On Golden Gates and Discrepancy

Examining the Efficiency of Universal Gate Sets

Brent Mode

University of Louisville
August 6, 2017

Advisor: Dr. Steven Damelin

UNIVERSITY OF MICHIGAN

Quantum Computation v. Classical Computation

Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.

Quantum Computation v. Classical Computation

Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.

Quantum Computation v. Classical Computation

Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.
- These programs are synthesized exactly, since the spectrum of possible programs is discrete.

Quantum Computation v. Classical Computation

Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.
- These programs are synthesized exactly, since the spectrum of possible programs is discrete.
- In other words, if you can dream it, it can be done exactly.

Quantum Computation v. Classical Computation

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.

Quantum Computation v. Classical Computation

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$.

Quantum Computation v. Classical Computation

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on $|\psi\rangle$.

Quantum Computation v. Classical Computation

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on $|\psi\rangle$.
- A 1-qubit quantum gate X acts on $|\psi\rangle$ to produce $\left|\psi^{\prime}\right\rangle$.

Quantum Computation v. Classical Computation

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on $|\psi\rangle$.
- A 1-qubit quantum gate X acts on $|\psi\rangle$ to produce $\left|\psi^{\prime}\right\rangle$.
- While classical logic gates are discrete, X can be any 2×2 matrix such that, since $|\psi|^{2}=1$, then $\left|\psi^{\prime}\right|^{2}=1$.

Quantum Computation Theory

An Unfortunate Number of Definitions

- Unitary Group - The group of all 1-qubit quntum gates is defined as:

$$
U(2)=\left\{X \in G L_{2}(\mathbb{C}) \mid X^{\dagger} X=I\right\}
$$

Quantum Computation Theory

An Unfortunate Number of Definitions

- Unitary Group - The group of all 1-qubit quntum gates is defined as: $U(2)=\left\{X \in G L_{2}(\mathbb{C}) \mid X^{\dagger} X=I\right\}$.
- Special Unitary Group - This can be simplified by the mapping $\frac{X}{\sqrt{|X|}}$ to be: $S U(2)=\{X \in U(2) \mid \operatorname{det} X=1\}$.

Quantum Computation Theory

An Unfortunate Number of Definitions

- Unitary Group - The group of all 1-qubit quntum gates is defined as: $U(2)=\left\{X \in G L_{2}(\mathbb{C}) \mid X^{\dagger} X=I\right\}$.
- Special Unitary Group - This can be simplified by the mapping $\frac{X}{\sqrt{|X|}}$ to be: $S U(2)=\{X \in U(2) \mid \operatorname{det} X=1\}$.
- Projective Special Unitary Group - Further, for quantum gates it is also valid to view the gates X and $-X$ as the same, which leads us to: $P S U(2)=S U(2) / Z(S U(2))$.

Quantum Computation Theory

An Unfortunate Number of Definitions

- Unitary Group - The group of all 1-qubit quntum gates is defined as: $U(2)=\left\{X \in G L_{2}(\mathbb{C}) \mid X^{\dagger} X=I\right\}$.
- Special Unitary Group - This can be simplified by the mapping $\frac{X}{\sqrt{|X|}}$ to be: $S U(2)=\{X \in U(2) \mid \operatorname{det} X=1\}$.
- Projective Special Unitary Group - Further, for quantum gates it is also valid to view the gates X and $-X$ as the same, which leads us to: $P S U(2)=S U(2) / Z(S U(2))$.
- Metric on $S U(2)$ - We need to define a notion of distance on $S U(2)$, so we use the invariant metric,

$$
d_{S U(2)}^{2}(X, Y)=1-\frac{\operatorname{Tr}\left|X^{\dagger} Y\right|}{2}, \text { where } d: S U(2) \rightarrow \mathbb{R}_{\geqslant 0}
$$

Quantum Computation Theory

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.

Quantum Computation Theory

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.

Quantum Computation Theory

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.

Quantum Computation Theory

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.
- What is needed is a way to approximate every element of $S U(2)$ using a circuit built from a small set of specially chosen quantum gates.

Quantum Computation Theory

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.
- What is needed is a way to approximate every element of $S U(2)$ using a circuit built from a small set of specially chosen quantum gates.
- The problem is then two-fold: Find a good gate set and come up with an approximation algorithm.

Quantum Computation Theory

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $S U(2)$.

Quantum Computation Theory

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $S U(2)$.
- My work has focused on the set T that is defined below: $T=\left\{s_{1}, s_{2}, s_{3}, s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}, I, i X, i Y, i Z\right\}$, where $s_{1}=\frac{1}{\sqrt{5}}(I+2 i X), s_{2}=\frac{1}{\sqrt{5}}(I+2 i Y), s_{3}=\frac{1}{\sqrt{5}}(I+2 i Z)$, and X, Y, and Z are the Pauli matrices.

