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OVERVIEW OF THE TEST CASE SUITE

The set of test cases collected in this document has been developed for the Dynamical Core
Model Intercomparison Project (DCMIP) in an effort to understand the broad treatment of the
equations of motion within a variety of atmospheric General Circulation Models (GCMs). The
majority of these dynamical core tests have either been drawn from the recent literature or have
been inspired by existing ideas for 2D (x-z) and 3D tests. In particular, we made existing 2D
Cartesian-geometry tests viable for 3D dynamical core assessments in spherical geometry, and
extended existing 3D tests by adding dynamic tracer fields and including simplified moisture
feedbacks. In some cases, the analytic expressions of the initial data and forcing mechanisms are
completely new. All formulations are based on analytic initial conditions that have been formulated
for hydrostatic and non-hydrostatic shallow-atmosphere equation sets. If models provide both a
shallow-atmosphere and deep-atmosphere configuration, we recommend the shallow-atmosphere
setup to avoid imbalances in the initial conditions. The preferred choice is to test the models in their
non-hydrostatic formulations (if available). If models can be configured both as a hydrostatic and
non-hydrostatic dynamical core, additional hydrostatic simulations might be conducted to evaluate
the direct impact of the hydrostatic approximation.

Table I provides an overview of all test cases described in this document. The test cases are
listed in order of increasing complexity, beginning with pure advection tests and non-rotating
model configurations, dry baroclinic waves, and extending to test cases of intermediate complexity,
incorporating moisture and very simplified physical parameterizations. In addition, an optional 10-
day aqua-planet simulation with the model’s own physical parameterization package is suggested.

0. PRACTICAL CONSIDERATIONS

0.1. List of Symbols

Throughout this test case document we will use λ ∈ [0, 2π) to denote longitude, ϕ ∈ [−π/2, π/2] to
represent latitude, z to represent the height with respect to the mean sea level (assumed to be zero),
and p to symbolize the pressure. Table II lists the symbols used for the initialization of the model
variables in sections 1 through 5.

0.2. List of Physical Constants

A list of physical constants which are used throughout this document is given in Table III. Constants
which are specific to each test case are similarly tabulated at the beginning of each section.

0.3. Small-Planet Experiments

The test case suite makes extensive use of small-planet experiments that have the potential to
expose the differences between hydrostatic and non-hydrostatic modeling approaches at reasonable
computational cost. In particular, the small-planet setups allow the evaluation of the model behavior
with physical grid spacings down to a few hundred meters. In some instances, we suggest small
planets with circumferences of about 40 km and a vertical extent of 30 km which raises questions
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Table I. A list of test cases described in this document.

Test Case Description

Pure advection

1-1 3D deformational flow
1-2 3D Hadley-like meridional circulation
1-3 2D solid-body rotation of thin cloud-like tracer in the presence of orography

Impact of orography on a non-rotating steady-state at rest: Hydrostatic scales

2-0-x optional: Accuracy of the pressure-gradient calculation in presence of a mountain

Orographic and non-orographic gravity waves on a non-rotating small-planet: Non-hydrostatic scales

2-1 Mountain waves over a Schär-type mountain on a small planet
2-2 Mountain waves over a Schär-type mountain on a small planet with wind shear
3-1 Non-orographic gravity waves on a small planet

Rotating planet: From hydrostatic to non-hydrostatic scales

4-1-x Dry baroclinic instability on a shrinking planet with dynamic tracers EPV and Θ
reduction factors 1, 10, 100, 1000 to enable extreme grid spacings down to ∆x ≈ 110 m

Simple moist interactions

4-2 Moist baroclinic instability with large-scale condensation
4-3 optional: Moist baroclinic instability with simplified physics forcings
5-1 Idealized tropical cyclone with simplified physics forcings

Complex moist interactions

5-2 optional: Idealized tropical cyclone with full physics package

concerning the validity of the shallow-atmosphere approximation. However, since the experiments
are not compared to observations, we still ask for the use of the shallow-atmosphere approach
to allow for intercomparisons among the DCMIP models and to avoid imbalances of the initial
conditions.

When a non-unity reduction factor X is applied in order to shrink the size of the Earth and
thereby the physical grid spacing of the computational grid, a variety of model adjustments become
necessary. Most prominently these include the scaling of the radius, the rotational speed, the model
time step and explicit viscosity parameters (if applied). The adjustment steps for small-planet
simulations are:

• Divide the radius of the Earth aref by X to obtain the rescaled radius a = aref
X .

• Divide the length of the dynamics time step ∆t by X , especially if a CFL condition needs to
be obeyed.

• In case of rotating planets: multiply the Earth’s angular velocity Ωref by the factor X to obtain
the rescaled angular speed Ω = ΩrefX . This guarantees that the characteristics of Rossby
waves are comparable in unscaled and scaled model experiments since the Rossby number
stays constant.

• In case of explicit diffusion of type K2k∇2k with a prescribed diffusion coefficient K2k (and
k = 1, 2 . . .) divide K2k by the factor X2k−1. This accounts for a reduction of the e-folding
time τ and the horizontal grid spacing ∆x according to the relationship (∆x)2k/X2k

τ/X . The K2k
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Table II. List of symbols for the model initialization

Symbol Description
λ Longitude (in radians)
ϕ Latitude (in radians)
z Height with respect to mean sea level (set to zero)
ps Surface pressure (ps of moist air if q > 0)
Φs Surface geopotential
zs Surface elevation with respect to mean sea level (set to zero)
u Zonal wind
v Meridional wind
w Vertical velocity
ω Vertical pressure velocity
δ Divergence
ζ Relative vorticity
p Pressure (pressure of moist air if q > 0)
ρ Density (density of moist air if q > 0)
T Temperature
Tv Virtual temperature
Θ Potential temperature
Θv Virtual potential temperature
q Specific humidity
Pls Large-scale precipitation rate

q1, q2, q3, q4, q5 Passive tracers

Table III. A list of physical constants used in this document.

Constant Description Value
aref Radius of the Earth 6.37122× 106 m
Ωref Rotational speed of the Earth 7.292 × 10−5 s−1

X Reduced-size Earth reduction factor variable (default = 1)
a Scaled radius of the Earth aref/X
Ω Scaled rotational speed of the Earth Ωref ·X
g Gravity 9.80616 m s−2

p0 Reference pressure 1000 hPa
cp Specific heat capacity of dry air at constant pressure 1004.5 J kg−1 K−1

cv Specific heat capacity of dry air at constant volume 717.5 J kg−1 K−1

Rd Gas constant for dry air 287.0 J kg−1 K−1

Rν Gas constant for water vapor 461.5 J kg−1 K−1

κ Ratio of Rd to cp Rd/cp = 2/7
ε Ratio of Rd to Rν Rd/Rν ≈ 0.622
ρwater Density of water 1000 kg m−3

diffusion coefficient is typically based on such a relationship. Note that some models might
provide an automatic scaling of the diffusion coefficients according to the actual dynamics
time step and grid spacing. If a model applies Rayleigh friction as a sponge near the model
top, the friction coefficient needs to be multiplied by X. Again, this corresponds to a reduction
of the e-folding frictional time scale 1

τ/X = X
τ in small-planet experiments.

