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ABSTRACT

Quantum computation is of current ubiquitous interest in physics, computer science,

and the public interest. In the not-so-distant future, quantum computers will be rel-

atively common pieces of research equipment. Eventually, one can expect an actively

quantum computer to be a common feature of life. In this work, I study the approx-

imation efficiency of several common universal quantum gate sets at short sequence

lengths using an implementation of the Solovay-Kitaev algorithm. I begin by develop-

ing from almost nothing the relevant formal mathematics to rigorously describe what

one means by the terms universal gate set and covering efficiency. I then describe

some interesting results on the asymptotic covering properties of certain classes of

universal gate sets and discuss the theorem which the Solovay-Kitaev algorithm is

based on.

Moving from mathematical introduction to experimental method, I then describe

how sets will be compared. I use the commonly studied sets H+T, Pauli+V, V,

and Clifford+T to determine which is the most efficient at approximating randomly

generated unitaries. By doing so, we get an understanding of how well each set

would perform in the context of a general quantum computer processor. This was

accomplished by using the same implementation of the Solovay-Kitaev algorithm

throughout, with roughly equal-sized preprocessed libraries formed from each gate

set, over approximations for 10, 000 randomly generated unitary matrices at algorithm

depth n = 5. Ultimately, the Pauli+V and V sets were the most efficient and had

similar performance qualities. On average the Pauli+V set produced approximations

of length 15, 491 and accuracy 0.0002686. The V basis produced approximations of

average sequence length 16, 403 and accuracy 0.0001465. This performance is about

equal given this particular implementation of the Solovay-Kitaev algorithm.
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We conclude that this result is somewhat surprising as the general behavior and

efficiency of these particular choices of gate set are expected to be similar. It is

possible though that the asymptotic efficiencies of these gate sets vary by a relatively

wide margin and this has effected the experiment. It is also possible that some

aspect of a naive implementation of the Solovay-Kitaev algorithm resulted in the

Hadamard gate based sets performing more poorly than the V basis sets overall.

Due to constraints on computational power, this result could also be limited to this

particular accuracy regime and could even out as tolerance ε is taken to be arbitrarily

small. Further possibilities of this result as well as further work are then discussed.
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CHAPTER I

Introduction

1 Qualitative Introduction to Quantum Computing

Computers have become an inexorable part of public life over the last three decades,
giving rise to entire industries, redefining almost all of modern culture, and providing
a secure background to almost every financial transaction that occurs anywhere in
the first world. They live in our pockets, on our desks, above our hearths, and
in our laboratories. Contemporary scientific progress is wholly unthinkable in the
absence of computer-based data collection and analysis. We create computers to
monitor every minute aspect of an experiment and write programs that analyze an
unthinkable amount of information in a matter of moments. It is perhaps impossible
to understate the overwhelming effects of technology saturating life.

Underlying every computer that has made all of this possible is a relatively sim-
ple theoretic basis: Boolean logic. Known by mathematicians, philosophers, and
computer scientists alike, and implicitly understood by most researchers, the simple
notions of ‘True’ and ‘False’ as well as the AND, OR, and NOT relations between
them make up all of regular computing. By combining logic gates that physically im-
plement the AND, OR, and NOT operations, and feeding in appropriate True-False
inputs, one may arrive at any program that has ever been run on a standard com-
puter. Fundamentally, even the software that I am using to compose this document
could be programmed into a complicated web of logic gates and logical inputs, re-
sulting in outputs that are subsequently delivered to the screen as words and spaces.
Of course this would be very inefficient from a design standpoint. The point of Intel
and AMD spending time and resources designing tiny, power-efficient circuit boards
is so that we can avoid starting from scratch every time we want to write a piece of
software.

Processors have built in programming languages called assemblers that are specific
to their design and allow for the most basic level of writing software that is not ex-
plicitly in the form of logic circuits1. From there, assembler can be used to write code
defining more usable programming languages like C++ and programs called com-
pilers that translate C++ code into machine language, the steps that the processor
takes to run a program. At this point in history, most programming is far abstracted
from the hardware that provides its foundations, with many modern languages such
as Python being written in older, more low-level languages like C++ and Fortran.
Though this abstracting necessarily means that software written in these languages

1Or more accurately, assemblers are a step up from machine language, which is a step up from
hardware. However, assemblers are in close if not identical correspondence to machine language, so
the difference between the two is minimal.
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will run slower than a comparable program written in assembler, we have progressed
to the point at which such differences are usually minimal. Modern languages offer
benefits such as more readable syntax, simpler or more powerful program design,
and the ability to run the same program on most computers regardless of operating
system or CPU architecture.

The point is that any program that can be realized using Boolean logic can be
exactly implemented on what will now be referred to as a ‘classical’ computer. The
notion of approximating a program or relying on a logic gate that does not exactly
provide the intended operation is nonsensical. Either a NOT gate returns the logical
opposite of its input, or it does not. Unless it is broken, there is not any sense to
the notion of a NOT gate taking a True input and returning almost-False. A further
interesting note is that the gates AND, OR, and NOT are not the only gates that can
be used to build any classical logic circuit2. The NAND gate, which is the AND gate
with opposite output, is also universal. This can be shown be creating AND, OR, and
NOT gates using only NAND gates. So ultimately, there is a notion of universality
in classical computers, but the logic and gates are discretized and so are relatively
simple.

Quantum computers represent a fundamental departure from classical computing.
Gone is the simplicity of Boolean logic. Gone is the notion of logic that is always
just True or just False, just 1 or 03. Contrary to popular belief, the existence of a
functional quantum computer at a scale sufficient to break the most common encryp-
tion schemes will not pose a real threat to national or global security4. It is also
a common misconception that some aspect of quantum computers will allow them
to run classical programs much more quickly than today’s most advanced hardware
will allow; quantum computing offers no benefits in running the same program as a
classical computer5. However, quantum computers will allow for the possibility of
algorithms that go beyond what is possible with classical computers. The most com-
mon example is of course Shor’s algorithm, designed by Peter Shor and shown to be
capable of factoring very large numbers quickly. Quantum computers are also very
exciting to physicists for the possibility of running simulations of quantum systems,
something not feasible at a large scale with conventional computers.

The difference between classical computers and quantum computers lies in how
logic is implemented. In quantum computers, instead of having True and False logic
values that are represented by some discrete physical property like voltage, there
are quantum states that represent logical outputs. Instead of True we can say that
we have the state6 |1〉 and instead of False we have the state |0〉. These states

2AND, OR, and NOT are universal in the sense that any Boolean logic circuit can be imple-
mented using these gates.

3To be clear, 1 and 0 are common mathematical representations of True and False, though of
course, they are not really the same thing.

4This is because there are encryption schemes already invented that do not rely on factoring
very large numbers. The research area focused on this is called post-quantum cryptography.

5This belief could perhaps be attributed to the quantum algorithm for quickly factoring large
numbers. However, this is not a computation that most programs perform often, so it is of little
benefit to common programs.

