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Abstract

Quantum computation is of great interest to physicists both as a technical challenge and

for its potential use in the simulation of quantum systems. Further, implementation of Shor’s

algorithm for factoring large numbers in polynomial time will render many of the most com-

mon encryption methods obsolete. While experimentalists struggle to create quantum com-

puters with more than a handful of qubits, the problem of choosing efficient sets of quantum

logic gates to implement remains to be fully understood. The most direct way to consider

the problem is in terms of sets of gates considered as unitary matrices in SU(2). However,

with regards to determining the efficiency of gate sets, it is more useful to consider the prob-

lem of discrepancy by mapping gates in SU(2) to points on S3 and considering covering ra-

dius. With support from the REU program at the University of Michigan, I investigated this

problem in a variety of settings and coauthored an article on the subject [2].

1 Background Mathematics

In the interest of completely approachable elucidation of the research herein, this section is an

optional introduction to most of the mathematical machinery needed to study the problem at

hand. On the other hand, many important sets and pieces of notation are introduced here, so it

might be wise to quickly review this section. Largely the information in this section is adapted

from [2].

Definition. A quantum bit or qubit is a linear combination of the states |0〉 and |1〉 that is a unit

vector in C2. In terms of an arbitrary state, we have

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1
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Definition. A 1-qubit quantum gate acts linearly on a qubit to make it a new qubit. To note,

there are several quantum gates that can be used to reconstruct classical logic universally. So,

|ψ〉 = α|0〉+ β|1〉 → |ψ′〉 = α′|0〉+ β′|1〉

This is the same action as a matrix on a vector, so let X ∈ GL2(C) and then an equivalent

statement would be X|ψ〉 = |ψ′〉 where |ψ〉 =

(
α

β

)
. More specifically, since |ψ′〉 mut still be a unit

vector, we require that X ∈ U(2).

The unitary group is defined as U(n) = {X ∈ GLn(C) | X†X = I}. In addition, we can

consider the special unitary group to be an equally appropriate collection of all possible quantum

gates where SU(n) = {X ∈ U(n) | detX = 1}. Finally, we are also sometimes interested in

the projective special unitary group, which is not isomorphic to SU(2) but can also serve as the

collection of arbitrary 1-qubit quantum gates, PSU(n) ≡ SU(n)/Z(SU(n)), where for an arbitrary

group G, Z(G) is the center of G.

So, the set of quantum gates is most simply U(2). Up to a constant, we can restrict ourselves

to SU(2) by taking elements X ∈ U(2) and considering them equivalent to
X√

detX
∈ SU(2).

Similarly, we could further restrict ourselves to PSU(2). This restriction can simplify a question

of efficiency, though for producing quantum circuits, it is more common to consider the gates as

SU(2). It is also of note, and should be intuitively clear, that PU(2) ≡ U(2)/Z(U(2)) ≈ PSU(2).

Again, it is also the case that PSU(2) and SU(2) are not isomporphic.

The problem of constructing an efficienct universal subset of quantum gates can be reduced to

finding an efficient universal subst of PSU(2).

1.1 Topological Structure of PSU(2)

Definition. Let X be a set and τ be a collection of subsets of X. A topological space follows the

following axioms:

1. ∅, X ∈ τ

2. Any union of elements of τ are in τ .

3. The intersection of a finite number of elements of τ is in τ

where τ is called a topology.

Definition. Let S be a subset of a topological space X. A point x ∈ X is a limit point of S if

every neighborhood of x contains at least one point in S.

Definition. A subset A of a topological space X is called dense if ∀x ∈ X:

1. x ∈ A or
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2. x is a limit point of A.

Definition. Let G be a group, and S ≤ G, such that S = {s1, s2, · · · , sn}. Let Γ = 〈S〉. S is called

universal if Γ is dense in G.

Definition. A nonempty subset S ≤ G is symmetric if S = S−1 where S−1 = {s−1 | s ∈ S}.

Let G = PSU(2) and S = {s1, s2, · · · , sn} be a symmetric universal subset which generates the

group Γ dense in G.

Definition. We define a weight function w : S → R≥0. The function w(si) is nonnegative on S

and assigns a cost to each s ∈ S.