• If physical forcing mechanisms are present on the right hand side of the equations of motion
the strengths of the physical forcing must be increased (multiplied) by the factor X. This will
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not be applicable to the test cases presented here unless Rayleigh friction is considered as
such a forcing as outlined above.

0.4. Notes on the Requested Model Output

0.4.1. NetCDF

A fundamental requirement for the exchange of scientific data is the ability to precisely describe
the physical quantities being represented. Therefore, special attention needs to be paid to the
representation of the model data in the output files. We require data in the ‘Network Common Data
Form’ (netCDF) [1] that adhere to the netCDF Climate and Forecast (CF) metadata convention (if
possible to version 1.6 from Dec. 2011 [2]). All netCDF files should have the file name extension
‘.nc’. We specify details of the netCDF requirements in Appendix G and will also provide help
via NCO operators before the DCMIP event to make the data CF-compliant if necessary. Please
communicate your output constraints or concerns (if any) to the DCMIP organizers as soon as
possible. We will also ask for example data sets before the DCMIP event.

0.4.2. Computational grid

Most DCMIP models utilize non-orthogonal computational grids like cubed-sphere grids,
icosahedral grids, hexagonal grid, Voronoi grids or Yin-Yang grids. Among the mix of DCMIP
GCMs are even models that provide provisions for variable-resolution grids. We encourage the use
of the variable-resolution configurations as an additional test option whenever possible. This raises
questions concerning the desired representation of the data in the netCDF output files.

If models on non-traditional (non latitude-longitude) grids are used, we ask for two output
files that represent the identical model run. The first output file should be written on the native
computational grid without any interpolations. In addition, most models will likely provide built-in
provisions for interpolated output to a regular (equidistant in degrees) latitude-longitude grid. We
therefore also ask for a second output file that represents the data on model levels on the interpolated
latitude-longitude grid. We ask for co-located (Arakawa-A type) data on the interpolated grid
regardless of the GCM’s staggering options. The grid spacing of the interpolated grid should be
comparable to the actual resolution of the model run, which might be for example 1◦ × 1◦. Using
this example, the interpolated grid will have 180× 360 horizontal grid points if the equator and
pole points are not part of the interpolated grid. If the equator and pole points are included it yields
181× 360 horizontal grid points. If models can freely choose their interpolation points, we suggest
the 180× 360 configuration for the given example. If models need to include the equator and pole
points, we ask for the 181× 360 horizontal grid.

Models on regular latitude-longitude or Gaussian grids should only provide a single output file
using their native horizontal resolution and model levels. If reduced Gaussian grids are utilized a
second file on the full Gaussian grid is requested. If models are run with variable-resolution grids,
we leave the choice of the best suitable interpolation grid to the modeling group. We ask to write all
output variables for each experiment to the same file.

0.4.3. Naming convention for output file names

The naming convention for the final output file names is:
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model.test case.horizontal resolution.levels.grid.equation.description.nc

NetCDF-CF compliant files with these naming conventions will be uploaded to the Earth System
Grid on a NOAA server. The optional free-text character string at the end of the file name
(“description”) might be used to denote a special setting, such as a varied non-default diffusion
coefficient or the selection of a variable-resolution configuration. The standard keywords for the
DCMIP models are listed in the left columns of Tables IV and V. The keyword for the number of
vertical levels, e.g. “L30”, denotes the number of the full model levels (here 30). In case a model
also employs interface levels, this setting indirectly implies that the model has one more interface
level . Examples are

cam-fv.11.medium.L60.latlon.hydro.4th order div damping.nc
mcore.12.high.L120.interp latlon.nonhydro.nc
cam-se.51.high.L30.cubed.hydro.nc
cam-se.410.medium.L30.interp latlon.hydro.double K4 2e15.nc
cam-se.51.ultra.L30.interp latlon.hydro.variable 220 25km.nc

The last example expresses the suggested naming convention for a variable-resolution simulation.
The keyword ’ultra’ denotes the finest grid spacing in the variable-resolution run which is, in this
example, interpolated to a regular latitude-longitude grid with the same fine grid spacing of about
28 km. The free-text ‘description’ contains the suggested keyword ’variable’ and specifies details
about the resolution range in the variable-resolution run. In addition to such an interpolated data
set, the original output file of a variable-resolution simulation should also be archived. Its name
should be ‘cam-se.51.ultra.L30.cubed.hydro.variable 220 25km.nc’ for the example above, where
the specification ‘cubed’ for the underlying base grid has been chosen.

Table IV. Keywords for the output file naming convention.

model Organization

cam-fv NCAR
cam-se Sandia National Laboratories & NCAR
dynamico LMD
endgame UK Met Office
fim NOAA ESRL
gem-latlon Environment Canada
gem-yinyang Environment Canada
fv3-gfdl NOAA GFDL
icon-iap IAP
icon-mpi-dwd MPI & DWD
ifs ECMWF
mcore University of Michigan
nicam RIKEN & University of Tokyo
nim NOAA ESRL
mpas NCAR & Los Alamos National Laboratory
olam University of Miami
puma University of Hamburg
uzim Colorado State University
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Table V. Continuation of the list of keywords for the output file naming convention: Grid specifications.

test case Description of the test case number

11 3D deformational flow
12 3D Hadley-like meridional circulation
13 2D transport of thin cloud-like tracer in the presence of orography
200 Accuracy of the pressure-gradients over a moderately-steep Schär-type mountain
201 Accuracy of the pressure-gradients over a steep single mountain
21 Mountain waves over a Schär-type mountain on a small planet
22 Mountain waves over a Schär-type mountain on a small planet with shear
31 Nonorographic gravity waves on a small planet, along the equator
410 Dry baroclinic instability with dynamic tracers EPV and Θ and X=1
411 Dry baroclinic instability with dynamic tracers EPV and Θ and X=10
412 Dry baroclinic instability with dynamic tracers EPV and Θ and X=100
413 Dry baroclinic instability with dynamic tracers EPV and Θ and X=1000
42 Moist baroclinic instability (with large-scale condensation)
43 optional: Moist baroclinic instability (with simplified physics forcing)
51 Idealized tropical cyclone (with simplified physics forcing)
52 optional: Idealized tropical cyclone (with full physics forcing)

horizontal resolution Approximate grid spacing in degrees or equatorial grid spacing (unscaled)

low between 2◦-2.5◦ or 220-275 km (on unscaled planet)
medium between 1◦-1.5◦ or 110-165 km (on unscaled planet)
high between 0.5◦-0.7◦ or 55-78 km (on unscaled planet)
ultra between 0.25◦-0.35◦ or 28-39 km (on unscaled planet)

levels Number of vertical levels (full model levels)