6The reason for the notation used here will be introduced in the following section.
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are treated as a mathematical basis, which ultimately means that instead of being
limited to creating a circuit that passes only these values, it is also possible to have
combinations of the two states. Instead of calling the states bits, as they are called in
classical computing, the quantum states are called qubits. The potential for having
intermediary logic outputs that are neither |1〉 or |0〉 but somewhere in between means
that even the simplest logic gates, the 1-qubit quantum logic gates that take a single
input and return a single output, are much more complicated than before. With
Boolean logic, there are only two conceivable 1-bit logic gates, and one of them is
trivial: the NOT gate which flips the input and some sort of pass-through gate that
does nothing (which of course doesn’t exist). There are an infinite number of 1-qubit
quantum logic gates. Unfortunately, without a proper mathematical introduction, it
will be difficult to describe quantum computers or the current academic challenges
being faced without a sufficient background in mathematics. The next section will
attempt to build to that point from the ground up. For more on the basics of quantum
computing, the standard text is [1].

2 Background Mathematics

In the sciences, formal mathematics tend to not be heavily stressed. However, in the
study of quantum computation theory, mathematics provides a necessary theoretical
backbone. The intention of this section is to assume as little as possible about the
reader’s background and begin with fundamentals before building up to the formality
required for an appropriate understanding of the subject.

Quantifiers

This is a brief section outlining common symbols that are used almost exclusively in
physics and mathematics to shorten formal statements. The symbol ∈ is read ‘in,’
‘is an element of,’ or ‘is a member of.’ It is specifically used to describe membership
in a set. So we would say that 1 ∈ R, which reads ‘1 is an element of the set of
all real numbers’ which of course, it is. The symbol ∀ is read ‘for any,’ or ‘for all.’
It is usually used when describing something that is true for every member of some
structure, such as every element of a set. The symbol ∃ is read ‘there exists’ and
is used to state that some such element of a set (or some other structure) has a
given property. The symbol ⇒ is read ‘implies that’ and is used to describe a logical
implication, a statement where if the hypothesis is true, then the conclusion must
also be true. Finally, the symbol ⇔ is read ‘is equivalent to’ or ‘is biconditional to’
and is used when if one side of the statement is true, then the other is true. Finally
the symbol 3 simply means ‘such that.’

Sets

One of the most fundamental branches of mathematics is set theory. Essentially, a
set is a mathematical box that contains objects of no certain type. Sets can contain
numbers, matrices, variables, functions, other sets, any kind of mathematical object.
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A very simple example of a set is

A = {1, 2, 3}.

Here the set A contains a few integers. An important property of sets is the number
of things they contain. This is called cardinality. The cardinality of A, denoted |A|,
is 3.

There are several very important sets that are commonly used in mathematics.
They are listed below:

∅ = {}
N = {1, 2, 3, . . .}
Z = {. . . ,−2,−1, 0, 1, 2, . . .}

Q = {m
n
|m ∈ Z, n ∈ N}

R = {the set of all real numbers}
C = {a+ ib|a, b ∈ R}.

(1)

Here we have, in order, the empty set, the set of natural numbers, the set of integers,
the set of rational numbers, the set of real numbers, and the set of complex numbers.
In set notation, | should be read as “such that.” It is important to note here that
|∅| = 0 while the cardinality of all the other sets is infinite. However, cardinality is no
longer a specific enough distinction when describing the size of infinite sets. One says
that the sets N, Z, and Q are countably infinite because it is possible to describe a
function mapping each sets members to the natural numbers in a way that resembles
counting7. On the other hand, the sets of real and complex numbers, R and C, are
much larger. We say that they are uncountably infinite. This distinction will show
its importance shortly.

As regards common notation, there are several operations between sets. If two
sets have the same elements, then we write that they are equal, the same as any other
statement of equality. If the elements of one set are contained in another set than we
say that one is a subset of the other, i.e. if all the elements of A are contained in B
then we say that A ⊂ B. On the other hand, in the same scenario, we would say that
B is a superset of A and write A ⊃ B. The notation is similar to that for greater than
and less than. There are many other set operations. These include in particular union
and intersection. The union of two sets is the set that contains all of the elements
from both sets, e.g. A = {1, 2, 6}, B = {1, b, π}, and A ∪ B = {1, 2, π, 6, b}, where
A ∪ B is “A union B.” On the other hand, the intersection of two sets is the set
containing only the elements in common, e.g. with A and B as before, A∩B = {1}.
Set notation also exists to describe the union or intersection of many sets at once.
Suppose for example that we have sets described by An = {n, n + 1}. Then we can

7It is much more accurate to say that the sets N, Z, and Q are countably infinite because there
exists a bijective (or one-to-one) function f : N→ A from N to one of the three sets, represented as
A. If no such bijection exists, the set is uncountably infinite.
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describe the union of all such sets where n is a natural number in a way similar to
summation:

∞⋃
n=1

An = A1 ∪ A2 ∪ · · · = {1, 2} ∪ {2, 3} ∪ · · · = N.

Multiple intersections are denoted similarly. There are two other common operations
on sets, compliments and differences. Suppose that the set A is a subset of U where
U is considered universal, i.e. U contains all of the possible elements. Then the
compliment of A, written A, is the set of all elements in U that are not in A. Thus,
A ∪ A = U . The difference between two sets is the set of elements that the first set
does not have in common with the second set. Thus, if A = {1, 2, 3} and B = {1, 2},
then A−B = {3}.

It is of course possible to describe ordered pairs using set theory as well. Suppose
we are considering the sets A and B and we would like to create the set of all ordered
pairs of elements from these sets. Then we would want A×B = {(a, b)|a ∈ A, b ∈ B},
the Cartesian product of A and B. We notate the Cartesian product of a set with
itself using exponential notation. For example R×R is R2, which is the set of points
in the well-known Cartesian plane.

An additional useful notion is the power set of a given set. Consider a set A.
Then the power set of A, denoted by P(A), is the set of all subsets of A. If A has
finite cardinality |A|, then the cardinality of P(A) is 2|A|. Also note that ∅ ∈ P(A)
and A ∈ P(A).

Finally, this introduction to sets would be incomplete without briefly explaining
a ubiquitous shorthand for particular subsets of R called intervals. Specifically, (a, b)
represents a subset of the reals composed of all the real numbers between a and b
where a < b, i.e. (a, b) = {x ∈ R|a < x < b}. Here a parenthesis denotes that the
endpoint is not included. The interval (a, b) is thus called an open interval. Similarly,
the interval [a, b] = {x ∈ R|a 6 x 6 b} is called a closed interval because it contains
both of its endpoints. The intervals (a, b] and [a, b) are also possible. This notation is
very powerful when combined with the other ideas in this section, and in particular
when describing functions of real numbers.

Functions

The function is the most commonly understood mathematical entity beyond basic
arithmetic, finding regular use in every scientific discipline, including such disparate
fields as economics, psychology, and physics. However, for the sake of notation, it
would be wise to quickly review the formal definition of functions, as well as a few
important classificiations that do not find use outside of mathematical theory.

Simply put, a function maps elements of one set to elements of another set (or
the same set), with the caveat that to be a function one element from the first
set is mapped to only one element of the other set. In the sciences, functions are
typically accepted as mapping real numbers to real numbers, and this is implicitly
understood. However, in the elaboration of quantum computation theory, this is
not always desired. In formal mathematics, functions are initially described, for
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instance, as f : (0,∞) → R, where in this case the function f only takes inputs
that are nonnegative reals, and outputs a real number. Perhaps this is the function
f(x) =

√
x. This kind of initial notation helps clarify what the function is expected

to do. When the initial set (or the final set) involves a different kind of object than
a real number, this provides necessary clarity.

