
To appear: 1999 AAAI Fall Symposium on Question Answering Systems

Question Answering from Large Document Collections

Eric Breck, John Burger, David House, Marc Light, Inderjeet Mani

The MITRE Corporation
{ebreck, john, dhouse, light, imani}@mitre.org

Abstract
We present a question answering system with a hybrid
design, combining techniques from knowledge
representation, information retrieval, and natural language
processing. This combination enables domain
independence and robustness in the face of text variability,
both in the question and in the raw text documents used as
knowledge sources. We describe the specific design of our
current prototype, which has been entered in the 1999 Text
Retrieval Conference’s Question Answering track. We also
comment on the evaluation of question answering systems.

Introduction

This paper describes an end-to-end question answering
system called Qanda.1 It is a robust, domain independent
system that takes questions expressed in English and
attempts to provide short, concise answers. The system’s
primary source of knowledge is collections of text, e.g.,
newswire texts, IRS forms and manuals, web page
collections. By short, concise answers, we mean a single
noun phrase or sentence. By domain independent, we
mean the system is intended to answer questions about any
domain discussed in the text collection being used.
Finally, robust means the system attempts to return a
reasonable answer regardless of the phrasing of the
question or the form of relevant passages in the text
collection.

IR techniques use the content words in the question to
find the answers, namely those answers that co-occur with
the content words. This string-level focus works well
when questions are verbose and answers need only consist
of relevant documents. However, when questions and
answers are short, there are fewer content words,
increasing the chance of skipping over the correct answer
passage because of a slightly different choice of words.

KR techniques focus on concepts and inferential links
between them. Both concepts and inferential links must be
stored in a precompiled knowledge base and must be
expressed in the knowledge representation language on
which the inferential machinery operates. The need for a
precompiled knowledge base and the lack of automated
knowledge base construction make KR techniques domain
dependent. In addition, current inferential techniques are
not able to handle arbitrary phrasing of questions.

1 Qanda is pronounced kwanda.

A central idea of our system is to combine KR’s finer-
grained representation and inference abilities with IR’s
robustness and domain independence to produce a system
with the desired characteristics. NLP technology is used
liberally throughout. The idea of combining such
technologies is not new; both (Kupiec 1993) and
(Hirschman et al. 1999) describe hybrid systems.
However, the system described here offers a novel
combination of technologies.

In the following sections, we will describe in more detail
our system’s use of IR, KR, and NLP. Then we will
describe the actual implementation. We follow this with
some general comments on evaluation of such systems and
particular comments on the 1999 TREC question and
answering track, in which our system participated. Finally
we make some concluding remarks and discuss future
work.

Our Approach:
Mixing IR and KR via NLP

Let us start with an example of how such a hybrid system
might work. Consider the question What Arab country
invaded Kuwait during the Bush administration? NLP can
be used to determine that the answer must be a country and
that it should be a participant in an invasion event. A KR
representation of this question might include:

country(x) ∧ agent(x, e) ∧ invasion(e)

IR techniques can then be used to find relevant
documents using the terms Arab, country, invade, Kuwait,
during, Bush, and administration. Next, NLP might be
used to process these documents and populate a knowledge
base with countries, locations, invasion events and
participants. Then, simple KR inference techniques can be
used to search for a binding of x that satisfies the KR
representation of the question. Finally, satisfactory
bindings (i.e., answers) are ranked using IR techniques,
applied to the contexts in which the answers occurred.

What we use from IR
From one perspective, the question answering task
described above consists of retrieving text passages
(answers) relevant to a textual description of need
(questions). Stated in this way, information retrieval
would seem to be admirably suited to the task—IR is all
about retrieving relevant texts. However, the typical IR

To appear: 1999 AAAI Fall Symposium on Question Answering Systems

passage is much longer than most answers, which might be
viewed as “micro-passages”. In addition, the standard IR
definition of “relevance” is arguably much too weak for
question answering. Nonetheless, we believe that there are
important IR techniques that can be applied to the question
answering task.