L10 10 levels
L15 15 levels
L20 20 levels
L30 30 levels
L60 60 levels
L120 120 levels

grid Type of native grid or indicator of interpolated grid

cubed cubed sphere
hex hexagonal grid based on an icosahedron, maybe optimized via spring dynamics
gauss Gaussian grid
tri triangular grid based on an icosahedron, maybe optimized via spring dynamics
interp latlon interpolated latitude-longitude grid
latlon latitude-longitude
oct octagonal
red latlon reduced latitude-longitude grid
red gauss reduced Gaussian grid
voronoi spherical centriodal Voronoi tessellation
yinyang Yin-Yang

equation Indicator for hydrostatic or non-hydrostatic simulation

hydro hydrostatic
nonhydro non-hydrostatic
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0.5. Short Note on Data Analysis and Visualization

We will provide NCAR Command Language (NCL) scripts to help visualize the model results
and provide analysis functions. In addition, the DCMIP participants will have access to interactive
Graphical User Interfaces (GUIs) to support the visualization and model intercomparison. Among
the GUIs are the netCDF viewers Ncview and Panoply which are public domain tools and
locally installed on the NCAR mirage server. In addition, we expect to provide some basic online
visualization capabilities via NOAA’s Live Access Server (LAS) software. A key to the successful
visualization is the adherence of the output data sets to the netCDF-CF standard (see Appendix G).

0.6. Short Note on the Fortran Templates

We have provided a set of stand-alone Fortran routines that compute the initial conditions for all test
cases. They are named

• dcmip initial conditions test 1 2 3 v4.f90 (please disregard earlier versions)
Change log for version 3 (v3, June/8/2012), version 4 (v4, July/8/2012), and version 5 (v5,
July/20/2012):

– v2: bug fixes in the tracer initialization for height-based models
– v3: test 3-1: the density is now initialized with the unperturbed background temperature

(not the perturbed temperature), equation (101)
– v3: constants converted to double precision
– v4: modified tracers in test 1-1 with cutoff altitudes. This change was reversed in version

5 that no longer required this adjustment.
– v4: modified cos-term in vertical velocity (now cos(2πt/τ)) in test 1-1, now completing

one full up and down cycle, equation (16)
– v4: added subroutine test1 advection orography for test 1-3
– v4: added subroutine test2 steady state mountain for test 2-0-0
– v4: modified parameter list for tests 2-1 and 2-2 (routine test2 schaer mountain):

addition of parameters hybrid eta, hyam, hybm
if the logical flag “hybrid eta” is true then the pressure in pressure-based model
with hybrid sigma-p (η) coordinates is computed internally. In that case the hybrid
coefficients hyam and hybm need to be supplied via the parameter list, otherwise they
are not used.

– v5: test 1-1: modified vertical velocity and zonal velocity. The vertical velocity has a new
tapering function (17), and an adjustment is added to the zonal velocity (23) to fulfill the
continuity equation. This ensures that the advection process written in the advective or
conservative form is equivalent.

– v5: no cutoff altitude for the tracers in test 1-1 (reverses a change from version v4)
– v5: test 1-2: modified meridional wind (37) and vertical velocity equation (38) with

a new amplitude w0 and positions z1 and z2 that determine the initial location of the
tracer.

• dcmip initial conditions test 4 v3.f90 (please disregard earlier versions)
Change log for version 2 (v2, June/8/2012) and version 3 (v3, July/20/2012):
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– v2: correction of a typo (removal of 1/a) on the right-hand side of the ∂θ
∂ϕ , equation (137)

– v2: initialization of q2 with the absolute value of Ertel’s Potential Vorticity (EPV),
equations (131) and (132)

– v3: additional if-construct that prevents division by zero in relative vorticity (ζ)
calculation (133) in case the perturbation center point, its antipode, or the north or south
poles are part of the computational grid

• dcmip initial conditions test 5 v1.f90

These updates are also marked in the Fortran codes. Their inline documentation makes these routines
self-explanatory. The input parameter list needs to be supplied with the position of a single grid
point. The routines can either be included into the GCM source code or be used to compute an
initial data file. Some output parameters might not be needed, depending on the model design.

In addition, we have provided a template Fortran routine

• simple physics v5.90 (please disregard earlier versions)
Change log for version 4 and before (v4, June/8/2012) and version 5 (v5, July/8/2012):

– v2: removal of some NCAR CAM-specific “use” associations
– v3: corrected precl(i) computation, the precipitation rate is now computed via a vertical

integral, the previous single-level computation in v2 was a bug
– v3: corrected dtdt(i, 1) = computation, the term −(i, 1) was missing the temperature

variable: −t(i, 1)
– v4: modified and enhanced parameter list to make the routine truly standalone, the

number of columns and vertical levels have been added: pcols, pver
– v4: “ncol” has been removed, “pcols” is used instead
– v5: the sea surface temperature (SST) field Tsurf is now an array, the SST now depends

on the latitude
– v5: addition of the latitude array “lat” and the flag “test” in the parameter list

if test = 0: constant SST is used, correct setting for the tropical cyclone test case 5-1
if test = 1: newly added latitude-dependent SST is used, correct setting for the moist
baroclinic wave test with simple-physics (test 4-3)

that implements suggested simplified physical forcing mechanisms [3] in the recommended order
(1) large-scale condensation, (2) surface fluxes, and (3) boundary-layer mixing. These processes are
coupled in a time-split manner [4] so that each mechanism already updates the state variables that
are used for the next parameterization step. The template routine has been developed for NCAR’s
Community Atmosphere Model (CAM). It therefore needs to be tailored to match model-specific
requirements such as the choice of the prognostic variables. The template routine assumes that the
state variables u, v, T, p and q are co-located at full model levels. In addition, it assumes that the level
indices follow a top-down approach with level index 1 located at the topmost level. If the vertical
ordering of the levels is reversed, with level index 1 denoting the lowermost level, adjustments of
the template routine are needed. In addition, all partial height derivatives have been expressed as
pressure derivatives with the help of the hydrostatic equation as CAM is a pressure-based model.
This could potentially be changed for models with height-based vertical coordinates.
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0.7. Short Note on the Virtual, Shared DCMIP Workspace

We are building a ‘virtual DCMIP community’ via a shared Wiki-driven virtual workspace:
http://earthsystemcog.org/projects/dcmip-2012/ We would like to ask you to create an account
on this Commodity Governance (CoG) webpage (see ‘create account’ button in the upper left
corner). CoG is a newly created cyberinfrastructure software hosted on a NOAA server that
facilitates connections between projects and people. Please create a CoG account and after pressing
‘submit’, logon with your selected user name and password. Then navigate to DCMIP-2012, e.g.
via http://earthsystemcog.org/projects/dcmip-2012/ and ask for membership in the DCMIP-2012
project (upper left corner, press ‘Join the DCMIP-2012 project’). You will get an email shortly
afterwards that will confirm that you have become a member. This will now enable you to edit the
Wiki functionality within DCMIP-2012. We will utilize the DCMIP-2012 workspace before and
during (and after) the summer school to share information, model documentation, metadata, model
results, discussion points, online visualization, etc. The shared workspace will be a resource not just
for the 2012 summer school, but for all researchers interested in dynamical cores, test cases and the
dynamical core data in the future. The software will also build a bridge/links to the Earth System
Grid where our intercomparison data will be hosted.