While there are many classifications that can be used to describe various kinds of
functions, there are three overarching classifications that will be described here for
organizational reasons8. Suppose that for the following definitions we are considering
the function f : A → B. The first such classification is injective or one-to-one. We
say that f is one-to-one if each element of A maps to a unique element of B, i.e.
∀a, b ∈ A, f(a) = f(b) ⇒ a = b. The second such classification is surjective or onto.
We say that f is onto if each element of B gets mapped to by at least one element
of A, i.e. ∀b ∈ B, ∃a ∈ A 3 f(a) = b. When a function is both one-to-one and onto,
we say that it is bijective. A bijective function is one where every element of A is
mapped to a unique element of B and all of B is covered. This often has important
implications about mathematical structures, beyond the relatively simple notion of
sets. Specifically, if f is bijective then |A| = |B| which is an important property in
and of itself. This first allowed mathematicians to demonstrate that cardinality is
not sufficient for comparing the sizes of infinite sets. We say that an infinite set is
countable if there exists a bijective function from N to the set in question. Thus, the
elements of the set could in some way be ‘counted’ even if the set is infinite. Using
this definition, we find that Z and even Q are countable sets. However, it can also
be shown that there is no bijective function between N and R. So we say that R is
uncountable. This distinction will return later9.

Matrices

An m×n matrix A refers to an array of numbers organized into m rows and n columns
and denoted by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

Here, the numbersm and n denote the dimension of the matrix. Matrices are governed
by more particular rules of arithmetic than numbers. In order to add or subtract two
matrices, they must have the same size or dimension. Addition occurs element by

8Specifically, these three classifications, one-to-one (injective), onto (surjective), and one-to-one
correspondence (bijective), do not imply any underlying structure other than set theory, and so
belong to the purest possible discussion of functions.

9As will also be described later, it is interesting to note the qualitative relationship between
R and Q, the reals and the rationals. With little thought, it becomes not surprising that one can
create a rational number that is arbitrarily close to any real number. For example, imagine creating
rational numbers that come closer and closer to the value of pi. This property is not unique to Q or
even to the reals, and will prove of fundamental usefulness in describing quantum approximation.
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element, e.g. (
2 1
1 4

)(
4 1
−1 2

)
=

(
6 2
0 6

)
In order to multiply two matrices, the number of columns in the first must be

the same as the number of rows in the second (the inner dimensions must agree, i.e.
Am,n×Bn,p is allowed). The operation of matrix multiplication is relatively complex.
For example, when multiplying the m×n matrix A with the n×p matrix B, the first
element of the product AB, ab11 would be given by ab11 = a11b11+a12b21+· · ·+a1nbn1.
A full example of the product of two 2× 2 matrices might be(

1 2
2 3

)(
2 4
1 2

)
=

(
4 8
7 14

)
.

Given the importance of dimension and the relative complexity of the operation, it
is important to note a few facts about matrix multiplication. First, matrix division
is not an operation that is always allowed (or arguably exists in the same way that
division does for the reals), something that can only be truly approximated using
square matrices. Second, there is an equivalent to the number 1 in terms of matrix
multiplication, a matrix whose product with any other matrix is that matrix. It is
called the identity matrix and is given as

In =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

There are a few other possible operations on matrices. One such operation is
the determinant of a matrix. For a given matrix, the determinant only exists if the
matrix is square. E.g.

A =

(
a b
c d

)
, det(A) = ad− bc,

shows the determinant of a 2 × 2 matrix. The determinant of the more complex
n × n matrix is much more difficult to calculate. An important classification of
matrices are those with nonzero determinants. Such matrices are called nonsingular.
If a square matrix is nonsingular, then there exists an inverse of the matrix, i.e.
An×n, det(A) 6= 0 ⇒ ∃A−1 3 AA−1 = A−1A = In. Multiplication by an inverse
matrix is the closest thing to division that is accessible by matrices. All square
matrices also have a trace. The trace of a matrix A, denoted Tr(A), is the sum of the
entries on the main diagonal, i.e. if

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann
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then
Tr(A) = a11 + a22 + · · ·+ ann.

Another important elementary unary operation on a matrix is transposition. The
transpose of an m×n matrix A is the n×m matrix Aᵀ. Each matrix entry essentially
has its indices swapped, so for aij in A, the same entry is the element aji in Aᵀ. In
other words, the transpose of a matrix is the reflection of the matrix about its main
diagonal. The final unary operation that will be required is the Hermitian adjoint
of a matrix. The Hermitian adjoint of matrix A is the complex conjugate transpose,
denoted by A†. If A = A†, then we say that A is Hermitian. We will find matrices
to be of utmost importance when describing the fundamental structure of 1-qubit
quantum gates.

Group Theory

We begin by defining the group structure. Let X be a set and · be a binary operation
on the elements of X. X paired with · and most generally denoted as (X, ·) is called
a group if the following axioms are satisfied10:

1. ∃e ∈ X 3 ∀a ∈ X, ae = ea = a (Identity Existence),

2. ∀a ∈ X, ∃a−1 ∈ X 3 aa−1 = a−1a = e (Inverse Existence),

3. ∀a, b ∈ X, ab ∈ X (Closure Under Binary Operation),

4. ∀a, b, c ∈ X, a(bc) = (ab)c (Associative).

Notice that it is not generally the case that for a, b ∈ X, ab = ba. If a group does
have this property, commutativity, it is called an Abelian group. What follows are a
series of important examples and definitions to introduce the necessary components
of group theory used in quantum computing theory.

Example. (R,+) is a group. The identity e = 0 ∈ R. For any real number r,
r − r = r + (−r) = 0 = rr−1, so there are inverses. Closure and association are
trivial properties of the real numbers. Also, for all of the same reasons, (Z,+) is a
group.

Example. (R, ·) is not a group. As 0 does not have a multiplicative inverse, this
should not be surprising. I.e. 1/0 = 0−1 does not exist. However, (R − {0}, ·) and
(R>0, ·) are groups.

Example. Groups can be finite as well. One of the most accessible examples is the
group (Z3,+), where Z3 is the modular arithmetic set {0, 1, 2}. The operation + could
be more clearly defined thusly: + : Z3 × Z3 → Z3,+(a, b) ≡ (a+ b)(mod3). So in this
group, 1 + 2 = 0. It would be useful to introduce the notion of a Cayley table to show
how all of the unique elements of the group act on each other. This is the cayley table

10The binary operation is clearly omitted in general when discussing group theory. This is because
there is only one operation in the group structure and it can be inferred from context.
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Table 1. Cayley table for Z3

+ 0 1 2
0 0 1 2
1 1∗ 2 0
2 2 0 1

for Z3. The operations read such that for the box marked with a * we show 1 + 0 = 1,
in that order. Since a group is not necessarily Abelian (commutative), the order is
important to keep straight. However, since this group is Abelian, there is some extra
symmetry to notice.