In most IR approaches, the objects of interest are terms,
typically words or stems. Artifacts such as our questions,
documents, and answers are treated as simple “bags” of
terms, with little or no structure. These are compared with
a variety of relevance or similarity metrics that have been
developed over the past forty years of IR research. We can
leverage this view of question answering to do two things:

• Focus on a small subset of the document collection
• Select among candidate answers

The first can be accomplished by computing the
relevance of every document in the collection with respect
to the question. This is exactly what IR systems are
optimized to do. So, after indexing our document
collection with an IR system, we can posit queries like the
example above:

{Arab, country, invade, Kuwait,
during, Bush, administration}

The IR system will rank the documents in the collection,
using some measure of relevance. Then the question
answering system can process these documents in order,
possibly ignoring all but the most highly relevant
documents.

The second use to be made of IR is to select among
candidate answers. (The set of candidates can be derived
as described in the next section.) This can be done by
effectively treating each of the candidate answers or, more
effectively, each of the answers’ contexts (e.g., matrix
sentences or paragraphs) as small text passages, and
scoring them by their relevance to the original question.
This is analogous to the previous process, although the
relevance or similarity metrics used for sentences may be
different from those used for whole documents.

The representation of questions, documents and answers,
engendered by an IR approach is quite simplistic.
However, it is complementary to the KR component
described in the next section, due to its speed and
robustness. Even for oddly formed questions and
documents, the bag-of-words approach will usually find
some relevant passages. Sometimes the question and an
answer-containing document use different vocabulary to
describe the same concepts. But well-established IR
techniques such as relevance feedback (Rocchio 1971) can
be used to ameliorate such situations.

What we use from KR
One may characterize a KR view of question-answering as
finding variable bindings that satisfy a logical
representation of a natural language question. The objects

of interest for KR are concepts. These differ from IR terms
in that they are more abstract, i.e., are not tied to any
particular position in text. We use KR techniques to
provide a representation for questions and the concepts
discussed in the documents. The following example
illustrates the various processing steps in which KR is
used.

Text question:
What Arab country invaded Kuwait during the Bush
administration?

Corresponding question representation:
∃x,e answer(x) ∧ country(x) ∧ agent(x, e)
∧ invasion(e)

Inference via type hierarchy that x is also a location:
∃x,eanswer(x) ∧ country(x) ∧ agent(x, e) ∧ invasion(e)
∧ location(x)

Sample document passages:
(a) During the Carter administration, Indonesi
 invaded East Timor.
(b) … Bush and Iraq. When it invaded Kuwait …
(c) But Grant’s forces invaded Virginia …

Corresponding document representations:
(a) country(Indonesia) ∧ country(EastTimor)
 ∧ agent(Indonesia, e) ∧ invasion(e)
(b) country(Iraq) ∧ country(Kuwait) ∧ agent(Iraq, e)
 ∧ invasion(e)
(c) location(Virginia) ∧ invasion(e)

Matching question and document representations,
producing bindings for answer variable x:
(a) Indonesia
(b) Iraq
(c) Virginia

IR used to rank alternatives
(1) Iraq
(2) Indonesia
(3) Virginia

Some things to note: Reference resolution is used to
unify different expression of the same entity, such as Iraq
and it in (b). Also, the matching process allows some
predicates to go unsatisfied, such as agent(x, e) in (c).
There is also a preference for matching predicates
explicitly from the question, as opposed to those
introduced through type inference. Thus satisfying
country(x) is better than merely satisfying location(x),
making both Iraq and Indonesia preferable to Virginia.
Finally, the IR techniques discussed in the previous section
rank Iraq above Indonesia, due to the higher overlap with
terms in the question.

What we use from NLP
Natural language processing is used because the input and
output of the system take the form of linguistic

To appear: 1999 AAAI Fall Symposium on Question Answering Systems

artifacts—questions, documents, and answers. It seems
clear that to robustly handle these, NLP techniques will be
required.