0.8. Summary of All DCMIP Model Experiments

This section provides an overview of all suggested experiments in Tables VI and VII. The tables
list the specific settings for each experiment like the small-planet scaling coefficient, the suggested
horizontal and vertical resolutions, the position of the model top, the length of the simulation, the
desired output quantities and their output frequency. These pieces of information are also repeated
in each of the test case descriptions below. Table VIII summarizes the necessary model adjustments,
e.g. the rescaling of physical constants. It is desirable to supply such parameters or design choices
(e.g. switch for the activation or deactivation of Rayeigh friction) through an input namelist file to
minimize the actual modifications of the GCM course code.

All models should be run in their operational configurations which includes the typical diffusion
mechanisms and coefficients, filters, time steps and other tunable parameters. In addition, the runs
should utilizes their standard a posteriori fixers like mass or energy fixers if applicable. We ask to
document all parameters and fixers to foster the model intercomparison. In addition, the modeling
groups are also invited to test their models in non-operational configurations that, for example, use
a reduced explicit diffusion coefficient. Such non-operational settings need to be clearly marked.

We also invite the modeling groups to test their variable-resolution grids, e.g. the nested- or
stretched-grid options (if available), in addition to running the experiments on their native non-
adapted grids. The choice of the non-uniform grid is left to the modeling group and should be
documented.
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Table VI. List of all DCMIP model experiments:
Test case, small-planet reduction factor X, horizontal grid spacing in degrees in both horizontal directions

and the approximate physical grid spacing at the equator, levels, model top and vertical grid spacing.

Label Test X Grid spacing Levels Model top ∆z

11.medium.L60 1-1 1 1◦ ≈ 110 km 60 12 km ≈ 254.944 hPa 200 m

12.low.L30 1-2 1 2◦ ≈ 220 km 30 12 km ≈ 254.944 hPa 400 m
12.medium.L60 1-2 1 1◦ ≈ 110 km 60 12 km ≈ 254.944 hPa 200 m
12.high.L120 1-2 1 0.5◦ ≈ 55 km 120 12 km ≈ 254.944 hPa 100 m

13.medium.L30 1-3 1 1◦ ≈ 110 km 30 12 km ≈ 254.944 hPa 400 m
13.medium.L60 1-3 1 1◦ ≈ 110 km 60 12 km ≈ 254.944 hPa 200 m
13.medium.L120 1-3 1 1◦ ≈ 110 km 120 12 km ≈ 254.944 hPa 100 m

optional:

200.medium.L15 2-0-0 1 1◦ ≈ 110 km 15 12 km ≈ 205.448 hPa 800 m
200.medium.L30 2-0-0 1 1◦ ≈ 110 km 30 12 km ≈ 205.448 hPa 400 m
201.low.L30 2-0-1 500 2◦ ≈ 440 m 30 12 km 400 m

21.medium.L60 2-1 500 1.5◦ ≈ 333.6 m 60 30 km ≈ 32.818 hPa 500 m
22.medium.L60 2-2 500 1.5◦ ≈ 333.6 m 60 30 km ≈ 32.818 hPa 500 m

31.medium.L10 3-1 125 1.125◦ ≈ 1 km 10 10 km ≈ 273.759 hPa 1000 m

410.medium.L30 4-1-0 1 1◦ ≈ 110 km 30 ≈ 44 km / 2.26 hPa stretched
411.medium.L30 4-1-1 10 1◦ ≈ 11 km 30 ≈ 44 km / 2.26 hPa stretched
412.medium.L30 4-1-2 100 1◦ ≈ 1.1 km 30 ≈ 44 km / 2.26 hPa stretched
413.medium.L30 4-1-3 1000 1◦ ≈ 110 m 30 ≈ 44 km / 2.26 hPa stretched

42.medium.L30 4-2 1 1◦ ≈ 110 km 30 ≈ 44 km / 2.26 hPa stretched
42.high.L30 4-2 1 0.5◦ ≈ 55 km 30 ≈ 44 km / 2.26 hPa stretched

optional:

43.medium.L30 4-3 1 1◦ ≈ 110 km 30 ≈ 44 km / 2.26 hPa stretched
43.high.L30 4-3 1 0.5◦ ≈ 55 km 30 ≈ 44 km / 2.26 hPa stretched

51.medium.L30 5-1 1 1◦ ≈ 110 km 30 ≈ 44 km / 2.26 hPa stretched
51.high.L30 5-1 1 0.5◦ ≈ 55 km 30 ≈ 44 km / 2.26 hPa stretched
51.ultra.L30 5-1 1 0.25◦ ≈ 28 km 30 ≈ 44 km / 2.26 hPa stretched

optional:
52.high.L30 5-2 1 0.5◦ ≈ 55 km 30 ≈ 44 km / 2.26 hPa stretched
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Table VII. List of all DCMIP model experiments: Simulation length, output variables and output frequency.

Label Length (unscaled) Output variables Output frequency

11.medium.L60 12 days q1, q2, q3, q4, (q5 optional) daily (86400 s)

12.low.L30 1 day q1 hourly (3600 s)
12.medium.L60 1 day q1 hourly (3600 s)
12.high.L120 1 day q1 hourly (3600 s)

13.medium.L30 12 days q1, q2, q3, q4, ps, p,Φs daily (86400 s)
13.medium.L60 12 days q1, q2, q3, q4, ps, p,Φs daily (86400 s)
13.medium.L120 12 days q1, q2, q3, q4, ps, p,Φs daily (86400 s)

optional:
200.medium.L15 6 days u, v, w or ω, T, ps, p,Φs, 6-hourly (21600 s)

T500, w500 or ω500
200.medium.L30 6 days u, v, w or ω, T, ps, p,Φs, 6-hourly (21600 s)

T500, w500 or ω500
201.low.L30 0.5 hr u, v, w or ω, T, ps, p,Φs, 100 s (unscaled)

≡ 250 hr (scaled) T500, w500 or ω500 ≡ 50000 s (scaled)

21.medium.L60 2 hr u, v, w or ω, T, ps, p,Φs 100 s (unscaled)
≡ 1000 hr (scaled) ≡ 50000 s (scaled)