Quantum Computation Theory

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $S U(2)$.
- My work has focused on the set T that is defined below: $T=\left\{s_{1}, s_{2}, s_{3}, s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}, I, i X, i Y, i Z\right\}$, where $s_{1}=\frac{1}{\sqrt{5}}(I+2 i X), s_{2}=\frac{1}{\sqrt{5}}(I+2 i Y), s_{3}=\frac{1}{\sqrt{5}}(I+2 i Z)$, and X, Y, and Z are the Pauli matrices.
- These elements are combined to form reduced words of increasing length, with $i X, i Y$, and $i Z$ then inserted at the front to quadruple the number of elements of a certain length.

Quantum Computation Theory

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $S U(2)$.
- My work has focused on the set T that is defined below: $T=\left\{s_{1}, s_{2}, s_{3}, s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}, I, i X, i Y, i Z\right\}$, where $s_{1}=\frac{1}{\sqrt{5}}(I+2 i X), s_{2}=\frac{1}{\sqrt{5}}(I+2 i Y), s_{3}=\frac{1}{\sqrt{5}}(I+2 i Z)$, and X, Y, and Z are the Pauli matrices.
- These elements are combined to form reduced words of increasing length, with $i X, i Y$, and $i Z$ then inserted at the front to quadruple the number of elements of a certain length.
- We say that $\Omega=\langle T\rangle$ is the group generated by T.

Quantum Computation Theory

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in $S U(2)$.
- My work has focused on the set T that is defined below:
$T=\left\{s_{1}, s_{2}, s_{3}, s_{1}^{-1}, s_{2}^{-1}, s_{3}^{-1}, I, i X, i Y, i Z\right\}$, where
$s_{1}=\frac{1}{\sqrt{5}}(I+2 i X), s_{2}=\frac{1}{\sqrt{5}}(I+2 i Y), s_{3}=\frac{1}{\sqrt{5}}(I+2 i Z)$, and X, Y, and Z are the Pauli matrices.
- These elements are combined to form reduced words of increasing length, with $i X, i Y$, and $i Z$ then inserted at the front to quadruple the number of elements of a certain length.
- We say that $\Omega=\langle T\rangle$ is the group generated by T.
- Then $V(t)$ is defined as the set of elements in Ω of length at most t.

Connection to Discrepancy

A Different Way to Approach the Problem

- Recall that $\operatorname{PSU}(2)$ is just as valid a group for representing gates as SU(2).

Connection to Discrepancy

A Different Way to Approach the Problem

- Recall that $\operatorname{PSU}(2)$ is just as valid a group for representing gates as SU(2).
- It is interestingly the case that $P S U(2) \approx S O(3)$ and that $S U(2) \approx S^{3}$, where the $S O(3)$ is the rotation group of the sphere S^{2}, the first relation is by isomorphism, and the second relation is by diffeomorphism.

Connection to Discrepancy

A Different Way to Approach the Problem

- Recall that $\operatorname{PSU}(2)$ is just as valid a group for representing gates as $S U(2)$.
- It is interestingly the case that $P S U(2) \approx S O(3)$ and that $S U(2) \approx S^{3}$, where the $S O(3)$ is the rotation group of the sphere S^{2}, the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5^{t}$, and can be projected onto the sphere.

Connection to Discrepancy

A Different Way to Approach the Problem

- Recall that $\operatorname{PSU}(2)$ is just as valid a group for representing gates as $S U(2)$.
- It is interestingly the case that $P S U(2) \approx S O(3)$ and that $S U(2) \approx S^{3}$, where the $S O(3)$ is the rotation group of the sphere S^{2}, the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5^{t}$, and can be projected onto the sphere.
- This is a well-studied problem in number theory and lends itself to being studied numerically.

Connection to Discrepancy

A Different Way to Approach the Problem

- Recall that $\operatorname{PSU}(2)$ is just as valid a group for representing gates as $S U(2)$.
- It is interestingly the case that $P S U(2) \approx S O(3)$ and that $S U(2) \approx S^{3}$, where the $S O(3)$ is the rotation group of the sphere S^{2}, the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5^{t}$, and can be projected onto the sphere.
- This is a well-studied problem in number theory and lends itself to being studied numerically.
- In many ways, we can change the quantum problem to a study of how well this point set is distributed on the sphere.

The Points of $V(2)$

The Points of $V(3)$

The Points of $V(4)$

Efficiency and Discrepancy

Solovay-Kitaev and Efficiency

- The Solovay-Kitaev Theorem states that for $X \in S U(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon>0$, there exists some $\omega \in \Omega$ of length $O\left(\log ^{c}\left(\frac{1}{\varepsilon}\right)\right)$ approximating X within distance ε.

