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Quantum Computation v. Classical Computation

Classical Computation

Classical computers, or just computers, rely on Boolean logic gates to
execute programs.

All classical programs are formed from a combination of AND, OR,
and NOT gates.

These programs are synthesized exactly, since the spectrum of
possible programs is discrete.

In other words, if you can dream it, it can be done exactly.
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Quantum Computation v. Classical Computation

Quantum Computation

Quantum computing utilizes a quantum system consisting of two
discrete states, |0〉 and |1〉.

Thus, a single qubit is in the state |ψ〉 = α|0〉+ β|1〉.
While a classical logic gate takes one or two inputs and returns a
single output, a quantum logic gate acts as a linear map on |ψ〉.
A 1-qubit quantum gate X acts on |ψ〉 to produce |ψ′〉.
While classical logic gates are discrete, X can be any 2× 2 matrix
such that, since |ψ|2 = 1, then |ψ′|2 = 1.
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Quantum Computation Theory

An Unfortunate Number of Definitions

Unitary Group - The group of all 1-qubit quntum gates is defined as:
U(2) = {X ∈ GL2(C)|X †X = I}.

Special Unitary Group - This can be simplified by the mapping
X√
|X |

to be: SU(2) = {X ∈ U(2)| detX = 1}.
Projective Special Unitary Group - Further, for quantum gates it is
also valid to view the gates X and −X as the same, which leads us to:
PSU(2) = SU(2)/Z (SU(2)).

Metric on SU(2) - We need to define a notion of distance on SU(2),
so we use the invariant metric,

d2
SU(2)(X ,Y ) = 1− Tr |X †Y |

2
, where d : SU(2)→ R>0.

Brent Mode (University of Louisville) On Golden Gates and Discrepancy August 6, 2017 4 / 17



Quantum Computation Theory

An Unfortunate Number of Definitions

Unitary Group - The group of all 1-qubit quntum gates is defined as:
U(2) = {X ∈ GL2(C)|X †X = I}.

Special Unitary Group - This can be simplified by the mapping
X√
|X |

to be: SU(2) = {X ∈ U(2)| detX = 1}.

Projective Special Unitary Group - Further, for quantum gates it is
also valid to view the gates X and −X as the same, which leads us to:
PSU(2) = SU(2)/Z (SU(2)).

Metric on SU(2) - We need to define a notion of distance on SU(2),
so we use the invariant metric,

d2
SU(2)(X ,Y ) = 1− Tr |X †Y |

2
, where d : SU(2)→ R>0.

Brent Mode (University of Louisville) On Golden Gates and Discrepancy August 6, 2017 4 / 17



Quantum Computation Theory

An Unfortunate Number of Definitions

Unitary Group - The group of all 1-qubit quntum gates is defined as:
U(2) = {X ∈ GL2(C)|X †X = I}.

Special Unitary Group - This can be simplified by the mapping
X√
|X |

to be: SU(2) = {X ∈ U(2)| detX = 1}.
Projective Special Unitary Group - Further, for quantum gates it is
also valid to view the gates X and −X as the same, which leads us to:
PSU(2) = SU(2)/Z (SU(2)).

Metric on SU(2) - We need to define a notion of distance on SU(2),
so we use the invariant metric,

d2
SU(2)(X ,Y ) = 1− Tr |X †Y |

2
, where d : SU(2)→ R>0.

Brent Mode (University of Louisville) On Golden Gates and Discrepancy August 6, 2017 4 / 17



Quantum Computation Theory

An Unfortunate Number of Definitions

Unitary Group - The group of all 1-qubit quntum gates is defined as:
U(2) = {X ∈ GL2(C)|X †X = I}.

Special Unitary Group - This can be simplified by the mapping
X√
|X |

to be: SU(2) = {X ∈ U(2)| detX = 1}.
Projective Special Unitary Group - Further, for quantum gates it is
also valid to view the gates X and −X as the same, which leads us to:
PSU(2) = SU(2)/Z (SU(2)).

Metric on SU(2) - We need to define a notion of distance on SU(2),
so we use the invariant metric,

d2
SU(2)(X ,Y ) = 1− Tr |X †Y |

2
, where d : SU(2)→ R>0.

Brent Mode (University of Louisville) On Golden Gates and Discrepancy August 6, 2017 4 / 17



Quantum Computation Theory

The Problem at Hand

The difficulty in quantum computing is the overwhelming number of
possible programs available to us as quantum logic gate circuits.

Unlike in classical computing, it is impossible to exactly synthesize
every possible program using a handful of gates.

This is the same problem that occurs when comparing the rational
numbers to the real numbers.