22.medium.L60 2 hr u, v, w or ω, T, ps, p,Φs 100 s (unscaled)
≡ 1000 hr (scaled) ≡ 50000 s (scaled)

31.medium.L10 1 hr u, v, w or ω, T, ps, p 100 s (unscaled)
≡ 125 hr (scaled) ≡ 12500 s (scaled)

410.medium.L30 30 days q1, q2, u, v, w or ω, T, ps, p, daily (86400 s)
Φs, u850, v850, T850, ω850 or w850

411.medium.L30 3 days q1, q2, u, v, w or ω, T, ps, p, 8640 s (unscaled)
≡ 30 days (scaled) Φs, u850, v850, T850, ω850 or w850 ≡ daily (scaled)

412.medium.L30 25920 s q1, q2, u, v, w or ω, T, ps, p 864 (unscaled)
≡ 30 days (scaled) Φs, u850, v850, T850, ω850 or w850 ≡ daily (scaled)

413.medium.L30 2592 s q1, q2, u, v, w or ω, T, ps, p, 86.4 s (unscaled)
≡ 30 days (scaled) Φs, u850, v850, T850, ω850 or w850 ≡ daily (scaled)

42.medium.L30 15 days q, u, v, w or ω, T, ps, p, Pls 6-hourly (21600 s)
Φs, u850, v850, T850, ω850 or w850

42.high.L30 15 days q, u, v, w or ω, T, ps, p, Pls 6-hourly (21600 s)
Φs, u850, v850, T850, ω850 or w850

optional:
43.medium.L30 15 days q, u, v, w or ω, T, ps, p, Pls, SST 6-hourly (21600 s)

Φs, u850, v850, T850, ω850 or w850

43.high.L30 15 days q, u, v, w or ω, T, ps, p, Pls, SST 6-hourly (21600 s)
Φs, u850, v850, T850, ω850 or w850

51.medium.L30 10 days q, u, v, w or ω, T, ps, p, Pls 6-hourly (21600 s)
Φs, u850, v850, T850, ω850 or w850

51.high.L30 10 days q, u, v, w or ω, T, ps, p, Pls 6-hourly (21600 s)
Φs, u850, v850, T850, ω850 or w850

51.ultra.L30 10 days q, u, v, w or ω, T, ps, p, Pls 6-hourly (21600 s)
Φs, u850, v850, T850, ω850 or w850

optional:
52.high.L30 10 days q, u, v, w or ω, T, ps, p, 6-hourly (21600 s)

Φs, u850, v850, T850, ω850 or w850
surface fluxes, large-scale,
convective and total precip. rate
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Table VIII. A list of all model adjustments.

Test Case Adjustments

Pure advection

1-1, 1-2 suppress dynamic updates of the flow field, except for the tracers
introduce counter that counts the elapsed seconds since the start of run
prescribe time-dependent 3D velocities

1-3 suppress dynamic updates of the flow field, except for the tracers
prescribe time-independent (initial) 3D velocities

Impact of orography on a non-rotating steady-state at rest: Hydrostatic scales

2-0-0 set the rotational speed to zero

2-0-1 rescale the Earth, set the rotational speed to zero
rescale the time step, diffusion coefficients

Orographic and non-orographic gravity waves on a non-rotating small-planet: Non-hydrostatic scales

2-1, 2-2 rescale the Earth, set the rotational speed to zero
rescale the time step, diffusion coefficients
add Rayleigh friction to the uppermost 10 km of the domain

3-1 rescale the Earth, set the rotational speed to zero
rescale the time step, diffusion coefficients

Rotating planet: From hydrostatic to non-hydrostatic scales

4-1-0 no adjustment

4-1-1, 4-1-2, 4-1-3 rescale the Earth and rotational speed
rescale the time step, diffusion coefficients

Simple moist interactions

4-2 add large-scale condensation process

4-3, 5-1 add simplified physics forcings

Complex moist interactions

5-2 set sea surface temperature (SST) to 29 ◦C
switch to the model’s aqua-planet mode

13
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1. TEST CATEGORY 1-X: TRACER TRANSPORT EXPERIMENTS

This section includes three 3D passive advection tests with prescribed wind fields. To ensure that
an analytic solution is known at the end of the simulation we apply time reversal to return the
original profile to its original position (with some zonal offset) in two of the suggested tests. The
third test utilizes a 2D solid-body rotation and returns the tracer to its initial position after one
revolution around the sphere. These tests are used to assess consistency, monotonicity preservation,
convergence rates and other properties which are relevant to the problem of tracer transport.

The tracer transport tests presented in this document make use of prescribed 3D velocities and an
isothermal temperature field. Consequently, dynamic updates of the velocity, temperature, pressure
and density fields need to be disabled, and prescribed (analytic) updates of the time-dependent
velocity fields need to be included into the model code for test 1-1 and 1-2. Test 1-3 utilizes time-
independent velocities that can be provided via the initial data set.

The pressure field is prescribed and needs to remain constant for the duration of the simulation
except if floating Lagrangian pressure-based coordinates are used in the vertical direction [5] as
explained below. The latter might require prescribed variations of the pressure thicknesses ∆p
between two model interface levels to account for deforming layers. Such a deformation for floating
Lagrangian coordinates will only be valid for one time step before a vertical remapping algorithm
restores the initial pressure values at the model levels.

The initial pressure field is given by

p(λ, ϕ, z) = p0 exp
(
−gz
RdT0

)
, (1)

where T0 ≡ 300 K is the isothermal atmospheric temperature which yields T (λ, ϕ, z) = T0 for all
three test variants. The reference pressure at z = 0 m is set to p0 = 1000 hPa. The surface pressure
ps can be computed when evaluating (1) at the surface elevation zs which is specified later. The
specific humidity field q is set to zero in all advection tests. Note that (1) can also be expressed as

z(λ, ϕ, p) = H ln
(p0

p

)
(2)

which utilizes the scale height

H =
RdT0

g
. (3)

Equation (2) transforms the pressure into the height z in an isothermal atmosphere.
The advection process can be represented in many forms. If the advective form for the tracer q is

selected it can be expressed as

dq

dt
= 0 (4)

∂q

∂t
+ ~v · ∇q = 0 (5)

for a Lagrangian and Eulerian framework, respectively. Here, ~v symbolizes the 3D wind vector, ∇
is the 3D gradient operator and d/dt stands for the material time (t) derivative.
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If an advection scheme utilizes the conservation form

∂

∂t

(
ρ q
)

+∇ · (~v ρ q) = 0 (6)

the density ρ needs to be present. In order to avoid solving a second transport equation for ρ and to
simplify the test setup, the stratified density

ρ(λ, ϕ, p) =
p

Rd T0
(7)

ρ(λ, ϕ, z) =
p0

RdT0
exp

(
−z
H

)
(8)

should be prescribed and held constant (∂ρ/∂t = 0) for the duration of the experiment. This will
ensure that models with pressure-based and height-based vertical coordinates will resemble each
other since isothermal conditions are used to determine the placement of the initial pressure levels.
For the transport experiments provided in this document, the advective form (5) and conservation
form (6) should produce nearly identical results, up to model error. This result holds since for all
tests we require that (ρ~v) is a divergence-free field, i.e. that the continuity equation is analytically
satisfied with

∂ρ

∂t
= 0. (9)

As a third variant, if an advection scheme utilizes a floating Lagrangian coordinate without
explicit vertical transport the conservation law for the advection takes the form

∂

∂t

(
∆p q

)
+∇ · (~vh ∆p q) = 0 (10)

where ~vh denotes the horizontal wind vector. The vertical transport then needs to be mimicked by a
vertical remapping algorithm after the horizontal advection step.