Efficiency and Discrepancy

Solovay-Kitaev and Efficiency

- The Solovay-Kitaev Theorem states that for $X \in S U(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon>0$, there exists some $\omega \in \Omega$ of length $O\left(\log ^{c}\left(\frac{1}{\varepsilon}\right)\right)$ approximating X within distance ε.
- This guarantees that an approximation exists, but does not robustly address the relative efficiency of different choices of gate set.

Efficiency and Discrepancy

Solovay-Kitaev and Efficiency

- The Solovay-Kitaev Theorem states that for $X \in S U(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon>0$, there exists some $\omega \in \Omega$ of length $O\left(\log ^{c}\left(\frac{1}{\varepsilon}\right)\right)$ approximating X within distance ε.
- This guarantees that an approximation exists, but does not robustly address the relative efficiency of different choices of gate set.
- To that end, Sarnak introduces the covering exponent, defined below, to serve this purpose:

$$
K(T) \equiv \limsup _{\varepsilon \rightarrow 0} \frac{\log \left|V\left(t_{\varepsilon}\right)\right|}{\log \left(\frac{1}{\mu(B(\varepsilon))}\right)},
$$

where t_{ε} is the smallest t such that for the given $\varepsilon, V\left(t_{\varepsilon}\right)$ approximates all of $S U(2)$ within a distance $\varepsilon, B(\varepsilon)$ is an arbitrary ball of radius ε in $S U(2)$ and μ is a Haar measure on $S U(2)$.

Efficiency and Discrepancy

Bounds on K

- From the definition, it follows that if T approximates all of $S U(2)$ with optimal efficiency, then $K(T)=1$.

Efficiency and Discrepancy

Bounds on K

- From the definition, it follows that if T approximates all of $S U(2)$ with optimal efficiency, then $K(T)=1$.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leqslant K(T) \leqslant 2$.

Efficiency and Discrepancy

Bounds on K

- From the definition, it follows that if T approximates all of $S U(2)$ with optimal efficiency, then $K(T)=1$.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leqslant K(T) \leqslant 2$.
- However, T is optimally efficiency almost everywhere.

Efficiency and Discrepancy

Bounds on K

- From the definition, it follows that if T approximates all of $S U(2)$ with optimal efficiency, then $K(T)=1$.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leqslant K(T) \leqslant 2$.
- However, T is optimally efficiency almost everywhere.
- It is suspected that $K(T)=\frac{4}{3}$; what remains is for this to be proven or refuted.

Efficiency and Discrepancy

Conjecture on K

- We conjecture $\varepsilon \leq f\left(t_{\varepsilon}\right) 5^{-t_{\varepsilon} / 4}$ for a function $f:(0, \infty) \rightarrow(1, \infty)$ satisfying:

$$
\lim _{t_{\varepsilon} \rightarrow \infty} \log \left(f\left(t_{\varepsilon}\right)\right) / t_{\varepsilon}
$$

exists with value 0 .

Efficiency and Discrepancy

Conjecture on K

- We conjecture $\varepsilon \leq f\left(t_{\varepsilon}\right) 5^{-t_{\varepsilon} / 4}$ for a function $f:(0, \infty) \rightarrow(1, \infty)$ satisfying:

$$
\lim _{t_{\varepsilon} \rightarrow \infty} \log \left(f\left(t_{\varepsilon}\right)\right) / t_{\varepsilon}
$$

exists with value 0 .

- Let $\nu\left(5^{t_{\varepsilon}}\right)$ denote the set of integer solutions of the quadratic form: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5^{t_{\varepsilon}}$.

Efficiency and Discrepancy

Conjecture on K

- We conjecture $\varepsilon \leq f\left(t_{\varepsilon}\right) 5^{-t_{\varepsilon} / 4}$ for a function $f:(0, \infty) \rightarrow(1, \infty)$ satisfying:

$$
\lim _{t_{\varepsilon} \rightarrow \infty} \log \left(f\left(t_{\varepsilon}\right)\right) / t_{\varepsilon}
$$

exists with value 0

- Let $\nu\left(5^{t_{\varepsilon}}\right)$ denote the set of integer solutions of the quadratic form: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5^{t_{\varepsilon}}$.
- Let $M \equiv M_{S^{3}}(\mathcal{N})$ denote the covering radius of the points $\mathcal{N}=\nu\left(5^{t_{\varepsilon}}\right) \cup \nu\left(5^{t_{\varepsilon}-1}\right)$ on the sphere S^{3} in \mathbb{R}^{4}.

