On Golden Gates and Discrepancy Examining the Efficiency of Universal Gate Sets

Brent Mode

University of Louisville

August 6, 2017

Advisor: Dr. Steven Damelin

Brent Mode (University of Louisville)

On Golden Gates and Discrepancy

August 6, 2017 1 / 17

Classical Computation

• Classical computers, or just computers, rely on Boolean logic gates to execute programs.

Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.

Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.
- These programs are synthesized exactly, since the spectrum of possible programs is discrete.

イロト イ理ト イヨト イヨト

Classical Computation

- Classical computers, or just computers, rely on Boolean logic gates to execute programs.
- All classical programs are formed from a combination of AND, OR, and NOT gates.
- These programs are synthesized exactly, since the spectrum of possible programs is discrete.
- In other words, if you can dream it, it can be done exactly.

イロト イ理ト イヨト イヨト

Quantum Computation

• Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle.$

イロト 不得下 イヨト イヨト 二日

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle$.
- Thus, a single qubit is in the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle.$
- Thus, a single qubit is in the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on |ψ⟩.

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle.$
- Thus, a single qubit is in the state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on |ψ⟩.
- A 1-qubit quantum gate X acts on $|\psi\rangle$ to produce $|\psi'\rangle$.

Quantum Computation

- Quantum computing utilizes a quantum system consisting of two discrete states, $|0\rangle$ and $|1\rangle.$
- Thus, a single qubit is in the state $|\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle$.
- While a classical logic gate takes one or two inputs and returns a single output, a quantum logic gate acts as a linear map on |ψ⟩.
- A 1-qubit quantum gate X acts on $|\psi\rangle$ to produce $|\psi'\rangle$.
- While classical logic gates are discrete, X can be any 2×2 matrix such that, since $|\psi|^2 = 1$, then $|\psi'|^2 = 1$.

An Unfortunate Number of Definitions

 Unitary Group - The group of all 1-qubit quntum gates is defined as: U(2) = {X ∈ GL₂(ℂ)|X[†]X = I}.

An Unfortunate Number of Definitions

- Unitary Group The group of all 1-qubit quntum gates is defined as: U(2) = {X ∈ GL₂(ℂ)|X[†]X = I}.
- Special Unitary Group This can be simplified by the mapping $\frac{X}{\sqrt{|X|}}$ to be: $SU(2) = \{X \in U(2) | \det X = 1\}.$

An Unfortunate Number of Definitions

- Unitary Group The group of all 1-qubit quntum gates is defined as: U(2) = {X ∈ GL₂(ℂ)|X[†]X = I}.
- Special Unitary Group This can be simplified by the mapping $\frac{X}{\sqrt{|X|}}$ to be: $SU(2) = \{X \in U(2) | \det X = 1\}.$
- Projective Special Unitary Group Further, for quantum gates it is also valid to view the gates X and -X as the same, which leads us to: PSU(2) = SU(2)/Z(SU(2)).

An Unfortunate Number of Definitions

- Unitary Group The group of all 1-qubit quntum gates is defined as: U(2) = {X ∈ GL₂(ℂ)|X[†]X = I}.
- Special Unitary Group This can be simplified by the mapping $\frac{x}{\sqrt{|X|}}$ to be: $SU(2) = \{X \in U(2) | \det X = 1\}.$
- Projective Special Unitary Group Further, for quantum gates it is also valid to view the gates X and -X as the same, which leads us to: PSU(2) = SU(2)/Z(SU(2)).
- *Metric on SU*(2) We need to define a notion of distance on *SU*(2), so we use the invariant metric,

$$d^2_{SU(2)}(X,Y) = 1 - rac{{\it Tr}|X^\dagger Y|}{2}$$
, where $d:SU(2) o \mathbb{R}_{\geqslant 0}.$

The Problem at Hand

• The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.
- What is needed is a way to approximate every element of *SU*(2) using a circuit built from a small set of specially chosen quantum gates.

The Problem at Hand

- The difficulty in quantum computing is the overwhelming number of possible programs available to us as quantum logic gate circuits.
- Unlike in classical computing, it is impossible to exactly synthesize every possible program using a handful of gates.
- This is the same problem that occurs when comparing the rational numbers to the real numbers.
- What is needed is a way to approximate every element of *SU*(2) using a circuit built from a small set of specially chosen quantum gates.
- The problem is then two-fold: Find a good gate set and come up with an approximation algorithm.