Normalized error norms are used in all three sets of tests, and defined by

`1(q) =
I [|q − qT |]
I [|qT |]

, (11)

`2(q) =

√
I [(q − qT )2]

I [q2
T ]

, (12)

`∞(q) =
max |q − qT |

max |qT |
, (13)

where qT is the tracer field at the initial time (due to periodicity of the test cases, this is also the
exact solution). Here I denotes an approximation to the global integral, given by

I[x] =
∑

all elements j
xjVj , (14)

where Vj denotes the volume of element j.
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Table IX. List of constants used for the 3D Deformational Flow test case (Test 1− 1)

Constant Value Description
ztop 12000 m Height position of the model top
ptop ≈ 254.944 hPa Pressure at the model top
X 1 Small-planet scaling factor (regular-size Earth)
T0 300 K Isothermal atmospheric temperature
p0 1000 hPa Reference pressure
τ 1036800 s Period of motion (here 12 days)
ω0 23000π/ τ Pa Maximum of the vertical pressure velocity in units Pa/s
b 0.2 Normalized pressure depth of divergent layer
λc1 5π/6 Initial longitude of first tracer
λc2 7π/6 Initial longitude of second tracer
ϕc 0 Initial latitude of tracers
zc 5000 m Initial altitude of tracers
Rt a/2 Horizontal half-width of tracers
Zt 1000 m Vertical half-width of tracers

1.1. Test 1-1: 3D Deformational Flow

The 3D deformational flow test is based on the 2D approach by [6], with a prescribed vertical wind
velocity which makes the test truly 3D. An unscaled planet (with scale parameterX = 1) is selected.
The test utilizes a translational longitude, defined by

λ′ = λ− 2πt/τ (15)

where t denotes the elapsed time since the start of the simulation. The vertical pressure velocity is
specified as

ω(λ, ϕ, p, t) = ω0 sinλ′ cosϕ cos
(

2πt
τ

)
s(p), (16)

where
s(p) = 1 + exp

(
ptop − p0

b ptop

)
− exp

(
p− p0

b ptop

)
− exp

(
ptop − p
b ptop

)
(17)

is a tapering function that tapers the vertical velocity to zero at the top and bottom of the domain.
Since pressure and height surfaces are aligned, the pressure position ptop of the model top is

ptop = p(ztop), (18)

where pressure is determined by (1). In terms of the translational longitude, the horizontal zonal
and meridional velocities ~u = (u, v) are given as the sum of a horizontal deformational component
~ua = (ua, va) and a horizontally divergent component ~ud = (ud, 0),

~u = ~ua + ~ud. (19)

The deformational zonal and meridional wind components follow from [6],

ua(λ, ϕ, p, t) = k sin2 λ′ sin(2ϕ) cos(πt/τ) +
2πa
τ

cosϕ, (20)

va(λ, ϕ, p, t) = k sin(2λ′) cosϕ cos(πt/τ). (21)
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Here the magnitude of the velocity is specified as

k =
10a
τ
. (22)

The divergent zonal wind component is given by

ud(λ, ϕ, p, t) =
ω0a

b ptop
cosλ′ cos2 φ cos

(
2πt
τ

)[
− exp

(
p− p0

b ptop

)
+ exp

(
ptop − p
b ptop

)]
. (23)

This velocity field is chosen to satisfy the continuity equation exactly, i.e. in pressure-coordinates it
yields

1
a cosϕ

[
∂u

∂λ
+

∂

∂ϕ
(v cosϕ)

]
+
∂ω

∂p
= 0. (24)

The continuity equation is also fulfilled in height-based coordinates. The time-independent density
is given by (7) or (8). The surface is flat with zs = 0 m which yields the surface geopotential Φs = 0
m2 s−2. The surface pressure does not depend on time, and is held constant with ps(λ, ϕ) = p0.
Therefore, the vertical velocities for models with vertical σ [7] or hybrid σ-pressure (η) coordinates
[8] yield

η̇(λ, ϕ, η, t) = σ̇(λ, ϕ, σ, t) =
ω

p0
=
ω0

p0
sinλ′ cosϕ cos

(
2πt
τ

)
s(p) (25)

where η and σ are given by η = σ = p/p0 due to the choice of the constant surface pressure ps = p0.
Note that this formulation assumes that the reference pressure for the hybrid η coordinate is set to
1000 hPa as also specified in Appendix F.1. Since there are neither time variations nor horizontal
variations of the pressure field the vertical velocity in height coordinates takes the simple form

w(λ, ϕ, z, t) = −ω(λ, ϕ, p(z), t)
g ρ(z)

(26)

with the density equation (8).
In case pressure-based floating Lagrangian coordinates are used the following discrete algorithm

is suggested to prescribe the time-dependent deforming pressure surfaces. First, we recommend
calculating the pressure values p(t2) at the future time t2 = t1 + ∆t where ∆t symbolizes the time
step length and t1 is the current time counted in seconds since the start of the advection test. The
new pressure values are then discretely given by

p(t2) = p(t1) + ∆t ω
(
λ, ϕ, p, t1 +

∆t
2

)
(27)

= p(t1) + ∆t ω0 sin
[
λ− 2π

τ

(
t1 +

∆t
2

)]
cos(ϕ) cos

[
2π
τ

(
t1 +

∆t
2

)]
s

[
p

(
t1 +

∆t
2

)]
where a time-centered evaluation of the time-dependent expressions is selected. The time dependent
∆p variation can then be computed as the difference of the pressures at model interfaces at time t2,
and set back to its initial value as part of a remapping algorithm.

Four tracer fields are specified for this test. The first tracer field represents two cosine bells, and
is specified as

q1(λ, ϕ, z) =
1
2

(1 + cos(πd1)) +
1
2

(1 + cos(πd2)) , (28)
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where di (i = 1, 2) denote the scaled distance functions,

di(λ, ϕ, z) = min

[
1,

{(
ri(λ, ϕ)
Rt

)2

+
(
z − zc
Zt

)2
}]

, (29)

and ri(λ, ϕ) (i = 1, 2) denotes the great circle distance,

ri(λ, ϕ) = a arccos (sinϕc sinϕ+ cosϕc cosϕ cos(λ− λci)) . (30)

The second tracer is chosen to correlate with the first tracer,

q2(λ, ϕ, z) = 0.9− 0.8q1(λ, ϕ, z)2. (31)

The third tracer is a slotted ellipse,

q3(λ, ϕ, z) =


1 if d1 < 1/2,
1 if d2 < 1/2,
0.1 otherwise.