Example. Groups can describe more than just integers and real numbers, more than
simple numerical structure. The definition of a group is both broad and abstract

enough that it can be adapted to a variety of situations. Let GL2(R) = {
[
a b
c d

]
|

a, b, c, d ∈ R, det 6= 0}, which is called the 2-dimensional general linear group over R.
The operation of the group is matrix multiplication. Checking that this satisfies the
group axioms is left as an exercise to the reader. Note that this is an example of a
nonAbelian group.

Example. One of the most important uses of a group is to describe symmetries
such as rotations. For objects like the square or the equilateral triangle, these groups
are finite because there are a limited number of rotations and reflections that leave
the shape unchanged. However, for spheres, or more generally vectors, there are an
infinite number of such rotations. Objects with this kind of continuous symmetry are
typically described by continuous groups known as Lie groups (pronounced like ‘Lee’).
A good example here is describing rotations on the unit sphere11 S2 = {x ∈ R3||x| =
1}. The group of rotations (and only rotations) in three dimensions is the special
orthogonal group SO(3) = {X ∈ GL3(R)|XᵀX = I3, det(X) = 1} where GL3(R) is
the group of nonsingular 3× 3 matrices with real entries.

Typically, when discussing an arbitrary group G, the operation is not written
along with the set name or during computation. E.g. the group formed from set G
with operation · will always be referred to as G and not (G, ·), while for two elements
a, b ∈ G, the operation between them will be written ab and not a · b. Let G be a
group and H ⊆ G. H is called a subgroup of G if H also satisfies the group axioims.
Stated without proof, there is a theorem that simplifies the determination of whether
a subset is a subgroup: ∀a, b ∈ H, ab−1 ∈ H ⇒ H ≤ G where H ≤ G is the common
notation indicating subgroup status.

11Usage for the word sphere differs outside of mathematics. In vernacular use, the word sphere
typically refers to the supposedly three-dimensional volume that looks like the earth. Throughout
this work, and generally in mathematics, the word sphere usually has a dimension specified, like the
2-sphere defined here, and can be thought of as the shell surrounding a ball in one dimension higher.
Note that we define the 2-sphere in terms of R3. This is because doing so is simple, however, as the
name suggests, the 2-sphere can actually be described by only two numbers, and is fundamentally
a two-dimensional object. Keep this in mind throughout.
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Let G be a group. Let Z(G) = {z ∈ G | gz = zg∀g ∈ G}. Z(G) is called the
center of G and contains the elements of G that commute with every element of G.
Nontrivially, Z(G) ≤ G. Every group at least has the trivial center {e}. Let G be a
group and S ⊆ G a subset of the elements of G. We call, for g ∈ G, gS = {gs | s ∈ S}
a left coset of G. The right coset is defined similarly. If G is Abelian, gS = Sg∀g ∈ G.
Let G be a group and N ≤ G. The subgroup N is called normal if ∀g ∈ G, gN = Ng.
Obviously, every subgroup of an Abelian group is normal. Normality is notated as
N EG. Let G and H be groups.

A function φ : G→ H is called a homomorphism if ∀a, b ∈ G, φ(a), φ(b) ∈ H and
φ(ab) = φ(a)φ(b), where the operation between a and b is from G and the operation
between φ(a) and φ(b) is from H. This is called a structure preserving map and
specifically a group homomorphism. Let G and H be groups. A function φ : G→ H
is called a group isomorphism if φ is a bijective homomorphism. I.e.:

1. ∀a, b ∈ G, φ(ab) = φ(a)φ(b)

2. φ(a) = φ(b)⇒ a = b∀a, b ∈ G

3. ∀h ∈ H,∃g ∈ G 3 φ(g) = h.

If there exists an isomorphism between G and H, the two groups are called iso-
morphic. A key property of both morphisms is that the identity of G maps to the
identity of H. Also, the isomorphism class is notated G ≈ H ⇔ G ' H. In addition,
|G| = |H|, trivially. Essentially, groups that are isomorphic have the same structure
and that structure is just expressed in different ways. Any fact about one group is
true for every group it is isomorphic to.

Let G be a group and N E G. We define G/N = {gN | g ∈ G} and call it
the factor group or quotient group with the composition operation. Namely, ∀a, b ∈
G, (aN)(bN) = (ab)N . ∀n ∈ N, nN = N , so we say that a quotient group absorbs
elements. Let G be a group and S ⊆ G 3 S = {s1, s2, · · · , sn}. Let 〈s1, s2, · · · , sn〉 =
〈S〉. If 〈S〉 = G, we say that the elements of S generateG. Alternatively, one can start
with a large group G and consider Γ ≤ G, the subgroup generated by the elements
in S. The meaning of 〈s1, s2, · · · , sn〉 is that we are interested in the subgroup made
from strings of these elements and any other elements you can make with them. The
information in this section and above can be distilled from [2], a popular textbook
on group theory.

Quantitative Model for 1-Qubit Logic Gates

Here, we define the qubit as well as discuss the notation used in physics to label
quantum states. For a quantum computing system utilizing qubits, each particle
can be in one of two basis states when measured, |0〉 or |1〉. While evolving, each
state |ψ〉 representing a qubit is in a linear combination of the basis states. So then
|ψ〉 = α|0〉+β|1〉, where |α|2+|β|2 = 1. This requirement guarantees the conservation
of probability in quantum measurement. Note that here α, β ∈ C. Mathematically
speaking, we consider |0〉 and |1〉 to be orthonormal basis vectors in C2 that are
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represented by

(
1
0

)
and

(
0
1

)
respectively. It follows that |ψ〉 can be represented by

the vector

(
α
β

)
.

Recall from the qualitative introduction that logic gates act on computational
states to return logical outputs. Thus, logic gates are represented mathematically by
linear transformations. So, we want a mathematical object that takes |ψ〉 and maps
it to the new state |ψ′〉 = α′|0〉 + β′|1〉. By considering the vector representation of
|ψ〉, it becomes clear that 1-qubit quantum logic gates can be represented by 2 × 2
matrices that preserve the property that |α|2 + |β|2 = 1. Most succinctly, we can
describe such matrices as a group.

The most general group describing matrices with complex entries is

GL2(C) = {A =

(
a b
c d

)
|a, b, c, d ∈ C, det(A) 6= 0} (2)

the general linear group of 2 × 2 matrices with complex entries. The operation for
matrix groups is typically matrix multiplication, and there is then a requirement
that the matrices are nonsingular. So then, the group of matrices that most generally
describes the set of all 1-qubit quantum gates is U(2) = {P ∈ GL2(C)|P †P =
I2}. However, we find that due to the nature of quantum mechanical states, we
actually only need consider the equivalent of direction for these matrices, and not
worry about the ‘length’ of the matrix. So then, if we consider U(2) under the
mapping X ∈ U(2), X ∼ X√

det(X)
, which takes the determinant to 1. Thus, we are

most primarily concerned with SU(2) = {X ∈ U(2)| det(X) = 1} which is called
the special unitary group. Finally, in the context of quantum computing, we also
find global phase to not have any practical effect on gates, so we can work with the
additional mapping wherein X and −X are considered equivalent. Since the center
of SU(2) is Z(SU(2)) = {I2,−I2}, we define PSU(2) = SU(2)/Z(SU(2)) to be the
projective special unitary group. Based on this group theoretic underpinning, we
can define additional structures that will ultimately be used to describe the covering
properties of universal subgroups of SU(2) and PSU(2).