Questions in natural language can be far freer than in
any query language, and so we use NLP techniques to
create several parallel representations of the question in
more manageable forms. We create an IR query (a set of
terms), a KR query (a set of propositions) and also a
question-typing query to our system. The latter will
eventually allow us to perform distinct processing steps for
yes-no questions, procedural questions (How can I do x)
and the phrasal-answer questions that we attack with the
present system.

The documents in our collection are analyzed with NLP
to find entities of interest and propositions that are true of
them. For example, proper names of persons,
organizations, and locations, are identified. These entities
and propositions are entered into a knowledge base that
can be used by the rest of the system. NLP is also used to
find referential links between the entities, unifying them
into coreference classes in the knowledge base.

The answer that results from our system also needs to be
comprehensible. So we use NLP techniques to synthesize
an appropriate answer from the output generated by the
system.

Another important contribution of NLP will eventually
be understanding of the context in which the document,
query, and answer occur. Without understanding of the
discourse or dialogue structure, the query, the document
passages, or the answer might be misinterpreted.

Our Implementation

We have implemented the various phases of processing
described above in a system called Qanda. The basic
outline of processing in Qanda is as follows:

• Using NLP, the textual question is mapped to an IR
query and a KR query.

• The IR query elicits a set of ranked documents from
the collection.

• Using NLP, the returned documents are processed
to dynamically create a knowledge base relevant to
the question.

• The knowledge base is then queried to produce a set
of candidate answers, which are then ranked using
IR techniques

The question processing begins by performing
punctuation and sentence tokenization on the question,
after which the question is tagged for part-of-speech.
Then, various phrasal entities are identified (our entity
hierarchy is discussed below). Based on all of this
information, a question-typing module formulates two
kinds of queries—one for the IR system, and one for our
dynamic knowledge base. The IR query is produced by
removing certain parts of speech from the question, such as
wh-words and punctuation). The knowledge base query is

produced by looking for a wide variety of stereotypical
question patterns based on lexical and part-of-speech
information as well as the findings of the phrasal taggers.
Based on these patterns, the query is generated containing
a number of predicates that the desired answer must
satisfy. To reiterate the example:

Question:
What Arab country invaded Kuwait during the Bush
administration?

KR query:
country(x) ∧ agent(x, e) ∧ invasion(e)

IR query:
{Arab, country, invade, Kuwait, during, Bush,
administration}

The IR system returns a (short) list of candidate
documents, each of which is processed in the following
ways: Like the question, they are tokenized and tagged for
part-of-speech. The documents are then stemmed and
function words are removed. The documents are then
tagged for whatever predicates are in the knowledge base
query. The predicates that are currently recognized are
elements of the type hierarchy in Figure 1.2 MITRE’s
Alembic NE tagger (Vilain and Day 1996) identifies
Person, Location and Organization entities, as well as
Dates and other time expressions. The system also uses
retaggers that recognize Locations that are Cities or
Countries, as well as Persons that are Male or Female, and
retags, essentially classifying them further down the type
hierarchy. We also use a measure-phrase tagger that
classifies phrases such as 50 feet and three hours. (These
are often answers to How tall, How much, etc.). Finally,
we have a simple coreference module that performs name
coreference and resolves pronouns and definite references.

All of these tagged entities are then entered into our
dynamic knowledge base, and grouped into coreference
classes. If the knowledge base query contains predicates,
the knowledge base is searched for entities that satisfy
those predicates. If an exact match cannot be found (e.g.,
there are no countries in the knowledge base), we try to
minimize the number of steps up the hierarchy (e.g., the
next best would be a generic location). If no type even of a
higher level can be found (in a given document) we fall
back to returning sentences ranked solely by the IR
techniques described next.

We impose an ordering on the resulting set of entities
using one of a variety of standard IR measures, based on
the contexts in which the entities occur. We examined
simple overlap between the query and response, overlap
normalized by response length (penalizing for long
answers), as well as Dice score and Cartesian distance.
The results reported in the next section were produced by

2 The shaded predicates in Figure 1 constitute those fully
processed by all the system’s components. Thus, for example,
although some Persons are recognized to be Male or Female, they
are, in the end, treated as if they were merely Persons.