Efficiency and Discrepancy

Conjecture on K

- We conjecture $\varepsilon \leq f\left(t_{\varepsilon}\right) 5^{-t_{\varepsilon} / 4}$ for a function $f:(0, \infty) \rightarrow(1, \infty)$ satisfying:

$$
\lim _{t_{\varepsilon} \rightarrow \infty} \log \left(f\left(t_{\varepsilon}\right)\right) / t_{\varepsilon}
$$

exists with value 0 .

- Let $\nu\left(5^{t_{\varepsilon}}\right)$ denote the set of integer solutions of the quadratic form: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5^{t_{\varepsilon}}$.
- Let $M \equiv M_{S^{3}}(\mathcal{N})$ denote the covering radius of the points $\mathcal{N}=\nu\left(5^{t_{\varepsilon}}\right) \cup \nu\left(5^{t_{\varepsilon}-1}\right)$ on the sphere S^{3} in \mathbb{R}^{4}.
- Then $M \sim f(\log N) N^{-1 / 4}$. Here $N \equiv N(\varepsilon)=6 \cdot 5^{t_{\varepsilon}}-2$.

Efficiency and Discrepancy

Conjecture on K

- We conjecture $\varepsilon \leq f\left(t_{\varepsilon}\right) 5^{-t_{\varepsilon} / 4}$ for a function $f:(0, \infty) \rightarrow(1, \infty)$ satisfying:

$$
\lim _{t_{\varepsilon} \rightarrow \infty} \log \left(f\left(t_{\varepsilon}\right)\right) / t_{\varepsilon}
$$

exists with value 0 .

- Let $\nu\left(5^{t_{\varepsilon}}\right)$ denote the set of integer solutions of the quadratic form: $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5^{t_{\varepsilon}}$.
- Let $M \equiv M_{S^{3}}(\mathcal{N})$ denote the covering radius of the points $\mathcal{N}=\nu\left(5^{t_{\varepsilon}}\right) \cup \nu\left(5^{t_{\varepsilon}-1}\right)$ on the sphere S^{3} in \mathbb{R}^{4}.
- Then $M \sim f(\log N) N^{-1 / 4}$. Here $N \equiv N(\varepsilon)=6 \cdot 5^{t_{\varepsilon}}-2$.
- Assuming this conjecture implies that $K(T) \leqslant \frac{4}{3}$ and then also that $K(T)=\frac{4}{3}$.

Efficiency and Discrepancy

A Valid Example

With $t_{\varepsilon} \sim \log (N)$, consider:

$$
f\left(t_{\varepsilon}\right)=t_{\varepsilon}^{\left(\log \left(t_{\varepsilon}^{\log \left(t_{\varepsilon}^{\prime} \dot{x}\right.}\right)\right)}
$$

where the term $\log \left(t_{\varepsilon}\right)$ is nested n times. Then easily we have

$$
\log \left(f\left(t_{\varepsilon}\right)\right) / t_{\varepsilon} \sim \frac{(\log (\log N))^{n+1}}{\log N}
$$

which decays to 0 for large enough N.

Efficiency and Discrepancy

An Invalid Example

On the other hand for a function which grows faster, say

$$
f\left(t_{\varepsilon}\right)=t_{\varepsilon}^{t_{\varepsilon}}
$$

we easily have

$$
\log \left(f\left(t_{\varepsilon}\right)\right) / t_{\varepsilon} \sim(\log (\log N))
$$

which diverges for large enough N.

References

(1) S.B. Damelin, Q. Liang, B.A.W. Mode, "On Golden Gates and Discrepancy," arxiv:1506.05785 (2017) preprint. Submitted to J. Complex.
(2) A. Bocharov, Y. Gurevich, and K. Svore. "Efficient decomposition of single-qubit gates into V basis circuits," Phys. Rev. A 88.1 (2013): 012313.
(3) J. Bourgain, P. Sarnak, and Z. Rudnick, "Local statistics of lattice points on the sphere," arXiv preprint arXiv:1204.0134 (2012).
(9) C.M. Dawson, M.A. Nielsen, "The Solovay-Kitaev Algorithm," QIC, Vol 6, No 1 (2006), pp 081-095.
(6) P. Sarnak, "Letter to Scott Aaronson and Andy Pollington on the Solovay-Kitaev Theorem and Golden Gates," http://publications.ias.edu/sarnak/paper/2637 (2015).
(0) N. Ross and P. Selinger, "Optimal ancilla-free Clifford+T approximation of z-rotations," QIC. 16(2016) (11-12), pp 901-953.

Acknowledgments

- Thanks to Dr. Damelin for his collaboration and insights.
- Research for this REU was supported by funding from the National Science Foundation.