Definition. Next we define a height function to give the weight a reduced word h : Γ → R≥0,

defined as

h(γ) = min{
m∑
k=1

w(xk) | γ = x1x2 · · ·xm, xk ∈ S}

For each γ ∈ Γ, we find that there are multiple ways of constructing γ from si, and we would

like to find the minimum cost method of constructing each γ.

Example. Let w(si) = 1 for 1 ≤ i ≤ n, si ∈ S. For γ = s1s2 ∈ Γ, the cost is w(s1) +w(s2) = 2. But

γ = s1s
−1
1 s1s2 with cost 4. We prefer the former construction and note that, assuming s2 6= s−11 ,

h(γ) ≤ 2.

Using these concepts, we would now like to define a few important sets.

Definition. Using our height function, we can define the set with specific height

U(t) = {γ ∈ Γ | h(γ) = t}.

This is the subset of Γ containing every element of height exactly t.

Definition. We can also define the more important set with bounded height

V (t) = {γ ∈ Γ | h(γ) ≤ t} =

t⋃
i=0

(U(i)).

This is the subset of Γ containing every element of height less than or equal to t. We will use these

kinds of subsets to approximate any g ∈ G.

1.2 Metric Structure of PSU(2)

We also wish to make use of the metric properties of G = PSU(2).

Definition. A metric or distance function on a set X is defined as d : X × X → R≥0 satisfying

∀x, y, z ∈ X:

3



1. d(x, y) ≥ 0

2. d(x, y) = 0⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z).

Definition. We define the following metric on G = PSU(2) by d : G×G→ R≥0

dG(X,Y ) =

√
1− |Tr(X

†Y )|
2

,∀X,Y ∈ G.

Lemma. The metric d(x, y) is an invariant metric in G, i.e. ∀h ∈ G and ∀x, y ∈ G held fixed,

d(hx, hy) = d(xh, yh) = d(x, y).

Our goal is to use the elements of V (t) ⊆ G to approximate each point x ∈ G. Further we want

that our approximation not have error exceeding some given value ε > 0. That is, ∀x ∈ G,∃γ ∈
V (t) 3 d(x, γ) < ε and we use γ to approximate x. Alternatively, ∀x ∈ G,∃γ ∈ V (t) 3 x is within

the ball centered at γ with radius ε, i.e. x ∈ B(γ, ε).

Definition. A ball in a metric space is defined such that B(γ, ε) = {x ∈ G | d(x, y) < ε}.

For a given ε > 0 let t = tε > 0 be the smallest t such that V (t) can be used to approximate all

of G = PSU(2). That is, G is covered by balls such that

G =
⋃

γ∈V (tε)

B(γ, ε).

Theorem (Solovay-Kitaev). Let an ε > 0 and a symmetric, universal gate set of SU(2) be given.

Then there exists a constant c such that ∀X ∈ SU(2),∃γ, a finite sequence of gates from the

universal gates set of length O

(
logc

1

ε

)
3 d(X, γ) < ε.

However, we do not know how efficient this approximation is. The Solovay-Kitaev theorem

guarantees the existence of an approximation of all points but does not guarantee any particular

efficiency. Further, the constant c gives you a computation time, but does not function well as a

measure of the efficiency of any particular universal gate set. We find that we would like to define

a measure of efficiency that is more robust. A recent examination of the theorem can be found in

[4]. A discussion of the algorithm used by the theorem is found in [3].

1.3 Measure Structure of PSU(2)

Definition. Let X be a set and P(X) be the power set of X. Then Σ ⊆ P(X) is called a σ-algebra

if it satisfies the following:
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1. X ∈ Σ

2. ∀A ∈ Σ, X −A ∈ Σ

3. ∀A1, A2, · · · ∈ Σ, A1 ∪A2 ∪ · · · ∈ Σ

The elements of a σ-algebra are called measurable sets.

Definition. In a topological space X, a Borel set is any set that can be formed from open sets using

countable unions, countable intersections, and relative complements. The collection of all Borel sets

on X forms a σ-algebra called the Borel algebra. Further, the Borel algebra is the smallest algebra

containing all open sets.