To appear: 1999 AAAI Fall Symposium on Question Answering Systems

sorting on query/response overlap, but the other measures
performed similarly on our development set, and we hope
to test on a larger set and determine if it would be
worthwhile to use other metrics.

Finally, the answers are synthesized by concatenating
the best (e.g., longest) member of a coreference class with
the best-scoring sentence in which some member of the
class appears. This can help to contextualize an entity that
might otherwise be difficult to interpret. An answer such
as Iraq: It invaded Kuwait during the Bush administration
might be generated for the example above.

Evaluation

The evaluation of question-answering systems presents a
number of interesting challenges. Both on-line evaluations
(where humans score system answers) and off-line
evaluations (where a program scores system answers
against a “gold standard” reference) provide useful insights
into the efficacy of question-answering systems. The
nature of the evaluation can depend on a number of
different factors:

• The types of questions, e.g., factual versus
explanatory, context-dependent or not

• The document genres, e.g., news stories, expository
texts from encyclopedias, technical reports

• The requirements for a successful answer, e.g.,
whether the answer is a document extract or
synthesized, whether it is provided with document
context

Since design of evaluations can be fairly resource-
intensive, we decided to leverage the community-wide
question-answering evaluation effort carried out in this
year’s Text REtrieval Conference’s (TREC) Question
Answering track (Voorhees and Harman 1999).

The evaluation tests the accuracy of a system in its
ability to answer ad hoc questions whose answers are to be
found in a large TREC subcollection containing a half-
million documents. (Specifically, TREC disks 4 and 5,
minus the Congressional Record.) The TREC-8 task is
therefore restricted to answer retrieval. To help construct a
set of test questions, each participating team submitted ten
questions, along with their suggested answers (more than
one alternative answer may be identified for a question)
and a pointer to the document in which the answer was
found. The track organizers at the National Institute of
Standards and Technology (NIST) selected 200 of these
questions to form a test set, using the suggested answers to
help check the appropriateness of the questions; the
suggested answers were then discarded.

Each participating system, given the 200-question blind
test set and the collection of a half-million documents,
returned a ranked list of five possible answers for each
question, along with a pointer to the document used to
derive the answer. Two forms of system answers were
explored in the evaluation: a short “snippet” with length
less than 50 characters, and a longer sentence-length
extract, up to 250 characters.

Given a question and a system’s output, the judges at
NIST decide if the output contains a valid answer; they
read the associated document if they need additional
context to help in their decision. Thus, the judges establish
ground truth from the systems’ output, without necessarily

Person

Male Female

Measure

DurationDate

Time

Organization

Company

Location

Country

Entity

Distance Rate

City

Numeric

Answer

Figure 1: Answer hierarchy

To appear: 1999 AAAI Fall Symposium on Question Answering Systems

looking at all associated documents. For both short and
long answers, each system is scored in terms of the Mean
Reciprocal Answer Rank (Mean RAR), i.e., the mean over
all questions of the reciprocal of the best-ranked, correct
answer. If a correct answer is not found within the five,
the score is zero for that question. (Thus, for each
question, scores of 1, 1/2, 1/3, 1/4, 1/5, or zero are
possible.) At press time, the participating systems’ results
were being evaluated, and final results are expected in
September of 1999.

For purposes of this paper, we conducted a preliminary
evaluation on the 200 test questions. An experienced
evaluator at MITRE (not one of the system developers or
authors) scored the performance of our system on the 200
long-form answers (250 characters), using the official
TREC evaluation guidelines. For 50.3 percent of the
questions, the correct answer was among the five returned
by our system. 30 percent of the time, the correct answer
was ranked first. For more detailed results, see Figure 2.