What is needed is a way to approximate every element of SU(2) using
a circuit built from a small set of specially chosen quantum gates.

The problem is then two-fold: Find a good gate set and come up with
an approximation algorithm.
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Quantum Computation Theory

An Example Universal Gate Set

A universal gate set is a ’good’ gate set: The group generated by the
elements in the set is dense in SU(2).

My work has focused on the set T that is defined below:
T = {s1, s2, s3, s−11 , s−12 , s−13 , I , iX , iY , iZ}, where

s1 =
1√
5

(I + 2iX ), s2 =
1√
5

(I + 2iY ), s3 =
1√
5

(I + 2iZ ), and X , Y ,

and Z are the Pauli matrices.

These elements are combined to form reduced words of increasing
length, with iX , iY , and iZ then inserted at the front to quadruple
the number of elements of a certain length.

We say that Ω = 〈T 〉 is the group generated by T .

Then V (t) is defined as the set of elements in Ω of length at most t.
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Connection to Discrepancy

A Different Way to Approach the Problem

Recall that PSU(2) is just as valid a group for representing gates as
SU(2).

It is interestingly the case that PSU(2) ≈ SO(3) and that
SU(2) ≈ S3, where the SO(3) is the rotation group of the sphere S2,
the first relation is by isomorphism, and the second relation is by
diffeomorphism.

Thus, it follows that elements of Ω correspond to solutions to:
x21 + x22 + x23 + x24 = 5t , and can be projected onto the sphere.

This is a well-studied problem in number theory and lends itself to
being studied numerically.

In many ways, we can change the quantum problem to a study of how
well this point set is distributed on the sphere.
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The Points of V (2)
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The Points of V (3)
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The Points of V (4)
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Efficiency and Discrepancy

Solovay-Kitaev and Efficiency

The Solovay-Kitaev Theorem states that for X ∈ SU(2) and a
symmetric universal set of quantum gates, for a given ε > 0, there
exists some ω ∈ Ω of length O

(
logc

(
1
ε

))
approximating X within

distance ε.

This guarantees that an approximation exists, but does not robustly
address the relative efficiency of different choices of gate set.

To that end, Sarnak introduces the covering exponent, defined below,
to serve this purpose:

K (T ) ≡ lim sup
ε→0

log|V (tε)|
log( 1

µ(B(ε)))
,

where tε is the smallest t such that for the given ε, V (tε)
approximates all of SU(2) within a distance ε, B(ε) is an arbitrary
ball of radius ε in SU(2) and µ is a Haar measure on SU(2).
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Efficiency and Discrepancy

Bounds on K

From the definition, it follows that if T approximates all of SU(2)
with optimal efficiency, then K (T ) = 1.

This is not the case: Sarnak has proven that 4
3 6 K (T ) 6 2.

However, T is optimally efficiency almost everywhere.

It is suspected that K (T ) = 4
3 ; what remains is for this to be proven

or refuted.
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Efficiency and Discrepancy

Conjecture on K

We conjecture ε ≤ f (tε)5−tε/4 for a function f : (0,∞)→ (1,∞)
satisfying:

lim
tε→∞

log(f (tε))/tε

exists with value 0.

Let ν(5tε) denote the set of integer solutions of the quadratic form:
x21 + x22 + x23 + x24 = 5tε .

Let M ≡ MS3(N ) denote the covering radius of the points
N = ν(5tε) ∪ ν(5tε−1) on the sphere S3 in R4.

Then M ∼ f (logN)N−1/4. Here N ≡ N(ε) = 6 · 5tε − 2.

Assuming this conjecture implies that K (T ) 6 4
3 and then also that

K (T ) = 4
3 .
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Let ν(5tε) denote the set of integer solutions of the quadratic form:
x21 + x22 + x23 + x24 = 5tε .

Let M ≡ MS3(N ) denote the covering radius of the points
N = ν(5tε) ∪ ν(5tε−1) on the sphere S3 in R4.

Then M ∼ f (logN)N−1/4. Here N ≡ N(ε) = 6 · 5tε − 2.

Assuming this conjecture implies that K (T ) 6 4
3 and then also that

K (T ) = 4
3 .
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Efficiency and Discrepancy

A Valid Example
With tε ∼ log(N), consider:

f (tε) = t(log(t
log(t

. .
.

ε )
ε ))

ε

where the term log(tε) is nested n times. Then easily we have

log(f (tε))/tε ∼
(log(logN))n+1

logN

which decays to 0 for large enough N.
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Efficiency and Discrepancy

An Invalid Example
On the other hand for a function which grows faster, say

f (tε) = ttεε

we easily have
log(f (tε))/tε ∼ (log(logN))

which diverges for large enough N.
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