Definition. In a metric space (X, d), compactness is equivalent to the statement that every infinite

subset of X has at least one limit point in X. Similarly, a compact group is a group whose topology

is compact.

PSU(2) is a compact group.

Definition. Let G be a compact group. A normalized Haar measure µ : Σ → R≥0 on G where Σ

is the Borel algebra of G satisfies:

1. µ(G) = 1

2. ∀x ∈ G and S ∈ Σ, µ(xS) = µ(S)

Let µ be a normalized Haar measure on G = PSU(2). For an ε > 0, let tε > 0 be the smallest

t such that

G ⊂
⋃

γ∈V (tε)

B(γ, ε).

Hence, µ
(⋃

γ∈V (tε)
B(γ, ε)

)
= µ(G) = 1.

Lemma. Let tε > 0 be the smallest t such that G ⊂
⋃
γ∈V (tε)

B(γ, ε). Then, |V (tε)| ·µ(B(ε)) ≥ 1.

It would also be beneficial to know what the value of µ(B(ε)) is. For the Haar measure on

G = SU(2), we find that it is much better to consider a measure that it is rotation-invariant on the

three-sphere, S3. To that end, we define µ as

µ(θ, φ, ϕ) = 2 sin θdθdφdϕ.

Hence, µ(B(ε)) ∼ cε3, when ε is small.

From the previous result, we have that |V (tε)| >
1

µ(B(ε))
for any ε and universal subset S.

This leads us to three equivalent statements:

1. |V (t)| and
1

µ(B(ε))
become closer,
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2. The intersection between balls decreases,

3. The approximation is more efficient.

We express the efficiency of an approximation with universal subset S by

K(S) ≡ lim sup
ε→0

log|V (tε)|

log

(
1

µ(B(ε))

) ∼ lim sup
ε→0

log|V (tε)|

log

(
1

ε3

) .

Since |V (tε)| >
1

µ(B(ε))
, K(S) > 1. If K(S) = 1, the universal gate set S optimally approximates

all of G. We would like to find S with as small a K(S) as possible.

2 The Universal Gate Set T

My work has focused specifically on examining the universal gate set T = {s1, s2, s3, s−11 , s−12 , s−13 , I, iX, iY, iZ},
where s1 =

1√
5

(I + 2iX), s2 =
1√
5

(I + 2iY ), s3 =
1√
5

(I + 2iZ), and X, Y , and Z are the Pauli

matrices. This set was recently studied in [1]. The elements iX, iY , and iZ have weight 0, while

all other elements have weight 1. It is proven by Sarnak in [5] that the following lower and upper

bounds exist on efficiency for T:
4

3
6 K(T ) 6 2.

More specifically, Sarnak utilizes the set S = T − {iX, iY, iZ} [5]. One interesting result of my

research is that Sarnak’s proof of K(S) >
4

3
contains an important mistake that necessitates the

use of T . This will be presented shortly.

Let Ω = 〈T 〉 be the group dense in SU(2) generated by T and VT (t) be the set of all elements

of Ω with height no more than t. By considering the nature of elements of SU(2), it can be shown

that points in VT (t) can be represented as integer solutions to the equation

x21 + x22 + x23 + x24 = 5l, l 6 t.

These integer solutions than can then be projected as points on the sphere S3 [1]. Sarnak’s proof

that K(S) >
4

3
relies on this correspondence. However, there are solutions to this equation that

can be shown not to be in the group generated by S.

Counterexample. Consider the solution for t = 1 given by (−2, 1, 0, 0). The corresponding

matrix in SU(2) is

1√
5

(
−2 + i 0

0 −2− i

)
= (iX)s1.

Since iX 6∈ S, we have that there is no such bijection. i.e. (−2, 1, 0, 0) does not correspond to an

element of VS(t), although it does correspond to the given element of VT (t).
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Figure 1: The points of VT (2), in Maize and Blue.

Also consider that the points of VT (t) must have a representation in PSU(2) preserving the

cardinality of the set, since both SU(2) and PSU(2) are valid ways to examine the points. Then

note that PSU(2) ≈ SO(3), the rotation group on S2. So under a proper homomorphism, the

points of VT (t) can be plotted on the surface of S2 as shown in Figures 1, 2, and 3.