Conclusion

We have described a hybrid approach to question
answering that utilizes techniques from IR, KR, and NLP
to process a collection of text documents as its primary
information source. An actual system has been
implemented and initial evaluation seems to be promising.
The system provides short concise answers to questions
expressed in English and is robust and domain
independent.

Future Work

We consider the system just described as an initial
prototype. We have a number of ideas about how to
improve its performance. The most straightforward is to
improve the performance of the component technologies,
such as the coreference module. Another direction we
want to explore is to enrich the semantic representations
we extract from the question and those that we extract from
the documents. More specifically, events could be
extracted along with their participants and their roles. For
example, given the question Which terrorist group bombed
the World Trade Center? the system would look for a
terrorist group that was the agent of a bombing event
whose target or patient role is filled by World Trade
Center. Thus, more sophisticated information extraction

techniques would have to be developed and more complex
knowledge representation and inference would be needed.

Another avenue is to try to make use of processing done
for previous questions. A very simple example of this
would be to ask users if they are satisfied with an answer
and if so to save away the question and the answer as a
pair. When another user asks a question, this new question
is matched against the old ones. A more complex way of
making use of processing of previous questions is to
construct a persistent knowledge base and perhaps to note
fruitful inferential paths.

It would also be interesting to make use of existing
knowledge bases such as WordNet (Miller 1990) or CYC
(Lenat 1995).

Another important dimension of question answering lies
in the nature of the answers. We would like to move well
beyond simple answer retrieval into full-blown answer
synthesis, where the answer may be constructed from
multiple passages in one or more documents (Mani and
Bloedorn 1999, Mani et al. 1999). Here we expect to
identify methods to arrive at succinct yet complete and
self-contained answers.

Finally, it seems likely that in some domains, users will
have a sequence of questions they would like to have
answered and that these answers will depend on the
preceding questions and answers. Thus, a specific form of
discourse processing might be necessary.

Acknowledgements

We would like to thank Lisa Ferro for producing the
evaluation results above, as well as John Aberdeen and
Warren Greiff for their comments. We are also grateful to
MITRE’s internal research program for funding this work.

References

Kupiec, Julian 1993. MURAX: A Robust Linguistic
Approach for Question Answering Using an On-Line
Encyclopedia. In Proceedings of the 16th Intl. ACM
SIGIR Conf on Research and Development in
Information Retrieval (SIGIR-93). 181–190. Pittsburgh,
Penna.

Hirschman, Lynette, Marc Light, Eric Breck, John D.
Burger 1999. Deep Read: A Reading Comprehension
System. In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics, 325–332.
College Park, Maryland.

Lenat, Douglas B. 1995. Artificial Intelligence. Scientific
American, September:80–82.

Mani, Inderjeet and Eric Bloedorn 1999. Summarizing
Similarities and Differences Among Related Documents.
Information Retrieval, 1:35–67.

Correct ranked #1
Correct ranked #2
Correct ranked #3
Correct ranked #4
Correct ranked #5
No correct answer

60
16
14
7
9

94
Mean RAR 0.381

Figure 2: Results on 200 TREC questions

To appear: 1999 AAAI Fall Symposium on Question Answering Systems

Mani, Inderjeet, Barbara Gates and Eric Bloedorn 1999.
Improving Summaries by Revising Them. In
Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics, 558–565.
College Park, Maryland.

Miller, George 1990. WordNet: An On-line lexical
database. International Journal of Lexicography, 3:4.

Rocchio, J.J. 1971. Relevance Feedback in Information
Retrieval. In The SMART Retrieval System, 313–323.
Englewood Cliffs, N.J.: Prentice Hall, Inc.

Vilain, Marc and David Day 1996. Finite-State Parsing by
Rule Sequences. International Conference on
Computational Linguistics (COLING-96). Copenhagen,
Denmark. The International Committee on
Computational Linguistics.

Voorhees, Ellen M. and Donna K. Harman 1999. The
Eighth Text Retrieval Conference. NIST Special
Publications. Forthcoming.