Topology and the Topological Structure of SU(2)

We begin by defining the basic structures used in topology.
Let X be a set and τ be a collection of subsets of X. A topological space follows

the following axioms:

1. ∅, X ∈ τ

2. Any union of elements of τ are in τ .

3. The intersection of a finite number of elements of τ is in τ

where τ is called a topology. Let S ⊂ X. A point x ∈ X is a limit point if every
neighborhood of x has a nonempty intersection with S. Here, the neighborhood of a
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point can be thought of as an open set containing points that are arbitrarily close to
the point in question.

A subset A of a topological space X is called dense if ∀x ∈ X:

1. x ∈ A or

2. x is a limit point of A.

Let G be a topological group, i.e. a group that is also a topological space, and S ≤ G,
such that S = {s1, s2, · · · , sn}. Let Γ = 〈S〉. S is called universal if Γ is dense in
G. A nonempty subset S ≤ G is symmetric if S = S−1 where S−1 = {s−1|s ∈ S}.
In other words, a subset of a topological space is dense if its points are arbitarily
close to any points in the space. For example, the rationals Q are dense in R. In
the context of topological groups, a subset S is called universal if the subgroup it
generates is dense. If S contains the inverse of every point, it is symmetric. The
properties of universal and symmetric are required by the Solovay-Kitaev algorithm
for approximating arbitrary unitaries in SU(2). With regards to the research directly
achieved in this work, these two properties are most important.

Similar to homomorphism and isomorphism over groups, topological structure
allows for the possibility of diffeomorphisms. Consider a differentiable manifold to
be a topological space that locally resembles the reals enough for calculus to be
defined. All of our topological groups and spaces will be differentiable manifolds,
specifically SU(2), PSU(2), SO(3), S2, and S3. A diffeomorphism is a bijective
function between differentiable manifolds with a continuous inverse. Similar to group
isomorphism, diffeomorphism implies that two spaces share the same structure in
some way. With that in mind, one can show that SU(2) is a double cover of S2 and
SO(3) and is diffeomorphic to S3. It is also the case that PSU(2) is homomorphic to
SO(3), which provides a connection to S2. These connections will be used to describe
the covering efficiency of certain choices of universal gate set.

Metric Spaces and the Metric Structure of SU(2)

A metric or distance function on a set X is defined as d : X ×X → R≥0 satisfying
∀x, y, z ∈ X:

1. d(x, y) ≥ 0

2. d(x, y) = 0⇔ x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z).

The trace of a matrix, defined early, is interestingly invariant under a change in basis,
and is the sum of the eigenvalues. Because of these properties, we can use the trace

12



to define a common invariant metric on SU(2). Specifically, for X, Y ∈ SU(2), the
metric we use is given by

d(X, Y ) =

√
1− |Tr(X†Y )|

2
. (3)

This metric is invariant, meaning that ∀h ∈ SU(2) and ∀X, Y ∈ SU(2), d(hX, hY ) =
d(Xh, Y h) = d(X, Y ).

We also would like to define the notion of a set of points a fixed distance from
some X ∈ SU(2). In mathematics, this is what is meant by a ball. Formally, for
some group G with metric d, the ball of radius ε centered at γ ∈ G is

BG(γ, ε) = {x ∈ G|d(x, γ) < ε}.

Measure Theory and the Haar Measure

For the sake of completeness, it is necessary to briefly introduce the notion of a
measure as well as its purpose and a type of measure used in describing the efficiency
of a universal gate set. Let X be a set and P(X) be the power set of X. Then
Σ ⊆ P(X) is called a σ-algebra if it satisfies the following:

1. X ∈ Σ

2. ∀A ∈ Σ, X − A ∈ Σ

3. ∀A1, A2, · · · ∈ Σ, A1 ∪ A2 ∪ · · · ∈ Σ

The elements of a σ-algebra are called measurable sets. In a topological space X,
a Borel set is any set that can be formed from open sets using countable unions,
countable intersections, and relative complements. The collection of all Borel sets
on X forms a σ-algebra called the Borel algebra. Further, the Borel algebra is the
smallest σ-algebra containing all open sets.

In a metric space (X, d), compactness is equivalent to the statement that every
infinite subset of X has at least one limit point in X. Similarly, a compact group is
a group whose topology is compact. The groups SU(2) and PSU(2) are compact.
Intuitively a measure can be thought of as a function that returns the ‘size’ of a set.
The origins of measure theory come from real analysis. The usual measure of an open
interval is simply the length; following on, one finds that measure is fundamentally a
generalization of integration. The usual measure on the reals is the Lebesgue measure,
defined by Henri Lebesgue, wherein the measure of finite and countably infinite sets
is zero. However, the Lebesgue measure is defined specifically for Rn.

Thus, since we are interested in using the concept of measure, we require a gen-
eralization for any compact group, which is the Haar measure. Let G be a compact
group. A normalized Haar measure µ : Σ→ R≥0 on G where Σ is the Borel algebra
of G satisfies:

1. µ(G) = 1,
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2. ∀x ∈ G and S ∈ Σ, µ(xS) = µ(S).

We will use a Haar measure on SU(2) to determine how well a universal gate set gen-
erates a covering of SU(2). Details for this will be provided shortly. The information
in the sections on qubits, topology, metric structure, and measure theory is expanded
from a discussion in [3]

3 Approximation of Quantum Logic Gates

With an appropriate mathematical background in place, it is possible to describe
the difficulties caused by the plethora of potential 1-qubit quantum gates and be-
yond. Classical algorithms, implemented using Boolean logic gates, can be universally
achieved using only the NAND gate, which could be described as a 2-bit classical gate.
Because quantum computing has such a different underlying mathematical structure,
the intricacies of implementing an arbitrary algorithm are much more complex. The
set SU(2) describing all potential 1-qubit gates is uncountably infinite. The ramifi-
cations of that are that naively, an arbitrary algorithm would require a unique set of
gates to perform every step, a practical impossibility. Implementation would require
the manufacturing of inordinate kinds of quantum gates. Considering that modern
computing using Boolean gates has only been achieved thanks to the economies of
scale introduced by using a minimal number of unique gates, it is clear that quantum
computing in general is untenable without a way to overcome this obstacle. What is
desired is a finite set of 1-qubit quantum gates that can be connected to approximate
an arbitrary 1-qubit quantum gate.

However, as hinted at earlier, uncountably infinite compact topological groups
such as SU(2) permit the existence of dense subgroups, and such dense subgroups
could potentially be generated by a finite set of elements. This turns out to be the
case for SU(2); there are many such universal sets of 1-qubit quantum gates that
generate a dense subgroup of SU(2). This only solves one of the practical problems
posed. The existence of universal subsets of SU(2) does not necessarily guarantee
that the approximations are efficient. It is perhaps thinkable that there are universal
subsets that would require very long strings of gates in order to approximate certain
elements of SU(2). What is realistically desired is a set that covers SU(2) to within
an arbitary accuracy with relatively short chains of gates. This could be termed to
be particularly efficient choices of universal subset. We must formalize these ideas
to create an exact enough mathematical description of efficient covering that we can
determine which gate sets are ‘good’.

