibility: things are left in a mess! Ugh!

Idea of exception safety - class members makes some guarantees.

What happens if an exception is thrown during construction, assignment, or modificaton of an object?

Class invariants maintained so that it can be successfully destroyed, assigned to, etc. - sitll a valid object.

No resources are leaked - e.g. no memory leaked.

Basic guarantee:

If exception thrown while trying to modify an object, not only is basic guarantee met, but object is left in the
original state.

Strong guarantee:

Some operations on the object are guaranteed not to throw an exception - means that exception won't
leave the function. If violated by throwing, program is terminated, thus enforcing the guarantee. Means
caller never has to worry about an exception coming out of the function.

Done by specifying noexcept on the function.

Note: By definition, destructors are not allowed to throw exceptions - no exception can leave a destructor -
termination is the result.

No throw guarantee

Copy/swap implementation for copy assignment operator for Array (or your String) provides both
basic and strong guarantee.

Array::swap() (or your String::swap()) should make the no-throw guarantee.

First do the work that might fail (e.g.. the copy part of copy/swap).

Then do the rest of the work that won't fail. (the swap part of copy/swap)

If the object isn't modified in the first part, then get the strong guarantee and part of the basic guarantee -
invariant perserved

Getting the no-leak part is easy in the Array or Strng example, can be harder in other cases.

If other member variables constructed already, then compiler will call their destructors as needed.

Basic technique:

E.g list container copy constructor - might successfully copy first three of 5 nodes, then fail. Have to clean
up the first three, leave object in original state.

Note: can copy by creating a new node containing source node’s data and pushing it onto the back of the
list. Push_back is much more efficient and simpler than calling insert function (which requires order relation
to be instantiated as well).

When it can be tricky: If constructing or modifying the object involves a series of operations on
separate objects, any one of which might fail. If partly successful, have to undo the partial sucesses.

put a try-catch everything around code where operation might fail, make sure each operation maintains
invariant; in catch, destroy everything that was created.

E.g. list containeer copy ctor - push_back each node in try; The push_back code should maintain the list
invariant. In catch, walk the list and destroy the nodes already created. Works if list structure was kept
good in the process.

Technique: local try-catch while maintaining invariant

arrange so that the code creating the series of new objects is operating inside an object where invarieants
are maintained and whose destructor will automatically clean up any objects if an exception is thrown from
the inside.

E.g. list container copy ctor: declare a local list container variable, and push_back each item from the
source container. The push_back code should maintain the list invariant. If the copy fails inside that
push_back function, then the list's destructor does the ceanup automatically and the exception then
automatically propogates out of the copy ctor.

Better technique: RAII with an object whose destrutor cleans up.

Exception safety concepts

ExceptsClassesObjectdynmemory 2/3/15, 12:45:59 PM 39

Usual example: memory exhaustion, but it could be something else - like failure to establish network
connections.

Usually will happen due to some time of contruction failure - e.g. when trying to make a copy of an object,
something fails.

Possibility: things are left in a mess! Ugh!

Idea of exception safety - class members makes some guarantees.

What happens if an exception is thrown during construction, assignment, or modificaton of an object?

Class invariants maintained so that it can be successfully destroyed, assigned to, etc. - sitll a valid object.

No resources are leaked - e.g. no memory leaked.

Basic guarantee:

If exception thrown while trying to modify an object, not only is basic guarantee met, but object is left in the
original state.

Strong guarantee:

Some operations on the object are guaranteed not to throw an exception - means that exception won't
leave the function. If violated by throwing, program is terminated, thus enforcing the guarantee. Means
caller never has to worry about an exception coming out of the function.

Done by specifying noexcept on the function.

Note: By definition, destructors are not allowed to throw exceptions - no exception can leave a destructor -
termination is the result.

No throw guarantee

Copy/swap implementation for copy assignment operator for Array (or your String) provides both
basic and strong guarantee.

Array::swap() (or your String::swap()) should make the no-throw guarantee.

First do the work that might fail (e.g.. the copy part of copy/swap).

Then do the rest of the work that won't fail. (the swap part of copy/swap)

If the object isn't modified in the first part, then get the strong guarantee and part of the basic guarantee -
invariant perserved

Getting the no-leak part is easy in the Array or Strng example, can be harder in other cases.

If other member variables constructed already, then compiler will call their destructors as needed.

Basic technique:

E.g list container copy constructor - might successfully copy first three of 5 nodes, then fail. Have to clean
up the first three, leave object in original state.

Note: can copy by creating a new node containing source node’s data and pushing it onto the back of the
list. Push_back is much more efficient and simpler than calling insert function (which requires order relation
to be instantiated as well).

When it can be tricky: If constructing or modifying the object involves a series of operations on
separate objects, any one of which might fail. If partly successful, have to undo the partial sucesses.

put a try-catch everything around code where operation might fail, make sure each operation maintains
invariant; in catch, destroy everything that was created.

E.g. list containeer copy ctor - push_back each node in try; The push_back code should maintain the list
invariant. In catch, walk the list and destroy the nodes already created. Works if list structure was kept
good in the process.

Technique: local try-catch while maintaining invariant

arrange so that the code creating the series of new objects is operating inside an object where invarieants
are maintained and whose destructor will automatically clean up any objects if an exception is thrown from
the inside.

E.g. list container copy ctor: declare a local list container variable, and push_back each item from the
source container. The push_back code should maintain the list invariant. If the copy fails inside that
push_back function, then the list's destructor does the ceanup automatically and the exception then
automatically propogates out of the copy ctor.

Better technique: RAII with an object whose destrutor cleans up.

Exception safety concepts