An Example Universal Gate Set

• A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in *SU*(2).

An Example Universal Gate Set

• A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in SU(2).

• My work has focused on the set T that is defined below:

$$T = \{s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, I, iX, iY, iZ\}, \text{ where}$$

$$s_1 = \frac{1}{\sqrt{5}}(I + 2iX), s_2 = \frac{1}{\sqrt{5}}(I + 2iY), s_3 = \frac{1}{\sqrt{5}}(I + 2iZ), \text{ and } X, Y,$$
and Z are the Pauli matrices.

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in SU(2).
- My work has focused on the set T that is defined below: $T = \{s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, I, iX, iY, iZ\}, \text{ where}$ $s_1 = \frac{1}{\sqrt{5}}(I + 2iX), s_2 = \frac{1}{\sqrt{5}}(I + 2iY), s_3 = \frac{1}{\sqrt{5}}(I + 2iZ), \text{ and } X, Y,$ and Z are the Pauli matrices.
- These elements are combined to form reduced words of increasing length, with *iX*, *iY*, and *iZ* then inserted at the front to quadruple the number of elements of a certain length.

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in SU(2).
- My work has focused on the set T that is defined below: $T = \{s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, I, iX, iY, iZ\}, \text{ where}$ $s_1 = \frac{1}{\sqrt{5}}(I + 2iX), s_2 = \frac{1}{\sqrt{5}}(I + 2iY), s_3 = \frac{1}{\sqrt{5}}(I + 2iZ), \text{ and } X, Y,$ and Z are the Pauli matrices.
- These elements are combined to form reduced words of increasing length, with *iX*, *iY*, and *iZ* then inserted at the front to quadruple the number of elements of a certain length.
- We say that $\Omega = \langle T \rangle$ is the group generated by T.

An Example Universal Gate Set

- A universal gate set is a 'good' gate set: The group generated by the elements in the set is dense in SU(2).
- My work has focused on the set T that is defined below: $T = \{s_1, s_2, s_3, s_1^{-1}, s_2^{-1}, s_3^{-1}, I, iX, iY, iZ\}, \text{ where}$ $s_1 = \frac{1}{\sqrt{5}}(I + 2iX), s_2 = \frac{1}{\sqrt{5}}(I + 2iY), s_3 = \frac{1}{\sqrt{5}}(I + 2iZ), \text{ and } X, Y,$ and Z are the Pauli matrices.
- These elements are combined to form reduced words of increasing length, with *iX*, *iY*, and *iZ* then inserted at the front to quadruple the number of elements of a certain length.
- We say that $\Omega = \langle T \rangle$ is the group generated by T.
- Then V(t) is defined as the set of elements in Ω of length at most t.

A Different Way to Approach the Problem

• Recall that PSU(2) is just as valid a group for representing gates as SU(2).

A Different Way to Approach the Problem

- Recall that PSU(2) is just as valid a group for representing gates as SU(2).
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the SO(3) is the rotation group of the sphere S^2 , the first relation is by isomorphism, and the second relation is by diffeomorphism.

A Different Way to Approach the Problem

- Recall that *PSU*(2) is just as valid a group for representing gates as *SU*(2).
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the SO(3) is the rotation group of the sphere S^2 , the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^t$, and can be projected onto the sphere.

A Different Way to Approach the Problem

- Recall that *PSU*(2) is just as valid a group for representing gates as *SU*(2).
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the SO(3) is the rotation group of the sphere S^2 , the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^t$, and can be projected onto the sphere.
- This is a well-studied problem in number theory and lends itself to being studied numerically.

A Different Way to Approach the Problem

- Recall that PSU(2) is just as valid a group for representing gates as SU(2).
- It is interestingly the case that $PSU(2) \approx SO(3)$ and that $SU(2) \approx S^3$, where the SO(3) is the rotation group of the sphere S^2 , the first relation is by isomorphism, and the second relation is by diffeomorphism.
- Thus, it follows that elements of Ω correspond to solutions to: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^t$, and can be projected onto the sphere.
- This is a well-studied problem in number theory and lends itself to being studied numerically.
- In many ways, we can change the quantum problem to a study of how well this point set is distributed on the sphere.