We begin by noting an interesting property of elements of SU(2). Recall that
SU(2) = {X ∈ U(2)| det(X) = 1}. Due to the requirement that X†X = I2, we have
that

X =

(
a b

−b a

)
.

Then it must be the case that aa + bb = 1 since det(X) = 1. Since a, b ∈ C we can
choose real numbers x1, x2, x3, x4 ∈ R such that a = x1 + x2i and b = x3 + x4i. It
then follows that the matrices in SU(2) must have entries comprised of real numbers
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that satisfy x21 + x22 + x23 + x24 = 1. In other words, all of the elements of SU(2)
correspond to points on the sphere S3. This diffeomorphism was already discussed,
but the direct realization will prove invaluable.

Let S = {s1, s2, . . . , sn} be a universal, symmetric subset of G = SU(2). Then let
Γ = 〈S〉 be the dense subgroup of G generated by S. We define a weight function
w : S → R>0 that assigns a ‘cost’ to each element of S. In practice, the cost represents
the computational difficulty assigned to using each gate to approximate a different
one. Typically, for any s ∈ S, we take w(s) = 1. Next we define a height function
h : Γ→ R>0 such that for γ ∈ Γ,

h(γ) = min{Σm
k=1w(xk)|γ = x1x2 . . . xm, xk ∈ S}.

That is, h represents the combined weight of the most efficient approximation γ. We
typically suppose that we utilize the most direct combination of gates to arrive at
any point in Γ.

Using these functions, we can define a few sets that help summarize key ideas.
First, we define a set of specific height to be

U(t) = {γ ∈ Γ|h(γ) = t}. (4)

Similarly, we define the set of bounded height by

V (t) = {γ ∈ Γ|h(γ) 6 t} =
t⋃
i=1

U(i). (5)

Using these sets, it is simple to begin composing a notion of a set being particularly
efficient. We would like to specify a fault-tolerance ε and consider the points in the
set V (tε), where tε is the height required so that

G ⊂
⋃

γ∈V (tε)

B(γ, ε) (6)

is satisfied. This in other words is the height required to generate a set of points
that covers all of G to within the tolerance. For the purpose of this thesis, we are
directly interested in considering the approximation of specific gates using different
choices of universal gate set, however considering the larger issue of approximating
all of SU(2) is of great importance to the field as a whole. The notation used here is
derived from [3, 4, 5]. With this in mind, we introduce the Solovay-Kitaev theorem
[6], which serves as the crux of this research.

Theorem (Solovay-Kitaev): Fix ε > 0 and S a universal, symmetric subset of
SU(2). If not otherwise specified, ε is small enough and t > 0. Then there exists a
constant c such that for all X ∈ SU(2), there exists γ a finite sequence of gates from
S of length O(logc(1

ε
)) approximating X within ε error12. Typically we can consider

c = 2.71.

12In other words, d(γ,X) < ε
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It is useful to also briefly discuss concepts that are used to describe the efficiency
of universal gate sets. Note that the Solovay-Kitaev theorem guarantees the existence
of an approximation, but it does not guarantee the length on its own. Further, it
does not describe how quickly all of the points of SU(2) become approximated to
within ε. There are a few common options used in the study of point distributions
and covering properties. The first of these is the definition of covering radius:

K(S) ≡ lim sup
ε→0

log|V (tε)|

log

(
1

µ(BG(ε))

) . (7)

The covering exponent of a universal subset is between 1 and ∞ where 1 is the most
optimal efficiency. As far as is known, there are not any universal subsets that have
optimal efficiency everywhere. The work in [7] describes an algorithm that works
optimally well for a wide class of universal gate set in approximating a common type
of unitary. The best known sets are called arithmetic golden gate sets and super
golden gate sets, explored in [3, 4, 8, 9, 5]. The known efficiency for this class of
sets is between 4

3
and 2. Further, these gate sets can be shown to be optimally

efficient almost everywhere. This means that all of points of SU(2) except for up
to a countably infinite set of points can be approximated optimally. Attempting to
narrow the known bound efficiency for gate sets of this type has proven exceedingly
difficult. Previous research on this specific topic was completed at the University of
Michigan during 2017 and can be viewed here [3, 4].
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CHAPTER II

Method

Here, we describe the algorithm that is explicitly used to prove the Solovay-Kitaev
theorem in [6], and how it will be used to judge the efficiency of relatively short se-
quences from very common universal subsets. Let S be a universal, symmetric subset
of SU(2) and U be an arbitrary gate in SU(2) that is to be approximated. Then the
algorithm proceeds roughly by running recursively over S to build an approximation
to U . This will be discussed more thoroughly below, after describing the mathematics
of a key step of the algorithm.

1 Group Factor Commutation

The Solovay-Kitaev algorithm relies on a particular decomposition of an element of
SU(2) referred to by Dawson and Nielsen as a balanced group commutator. Given
a unitary U , then a group commutator is a set of two unitaries V and W such that
U = VWV †W †. There are infinite choices of group commutator for a given unitary,
so the goal is to determine one which satisfies the algorithm.

Consider U to be a rotation by some angle θ about some axis n̂ on the Bloch
sphere1. In [6], it is described that a solution to

sin(θ/2) = 2 sin2(φ/2)
√

1− sin4(φ/2) (8)

for φ, can be used to generate rotations that form a group commutator that is similar2

to U . Let V = Rx(phi) and W = Ry(phi) where Rx and Ry are rotations on the
Bloch sphere about the x and y axes, respectively3. Then VWV †W † is similar to U .

1The Bloch sphere is a particular way to represent qubit states up to global phase as points on
or in the 2-sphere. In this representation, we consider quantum gates to be rotation matrices acting
on Bloch sphere states.

2For the sake of relative brevity, similarity of matrices was not described in the introduction.
Consider two matrices A and B. Then we say that A is similar to B if there exists some matrix
S such that A = SBS−1. It can be shown with relative ease that, among other properties, similar
matrices have the same eigenvalues, which ultimately means that we can use them to map our initial
group commutator to one that we want.

3In the interest of detail [1],

Rx(φ) =

(
cos(φ/2) −i sin(φ/2)
−i sin(φ/2) cos(φ/2)

)

Ry(φ) =

(
cos(φ/2) − sin(φ/2)
sin(φ/2) cos(φ/2)

)
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Let S be the unitary matrix such that U = SVWV †W †S†. Finally, the matrices that
form our balanced group commutator are Ṽ = SV S† and W̃ = SWS†. So then, we
have a subalgorithm for decomposing U into Ṽ W̃ Ṽ †W̃ †. This is what we required.