(32)

In order to cut the slot out of the cylinder an additional condition is imposed:

q3(λ, ϕ, z) = 0.1 if z > zc and ϕc − 1/8 < ϕ < ϕc + 1/8. (33)

The final tracer is chosen that, in combination with the other tracer fields with weight (3/10), the
sum is equal to one

q4(λ, ϕ, z) = 1− 3
10

[q1(λ, ϕ, z) + q2(λ, ϕ, z) + q3(λ, ϕ, z)] . (34)

For models that utilize the conservation of the advection equation, we also suggest running this test
with the optional tracer field

q5(λ, ϕ, z) = 1, (35)

which tests how well the model is able to satisfy the 3D continuity equation (24) using this velocity
field.

Grid spacings, simulation time, output and diagnostics

This test should be run at 1◦ resolution (∼ 110 km equatorial grid spacing) in both horizontal
directions with 60 uniformly spaced vertical levels (in height coordinates) for 12 days. For models
using height levels a model top of ztop = 12000 m is suggested, which leads to a vertical grid spacing
of ∆z = 200 m. This means that the model interfaces are positioned at 0 m, 200 m, 400 m, etc. and
that the full model levels are placed at 100 m, 300 m, 500 m, etc.. From (1) the height position of
the model top corresponds to ptop ≈ 254.944 hPa. Appendix F.3 outlines how pressure-based levels
should be positioned in order to correspond to the equidistant grid spacing ∆z.
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Output should be recorded daily (every 86400 s) and needs to include the initial state (13
time snapshots). The desired output variables on model levels are the instantaneous snapshots of
q1, q2, q3, and q4 (and optionally q5). The following analysis results are suggested:

• Latitude-longitude plots of q1, q2, q3 and q4 (and additionally q5) should be produced at
t = 6 days and 12 days at the height z = 4900 m.

• Longitude-height plots of all tracers should be produced at t = 12 days along the equator.
• Normalized l1, l2 and l∞ error norms should be computed for q1, q3 and q4 at t = 12 days

against the initial conditions.
• Mixing diagnostics lr, lu and lo should be computed at t = 6 days. These are described in

Appendix A.
• Correlation plots should be produced for q1 and q2 at t = 6 days at the five levels around

4900 m (4500, 4700, 4900, 5100 and 5300 m). The approach for producing correlation plots
is described in Appendix A.

1.2. Test 1-2: Hadley-like Meridional Circulation

Table X. List of constants used for the 3D Hadley-like Meridional Circulation test case (Test 1− 2).

Constant Value Description
ztop 12000 m Height position of the model top
ptop ≈ 254.944 hPa Pressure at the model top
X 1 Small-planet scaling factor (regular-size Earth)
T0 300 K Isothermal atmospheric temperature
p0 1000 hPa Reference pressure
τ 86400 s Period of motion (here 1 day)
K 5 Number of overturning cells
u0 40 m s−1 Reference zonal velocity
w0 0.15 m s−1 Reference vertical velocity
z1 2000 m Lower boundary of tracer layer
z2 5000 m Upper boundary of tracer layer

The zonal, meridional and vertical velocity field for this test is specified as

u(λ, ϕ, z, t) = u0 cosϕ, (36)

v(λ, ϕ, z, t) = −aw0 π ρ0

Kztop ρ
cosϕ sin(Kϕ) cos

(
πz

ztop

)
cos
(
πt

τ

)
, (37)

w(λ, ϕ, z, t) =
w0 ρ0

K ρ
(−2 sin(Kϕ) sinϕ+K cosϕ cos(Kϕ)) sin

(
πz

ztop

)
cos
(
πt

τ

)
. (38)

where the density equation (8) is used in the formulation of the vertical velocity w for height-based
coordinates. The symbol ρ0 denotes the density at the surface with ρ0 = p0/(RdT0). The surface
pressure is constant with ps(λ, ϕ) = p0. Since the pressure field p neither varies in time nor in
the horizontal directions the vertical pressure velocity ω for pressure-based coordinates is easily
obtained from (1), (26) and (38),

ω(λ, ϕ, p, t) = −g ρw(λ, ϕ, z(p), t). (39)
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The density ρ vanishes in this equation when plugging in (38). As in test 1− 1 the velocity
components are chosen to satisfy the continuity equation exactly which yields

1
a cosϕ

[
∂u

∂λ
+

∂

∂ϕ
(v cosϕ)

]
+
∂ω

∂p
= 0 (40)

1
a cosϕ

[
∂(ρu)
∂λ

+
∂

∂ϕ
(ρv cosϕ)

]
+
∂(ρw)
∂z

= 0 (41)

in pressure- and height-coordinates, respectively. The density equation (7) or (8) is time independent
and needs to be kept constant for advection schemes in conservation form. This design thereby
guarantees that the test is equivalent for tracer advection schemes written in both the advective or
conservation form.

The vertical velocities for models with vertical σ or hybrid σ-pressure (η) coordinates are given
by

η̇(λ, ϕ, η, t) = σ̇(λ, ϕ, σ, t) = −g ρ
p0

w(λ, ϕ, z(p), t), (42)

where η and σ are given by η = σ = p/p0 due to the choice of the constant surface pressure ps = p0.
As in test 1− 1 note that this formulation assumes that the reference pressure for the hybrid η

coordinate is set to p0 = 1000 hPa as also specified in Appendix F.1. If a floating Lagrangian
coordinate is used on the basis of varying pressure thicknesses we recommend a mechanism that
utilizes (39) in combination with the discrete approach described in (27).

The surface is flat with zs = 0 m which sets the surface geopotential Φs = 0 m2 s−2. The tracer
field consists of a single layer which is deformed over the duration of the simulation. It is given by

q1(λ, ϕ, z) =


1
2

[
1 + cos

(
2π(z − z0)
z2 − z1

)]
if z1 < z < z2,

0 otherwise,
(43)

where z0 = 1
2 (z1 + z2). For models with pressure-based coordinates (1) and (2) need to be used to

convert between height and pressure positions.

Grid spacings, simulation time, output and diagnostics

This test should be run at 2◦ with 30 uniformly spaced vertical levels, 1◦ with 60 uniformly spaced
vertical levels and 0.5◦ with 120 uniformly spaced vertical levels. For models using height levels a
maximum altitude of ztop = 12000 m is suggested. These resolutions correspond to an approximate
horizontal grid spacing of about 220 km, 110 km and 55 km with a vertical grid spacing of
∆z = 400 m, ∆z = 200 m and ∆z = 100 m, respectively. From (1) the position of the model top
yields the pressure ∼ ptop = 254.944 hPa. Appendix F.3 outlines how pressure-based levels should
be positioned in order to correspond to the equidistant grid spacing ∆z.