The Points of V(2)

Brent Mode (University of Louisville)

On Golden Gates and Discrepancy

∃ ∽ ९ ペ August 6, 2017 8 / 17

The Points of V(3)

Brent Mode (University of Louisville)

On Golden Gates and Discrepancy

The Points of V(4)

Brent Mode (University of Louisville)

On Golden Gates and Discrepancy

August 6, 2017 10 / 17

Solovay-Kitaev and Efficiency

• The Solovay-Kitaev Theorem states that for $X \in SU(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon > 0$, there exists some $\omega \in \Omega$ of length $O\left(\log^{c}\left(\frac{1}{\varepsilon}\right)\right)$ approximating X within distance ε .

Solovay-Kitaev and Efficiency

- The Solovay-Kitaev Theorem states that for $X \in SU(2)$ and a symmetric universal set of quantum gates, for a given $\varepsilon > 0$, there exists some $\omega \in \Omega$ of length $O(\log^{c}(\frac{1}{c}))$ approximating X within distance ε .
- This guarantees that an approximation exists, but does not robustly address the relative efficiency of different choices of gate set.

Solovay-Kitaev and Efficiency

- The Solovay-Kitaev Theorem states that for X ∈ SU(2) and a symmetric universal set of quantum gates, for a given ε > 0, there exists some ω ∈ Ω of length O (log^c (¹/_ε)) approximating X within distance ε.
- This guarantees that an approximation exists, but does not robustly address the relative efficiency of different choices of gate set.
- To that end, Sarnak introduces the covering exponent, defined below, to serve this purpose:

$$\mathcal{K}(\mathcal{T}) \equiv \limsup_{\varepsilon \to 0} \frac{\log |V(t_{\varepsilon})|}{\log(rac{1}{\mu(B(\varepsilon))})},$$

where t_{ε} is the smallest t such that for the given ε , $V(t_{\varepsilon})$ approximates all of SU(2) within a distance ε , $B(\varepsilon)$ is an arbitrary ball of radius ε in SU(2) and μ is a Haar measure on SU(2).

• From the definition, it follows that if T approximates all of SU(2) with optimal efficiency, then K(T) = 1.

イロト 不得下 イヨト イヨト 二日

- From the definition, it follows that if T approximates all of SU(2) with optimal efficiency, then K(T) = 1.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leq K(T) \leq 2$.

12 / 17

- From the definition, it follows that if T approximates all of SU(2) with optimal efficiency, then K(T) = 1.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leq K(T) \leq 2$.
- However, T is optimally efficiency almost everywhere.

イロト イ理ト イヨト イヨト

- From the definition, it follows that if T approximates all of SU(2) with optimal efficiency, then K(T) = 1.
- This is not the case: Sarnak has proven that $\frac{4}{3} \leq K(T) \leq 2$.
- However, T is optimally efficiency almost everywhere.
- It is suspected that K(T) = ⁴/₃; what remains is for this to be proven or refuted.

Conjecture on K

• We conjecture $\varepsilon \leq f(t_{\varepsilon})5^{-t_{\varepsilon}/4}$ for a function $f:(0,\infty) \to (1,\infty)$ satisfying:

 $\lim_{t_{arepsilon}
ightarrow\infty} log(f(t_{arepsilon}))/t_{arepsilon}$

exists with value 0.

Conjecture on K

• We conjecture $\varepsilon \leq f(t_{\varepsilon})5^{-t_{\varepsilon}/4}$ for a function $f:(0,\infty) \to (1,\infty)$ satisfying:

$$\lim_{t_{arepsilon}
ightarrow\infty} log(f(t_{arepsilon}))/t_{arepsilon}$$

exists with value 0.

• Let $\nu(5^{t_{\varepsilon}})$ denote the set of integer solutions of the quadratic form: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^{t_{\varepsilon}}$.

イロト 不得 トイヨト イヨト 二日

Conjecture on K

• We conjecture $\varepsilon \leq f(t_{\varepsilon})5^{-t_{\varepsilon}/4}$ for a function $f:(0,\infty) \to (1,\infty)$ satisfying:

 $\lim_{t_{\varepsilon}\to\infty} \log(f(t_{\varepsilon}))/t_{\varepsilon}$

exists with value 0.

- Let $\nu(5^{t_{\varepsilon}})$ denote the set of integer solutions of the quadratic form: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^{t_{\varepsilon}}$.
- Let $M \equiv M_{S^3}(\mathcal{N})$ denote the covering radius of the points $\mathcal{N} = \nu(5^{t_{\varepsilon}}) \cup \nu(5^{t_{\varepsilon}-1})$ on the sphere S^3 in \mathbb{R}^4 .