2 The Solovay-Kitaev Algorithm

Borrowing the very simple pseudocode from [6], the Solovay-Kitaev algorithm can be
expressed in just a few lines:

function Solovay-Kitaev(Gate U, depth n)
if (n == 0)

return nearest approximation to U
else

set Un−1 = Solovay-Kitaev(U, n− 1)
set V , W = Group-Factor-Decompose(UU †n−1)
set Vn−1 = Solovay-Kitaev(V , n− 1)
set Wn−1 = Solovay-Kitaev(W, n− 1)
return Un = Vn−1Wn−1V

†
n−1W

†
n−1

We now break this down stey by step. We immediately see that the algorithm
does not specify either a gate length or a fault-tolerance. Instead, we specify a gate
to be approximated and a depth of recursions. Then, iteration n gives an instruction
set of tolerance εn where εn is a decreasing function of n. Of course, as was previously
discussed, the difficulty in rigorously proving results on the long-term efficiency of each
universal gate set is an inability to understand the underlying connection between εn
and n.

The algorithm operates by working through each iteration recursively until n = 0
is reached. At this point the algorithm returns an initial approximation to U . This
pivotal step presumes that some initial library has been built up out of the universal
gate set being used to search through. In other words, at the base of the algorithm
is a search through some V (t) to find the best approximation relative to the metric
function being used. Realistically, the V (t) that is utilized depends on the amount of
computer memory and processing power. Exponential increases in the computational
cost of the search dramatically increase the amount of memory and time required to
run the algorithm at the specified depth. In practice, t does not have to be very great
in order to create a perfectly usable starting set.

From here, the algorithm builds up better approximations to U . The unitary
UU †n−1 gives a matrix that is within a distance εn−1 of the identity4. We arrive at an

approximation to UU †n−1 by taking the group factor decomposition and then using
the algorithm to approximate V and W to a depth n − 1 using our prebuilt library
of gates. It turns out that doing this actually leads to a better approximation to U
given by Vn−1Wn−1V

†
n−1W

†
n−1. This is all there is to the algorithm.

4UU†n−1 is sort of like the difference between U and the current best approximation Un−1. Recall
that UU† is identically the identity, being that this is the defining property of unitary matrices.
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3 Using the Solovay-Kitaev Algorithm

Though the Solovay-Kitaev theorem guarantees the existence of approximations to
arbitrary unitaries with elements from universal gate sets that converge relatively
quickly and corresponds to a simple algorithm, that does not mean that the problem
of approximation is anywhere close to settled. In reality, the Solovay-Kitaev algorithm
is just an impressive first step, a general algorithm waiting to be improved upon.
The review paper detailing the algorithm, [6], is quite old now, and the underlying
theorem is older still. There have been many other algorithms developed for quantum
approximation, some specialized for specific gate sets, others improving upon the
Solovay-Kitaev algorithm itself. Table 1 in [7] provides a nice summary of much
of the recent work on more specific algorithms than the Solovay-Kitaev algorithm.
Notice though that for approximating any element of SU(2) using any available gate
set, the Solovay-Kitaev algorithm stands alone. All of the other given algorithms are
limited in some way.

The goal of this work is to use the Solovay-Kitaev algorithm in conjunction with
several popular universal gate sets to experimentally test efficiency at low tolerance
and short sequences, considering each gate used to have equal cost. Originally, this
comparison would be accomplished by compiling approximations to commonly used
quantum logic gates, such as those used in Shor’s algorithm. However, upon further
research and thought, this scale seemed to be too specialized and limited. While
there are certainly several interesting algorithms that would be worthy candidates,
it seemed perhaps more universally applicable to run this experiment over a much
larger sample size of randomly generated unitary matrices. Then by considering the
average sequence length and accuracy, a much better understanding of performance
at this small scale would be obtained.

Performing this computational experiment required an implementation of the
Solovay-Kitaev algorithm. Initially, I attempted to create my own implementation
in Python. However, due to an as yet not understood difficulty in implementing
the group commutator decomposition step, I ultimately utilized a modified version
of Chris Dawson’s original implementation of the algorithm [10]. This was possible
because his code is a faithful representation of the algorithm that generates a library
of gates V (t) and runs the algorithm. I adapted his underlying work by adding in
more gates to use for testing and altering the metric norm used to match that which
is defined in [3, 4, 5] and the introduction of this work. It does bear noting that this
implementation contains flaws that are characteristic of naively using the Solovay-
Kitaev Algorithm. Principally, neither the algorithm or this implementation accounts
for the possibility of each of the individual steps combining in a way that places a
matrix and its inverse next to each other. However, as larger preprocessed libraries
are used, the frequency of this occurring in practice diminishes substantially.
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CHAPTER III

Results

I begin this chapter by reiterating that the goal of the experiment was to determine,
over a large number of randomly generated unitaries, which common universal gate
set on average gave the shortest sequences with the most accurate approximations
using the Solovay-Kitaev Algorithm. Perusing the literature, it was clear which uni-
versal gate sets were the most widely studied. Defined below, the sets used in this
experiment were the H+T set, the Pauli+V set, the V basis, and the Clifford+T set.

The H+T set stands for Hadamard and T , where T is the common name given

to the
π

8
phase gate. The matrices for these gates are

H =
1√
2

(
1 1
1 −1

)
,

T =

(
e

−iπ
8 0

0 e
iπ
8

)
.

Many papers that involve the H+T set consider only the number of T gates that
appear in a particular approximation, however, upon further examination, this does
not ultimately alter the conclusion of this experiment. This and the Clifford+T gate
sets are described in [1]. The Clifford+T set consists of the Clifford circuits H and
S, which form a finite group, as well as T . We have that

S =

(
1 0
0 i

)
.

The gate S is called the phase shift gate.
The Pauli+V set is a modification of the V basis, so both will be described at

once. The V basis is discussed in [11, 5], while the Pauli+V set is further explored in
[11, 3, 4]. The V basis consists of the elements A, B, and C defined below as well as
their inverses. Here, X, Y , and Z are the Pauli matrices. The Pauli+V set contains
the gates of the V basis as well as iX, iY , and iZ. The matrices for these gates are

A =
1√
5

(I + 2iX),

B =
1√
5

(I + 2iY ),

C =
1√
5

(I + 2iZ),
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where I is the identity matrix. The gates A, B, and C correspond to Bloch sphere
rotations about the x, y, and z axes by the angle arccos(3

5
). Their covering properties

have been well studied [5].
Each of these sets were entered into the Solovay-Kitaev implementation. A library

was generated to varying depth depending on the number of base elements. For
H+T, the only base elements are H, T , and T †, so the base library was generated
to V (14). Continuing on, Pauli+V was generated to V (5), the V basis to V (6), and
the Clifford+T set to V (9). Each of these generation depths was balanced with the
number of different random gates that were approximated. Each universal gate set
was used to approximate 10, 000 randomly generated unitary matrices to a depth of
n = 5 of the Solovay-Kitaev algorithm. The underlying goal was to keep in mind that
in the early days of quantum computing, each gate used in an approximation is quite
costly to implement. Under these conditions, each gate set made an approximation
with sequences of length the same order of magnitude. The averages over the 10, 000
trials are shown below in Table 2.

Table 2. Results for 10, 000 approximations using common gate sets.