3 A Conjecture on Mesh Norm

We conjecture a certain mesh norm on the points in VT (tε) [2]. Then we show that this is sufficient

to prove that K(T ) =
4

3
.

Definition. The mesh norm or covering radius of a point set with respect to Sd is given as

M(N ) ≡ max
y∈Sd

min
x∈N
|x− y|

where N is the point set in question. Intuitively, the mesh norm is the radius that is required for

balls centered at points of N to cover all of Sd.

Let ν(5tε) denote the set of integer solutions of the quadratic form: x21 + x22 + x23 + x24 = 5tε .Let

M ≡ MS3(N ) denote the covering radius of the points N = ν(5tε) ∪ ν(5tε−1) on the sphere S3 in
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Figure 2: The points of VT (3).
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Figure 3: The points of VT (4).
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R4.

Conjecture A. We conjecture ε ≤ f(tε)5
−tε/4 for a function f : (0,∞)→ (1,∞) satisfying:

lim
tε→∞

log(f(tε))/tε

exists with value 0. Then M ∼ f(logN)N−1/4. Here N ≡ N(ε) = 6 · 5tε − 2.

Assuming this conjecture, we prove the following theorem. The proof is taken from [2].

Theorem 1. K(T ) 6
4

3

Proof. Let ε > 0 and all log be log5, for convenience only. Then,

K(T ) = lim sup
ε→0

log|VT (tε)|

log

(
1

µ (BG(ε))

)
= lim sup

ε→0

log|VT (tε)|

log

(
1

ε3

)
= lim
ε→0

log(6 · 5tε − 2)

3 log

(
1

ε

)

6 lim
ε→0

tε + log

(
6− 2

5tε

)
3 log

(
1

f(tε)
· 5 tε

4

)

= lim
ε→0

tε + log

(
6− 2

5tε

)
3

4
tε − 3 log(f(tε))

= lim
ε→0

 1

3

4
− 3 log f(tε)

tε

+

log

(
6− 2

5tε

)
3

4
tε − 3 log(f(tε))

 .
Since tε →∞ as ε→ 0, we have that

K(T ) 6 lim
tε→∞

 1

3

4
− 3 log(f(tε))

tε

+

log

(
6− 2

5tε

)
3

4
tε − 3 log(f(tε))


=

1
3

4
− 0

+ 0

=
4

3
.
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Therefore,

K(T ) 6
4

3
.

We now provide two examples, one of such a function that disappears as required and satisfies

the conjecture, and another that does not.

Example. With tε ∼ log(N), consider:

f(tε) = t(log(t
log(t

. .
.

ε )
ε ))

ε

where the term log(tε) is nested n times. Then easily we have

log(f(tε))/tε ∼
(log(logN))n+1

logN

which decays to 0 for large enough N .

Example. On the other hand for a function which grows faster, say

f(tε) = ttεε

we easily have

log(f(tε))/tε ∼ (log(logN))

which diverges for large enough N .

4 Numerical Experiments on Mesh Norm

One of the my goals after drafting [2] was to calculate mesh norms for VT (t) for as high a t as

computationally accessible. This turned out to not be a very large t, since N grows as 5t, and the

number of requisite computations with it. Given below in Table 1 are mesh norms for various t,

the number of points N , and the mesh norm as an exponent, η, such that M = N−η.

t N M η

2 147 0.46 0.155

3 762 0.21 0.235

4 3857 0.117 0.26

Table 1: Numerical experiments on mesh norm.

The trend noticed here suggests that the some form of the previous conjecture might be true,

though providing proof has shown to be a difficult problem.
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5 Continued Research

While the contents of this paper describe the bulk of the work undertaken during the REU program,

it is not a sole representation of the attempts of myself and Dr. Damelin to make progress. We have

also considered attempting to redefine the covering exponent in terms of some kind of discrepancy

as well as reformulating the problem as a conjecture on minimal energy points. We are discussing

at least two more papers currently, one on minimal energy, and another presenting the problem to

the physics community.
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