イロト (過) (ヨ) (ヨ) (ヨ) ヨー ののの

Conjecture on K

• We conjecture $\varepsilon \leq f(t_{\varepsilon})5^{-t_{\varepsilon}/4}$ for a function $f:(0,\infty) \to (1,\infty)$ satisfying:

 $\lim_{t_{\varepsilon}\to\infty} \log(f(t_{\varepsilon}))/t_{\varepsilon}$

exists with value 0.

- Let $\nu(5^{t_{\varepsilon}})$ denote the set of integer solutions of the quadratic form: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^{t_{\varepsilon}}$.
- Let $M \equiv M_{S^3}(\mathcal{N})$ denote the covering radius of the points $\mathcal{N} = \nu(5^{t_{\varepsilon}}) \cup \nu(5^{t_{\varepsilon}-1})$ on the sphere S^3 in \mathbb{R}^4 .
- Then $M \sim f(\log N)N^{-1/4}$. Here $N \equiv N(\varepsilon) = 6 \cdot 5^{t_{\varepsilon}} 2$.

Conjecture on K

• We conjecture $\varepsilon \leq f(t_{\varepsilon})5^{-t_{\varepsilon}/4}$ for a function $f:(0,\infty) \to (1,\infty)$ satisfying:

 $\lim_{t_{arepsilon}
ightarrow\infty} log(f(t_{arepsilon}))/t_{arepsilon}$

exists with value 0.

- Let $\nu(5^{t_{\varepsilon}})$ denote the set of integer solutions of the quadratic form: $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5^{t_{\varepsilon}}$.
- Let $M \equiv M_{S^3}(\mathcal{N})$ denote the covering radius of the points $\mathcal{N} = \nu(5^{t_{\varepsilon}}) \cup \nu(5^{t_{\varepsilon}-1})$ on the sphere S^3 in \mathbb{R}^4 .
- Then $M \sim f(\log N)N^{-1/4}$. Here $N \equiv N(\varepsilon) = 6 \cdot 5^{t_{\varepsilon}} 2$.
- Assuming this conjecture implies that $K(T) \leq \frac{4}{3}$ and then also that $K(T) = \frac{4}{3}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

A Valid Example With $t_{\varepsilon} \sim \log(N)$, consider:

$$f(t_{arepsilon}) = t_{arepsilon}^{(\log(t_{arepsilon}^{\log(t_{arepsilon}^{\cdot,\cdot})}))}$$

where the term $\log(t_{\varepsilon})$ is nested *n* times. Then easily we have

$$\log(f(t_{\varepsilon}))/t_{\varepsilon} \sim rac{(\log(\log N))^{n+1}}{\log N}$$

which decays to 0 for large enough N.

An Invalid Example

On the other hand for a function which grows faster, say

$$f(t_{\varepsilon}) = t_{\varepsilon}^{t_{\varepsilon}}$$

we easily have

$$\log(f(t_{\varepsilon}))/t_{\varepsilon} \sim (\log(\log N))$$

which diverges for large enough N.

References

- S.B. Damelin, Q. Liang, B.A.W. Mode, "On Golden Gates and Discrepancy," arxiv:1506.05785 (2017) preprint. Submitted to J. Complex.
- A. Bocharov, Y. Gurevich, and K. Svore. "Efficient decomposition of single-qubit gates into V basis circuits," Phys. Rev. A 88.1 (2013): 012313.
- J. Bourgain, P. Sarnak, and Z. Rudnick, "Local statistics of lattice points on the sphere," arXiv preprint arXiv:1204.0134 (2012).
- C.M. Dawson, M.A. Nielsen, "The Solovay-Kitaev Algorithm," QIC, Vol 6, No 1 (2006), pp 081-095.
- P. Sarnak, "Letter to Scott Aaronson and Andy Pollington on the Solovay-Kitaev Theorem and Golden Gates," http://publications.ias.edu/sarnak/paper/2637 (2015).
- N. Ross and P. Selinger, "Optimal ancilla-free Clifford+T approximation of z-rotations," QIC. 16(2016) (11-12), pp 901-953.

- Thanks to Dr. Damelin for his collaboration and insights.
- Research for this REU was supported by funding from the National Science Foundation.

3