Set Length Accuracy

Clifford+T 25575 0.04431
H+T 40405 0.004376

Pauli+V 15491 0.0002686
V 16403 0.0001465

By examining the table, one comes to the conclusion that the V basis and the
Pauli+V set are distinctively in a league of their own. Both have similar sequence
lengths and have accuracies at the same order of magnitude. Ultimately, this isn’t
very surprising, especially comparing the two sets’ asymptotic behavior. Though as
discussed above this is not the case for this particular naive implementation of the
Solovay-Kitaev algorithm, under an optimal expression of the approximation one finds
that the elements iX, iY , or iZ appear at most once in a sequence from Pauli+V
[3, 4]. It is then no surprise that Pauli+V and the V basis have similar approximation
efficiency throughout. To be clear, both of these sets produced approximations that
are shorter and better than the other two sets examined. On the contrary, H+T
achieved an average accuracy that was only one order of magnitude above the V based
sets, but the sequences produced were much longer. The sequences from Clifford+T
are of moderate relative length, but delivered the worst average approximation. There
are many algorithms based on Clifford+T that might work much better than Solovay-
Kitaev [12, 13].

This is perhaps a somewhat surprising results. It has been shown that asymptot-
ically, all of these gate sets should have similar efficiency [5, 3, 4]. It is possible that
the universal gate sets that consist of Hadamard and T exhibit more initial ‘clumping’
behavior in their distribution at small t (as in V (t)). Examining the sequence length
and accuracy for individual runs using these gates exhibits a remarkable variance, of
several orders of magnitude. Some gates would be approximated very poorly, at an
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accuracy ∼ 0.1, and others very well, at an accuracy close to ∼ 10−5. It is of course
also possible that a naive implementation of the Solovay-Kitaev algorithm that does
not account for incidental adjacent inverses is the contributing factor.

Regardless, the ultimate result from this experiment is not that surprising: the
correct gate set to use depends strongly on what gate is being approximated. The
underlying assumption of this work is that of a manufacturer or scientist only being
able to produce one kind of universal gate set at an appropriate fault tolerance and
quantity for meaningful quantum computing. In this case, the V basis or the Pauli+V
set are the clear winning choices on average, as per this admittedly limited experiment.
However, if this is not a true objection, then the correct way to go about building an
early quantum computer is to design it on a case by case basis. Or better, if it is not
too difficult, the quantum computing scientist should manufacture exactly the gates
that they wish to use. It would not be incorrect to consider this study then in light of
the very early, 2 kB quantum computer processor. For any larger array of qubits, it
would be more pertinent to use a more powerful computer than a laptop to determine
a better algorithm and perform a more exhaustive study of general approximation
efficiency. It could also be pertinent at that point in development to consider using
multiple gate compiling units that are built from two gate sets, where ideally the
most common large gaps in one’s covering are well-approximated by the other. This
is mere speculation though. Only time will tell the ultimate use of work on general
quantum gate compilation or the worthwhileness of the Solovay-Kitaev algorithm.
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CHAPTER IV

Summary and Further Work

1 Summary

By building up an extensive foundation of mathematics, it is possible to rigorously
discuss quantum computing, the evolution of quantum states, 1-qubit quantum gates,
and the covering properties of universal, symmetric subsets of SU(2). In doing so,
we find that the asymptotic behavior of such universal gate sets is not well-known,
and the proven bounds on such behavior are quite wide. However, we also discuss
the Solovay-Kitaev theorem, which gurantees that one can use the dense subgroup
generated by a universal gate set to approximate an arbitrary unitary in SU(2). In
particular, the theorem guarantees that such an approximation converges relatively
quickly and describes a related algorithm that performs this approximation to an
arbitrary unitary using an arbitrary universal gate set.

We determine that having only a loose theoretical understanding of the bounds
on the efficiency of this approximation leaves room for one commonly studied gate
set to perhaps be more efficient than another. To this end, we select several of the
most commonly studied gate sets and determine which returns the shortest sequence
of gates to the best approximation on average, when approximating a significant
number of randomly generated quantum gates. More specifically, the sets H+T,
Pauli+V, V, and Clifford+T were each used to approximate 10, 000 random unitaries
to an accuracy and sequence length appropriate to early, general quantum computers.
The result found that the Pauli+V set and V basis were the most effective. This
result could be in some way flawed for several reasons, most of which concern the
naive implementation of the Solovay-Kitaev algorithm used for the study, however,
it remains an interesting and striking result.

2 Further Work

There are myriad other directions that work of this type can be taken. Of particular
interest to myself, as primarily a theorist and having primarily theoretical experience
in this area, is a stronger result on the bounds of K(S) for a given universal gate set
S. It has proven incredibly difficult for even the most accomplished and experienced
mathematicians to improve on what is now a decades old result on the covering
exponent bounds for the V basis gate set (and extrapolated to be true for all so-
called Golden Gate sets). I would speculate that a new number theoretic tool might
need to be developed before an improved upper bound is known. The current result
was proven by Sarnak using the method of Hecke operators [5]. Some progress has
been made retooling the problem in terms of optimal strong approximation and using
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the Kloosterman circle method1[9]. However, this in itself is not a true improvement
because the notion that the sets in question have the optimal strong approximation
property is a conjecture. So ultimately, there has been little to no real progress on
this problem in several decades. See [3, 4] for a recent summary as well as a small
conjecture on the subject.

Another related area of research regards the properties of a particular class of
universal gate sets known as golden gates. This type of set is explored in [3, 4, 8, 9, 5].
The golden gates are notable because the mathematical graph formed from them have
particularly nice navigation properties on their interiors. Of the gates studied in this
experiment, the Pauli+V and V sets are examples of golden gate sets. There are also
gate sets known as super golden gates that have been explored in [8]. These sets have
similarly nice navigation properties at their edges. It is entirely possible that gates
of these types have different asymptotic covering properties than their non-golden
counterparts. If this is the case, then it could explain why the sets using the V gates
performed better in this experiment. It will be exciting to see if focusing on these
particular gate sets will lead to any improvements on the known bounds on covering
exponent.

With regards to the work specifically completed in this project, many improve-
ments could be made to the implementation of the Solovay-Kitaev algorithm being
used. Most importantly, it would be more accurate if it deleted adjacent inverses that
occasionally arise. This would most likely be simple to implement at the end of the
algorithm, once a result is achieved. For the Pauli+V set, it would also be pertinent
to specialize the algorithm so that it only applies one of iX, iY , or iZ in the sequence.
This would reduce the length of the sequence delivered without affecting the accu-
racy. It would also be interesting to expand all of the parameters being used to push
the limits of accuracy for the algorithm. With more processing power and greater
memory, one could very easily increase the size of the library stored at the beginning
of the algorithm and the depth of recursion for running the algorithm. It would also
be interesting to explore other universal gate sets. From an academic perspective,
there are gate sets in [8] with many elements that would be interesting to explore
with the algorithm. On the other hand, it would be interesting to see if there are any
other small, universal gate sets that are even better suited for general approximation
than the V basis. Further, it would be interesting to push the boundary on using the
Solovay-Kitaev compilation algorithm as opposed to one of the quicker but more lim-
ited algorithms developed since its initial publication and subsequent revitalization
[7]. There are also improvements to the basic Solovay-Kitaev algorithm that could
be implemented using more interesting data structures to provide a significant boost
in efficiency without sacrificing approximation quality.

1The Kloosterman circle method itself a lower dimensional extension of the Hardy-Littlewood
circle method.
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