The simulation is run for t = 1 day, until the tracer field returns to its original configuration. We
suggest recording hourly model-level output (every 3600 s) of q1 from each simulation. The output
files needs to contain the initial state. For each of these resolutions normalized error norms `1, `2
and `∞ should be computed by comparing the results at t = 1 day against the initial configuration.
In addition, we suggest plotting a latitude-height cross section (at λ = 180◦) of the tracer field q1 at
t = 12 hr and t = 24 hr.
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1.3. Test 1-3: Horizontal advection of thin cloud-like tracers in the presence of orography

Table XI. List of constants used for the Horizontal advection of thin cloud-like tracers in the presence of
orography test case (Test 1− 3).

Constant Value Description
ztop 12000 m Height position of the model top
ptop ≈ 254.944 hPa Pressure at the model top
X 1 Small-planet scaling factor (regular-size Earth)
T0 300 K Isothermal atmospheric temperature
p0 1000 hPa Reference surface pressure
u0 2πaref/τ Maximum wind speed
τ 1036800 s Period of motion (here 12 days)
α π/6 Advection angle (radians, 30◦)
λm 3π/2 Mountain longitude center point
ϕm 0 Mountain latitude center point
h0 2000 m Maximum mountain height
Rm 3π/4 Mountain radius (radians)
ζm π/16 Mountain oscillation half-width (radians)
λp π/2 Cloud-like tracer longitude center point
ϕp 0 Cloud-like tracer latitude center point
zp,1 3050 m First cloud-like tracer altitude
zp,2 5050 m Second cloud-like tracer altitude
zp,3 8200 m Third cloud-like tracer altitude
∆zp,1 1000 m First cloud-like tracer thickness
∆zp,2 1000 m Second cloud-like tracer thickness
∆zp,3 400 m Third cloud-like tracer thickness
Rp π/4 Cloud-like deck radius (radians)

For this test the zonal, meridional and vertical velocity fields along surfaces of constant height
(above the mean sea level) are specified as

u(λ, ϕ, z, t) = u0 (cosϕ cosα+ sinϕ cosλ sinα) , (44)

v(λ, ϕ, z, t) = −u0 sinλ sinα, (45)

w(λ, ϕ, z, t) = 0. (46)

The velocity field transports the cloud-like tracer horizontally (at a constant height) once around
the sphere over a duration of 12 days. If orography-following coordinates are used the vertical
velocity needs to be translated into the new coordinate system due to the variation of the height
along coordinate surfaces. Such a generalized vertical velocity becomes non-zero in this case. The
exact description of the vertical velocity for orography-following coordinates is specified below and
in Appendix B.

The surface elevation is a 3D variant of a Schär-like [9] mountain with compact support, centered
around the point (λm, ϕm). The great circle distance from the mountain center point (in radians) is
defined as

rm(λ, ϕ) = arccos [sinϕm sinϕ+ cosϕm cosϕ cos(λ− λm)]. (47)
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The surface elevation is then given by

zs(λ, ϕ) =


h0

2

[
1 + cos

(
πrm
Rm

)]
cos2

(
πrm
ζm

)
, if rm < Rm,

0, otherwise.
(48)

This choice ensures that the topography is flat away from the mountain, but strongly oscillates over
the mountain range itself. The surface geopotential is then given by Φs(λ, ϕ) = gzs(λ, ϕ). As before
in tests 1-1 and 1-2, an isothermal atmosphere with T = T0 is selected which leads to the pressure
equation (1). The surface pressure is obtained by substituting z = zs(λ, ϕ) into (1).

Three thin cloud-like passive tracers are defined to represent lower-level, medium-level and
upper-level cloud decks. These three cloud-like layers are initially placed away from the mountain
in a region of flat topography so as to more easily evaluate error norms. The lateral great circle
distance from the cloud center point (in radians) is defined as

rp(ϕ, λ) = arccos [sinϕp sinϕ+ cosϕp cosϕ cos(λ− λp)]. (49)

Similarly we define a vertical distance from the center of each cloud level,

rz,i(z) = |z − zp,i|, (50)

where i ∈ {1, 2, 3}. If pressure-based vertical coordinates are used the height z(p) needs to be
computed according to (2) first before applying (50). The lower-level and medium-level cloud-like
tracers are disk-shaped, with the 3D mixing ratio

qi(ϕ, λ, z) =


1
4

[
1 + cos

(
2πrz,i(z)

∆zp,i

)][
1 + cos

(
πrp(ϕ, λ)

Rp

)]
, if rz,i(z) < 1

2∆zp,i and rp(ϕ, λ) < Rp,

0, otherwise,
(51)

for i ∈ {1, 2}. The upper-level cloud-like tracer is box-shaped with mixing ratio

q3(ϕ, λ, z) =

{
1, if rz,3(z) < 1

2∆zp,3 and rp(ϕ, λ) < Rp,

0, otherwise.
(52)

The total tracer field is the sum of these three cloud-like tracers

q4(ϕ, λ, z) = q1(ϕ, λ, z) + q2(ϕ, λ, z) + q3(ϕ, λ, z). (53)

Initialization in models using generalized vertical coordinates with terrain-following horizontal
velocities

In models with terrain-following vertical coordinates the term “horizontal velocity” is most often
interpreted and used in a coordinate-following framework. Consequently, if a constant horizontal
velocity with respect to the height above mean sea level is imposed it needs to lead to an implied
vertical velocity in the presence of topography. This perceived vertical velocity reflects that the
terrain-following coordinates slope up- and downwards. The vertical motion thereby ensures that
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there is an exchange of the tracers between the sloping model levels in case of purely horizontal
advection. This problem is further described in Appendix B.

In spherical coordinates, the perceived vertical velocity w takes the form

w = − uλ
a cosϕ

(
∂z

∂λ

)
s

− uϕ
a

(
∂z

∂ϕ

)
s

, (54)

where uλ and uϕ are the zonal and meridional velocities with respect to the mean sea level. Here,
they coincide with u and v shown in (44) and (45). The derivatives in (54) are taken along the
sloping coordinate surfaces (surfaces of the constant generalized vertical coordinate s). Once w is
computed the corresponding vertical pressure velocity ω is given by

ω = −ρgw (55)

where ρ = p/(RdT0) is the density.
To demonstrate how the perceived vertical velocity is computed, we present it in the height-

based orography-following coordinate of Gal-Chen and Somerville [10] (here denoted GC). The
formulation for the perceived vertical velocity for the hybrid pressure-based η coordinate [8], which
is often used in hydrostatic dynamical cores, is shown in Appendix B. If other vertical coordinates
are used the formulation for the vertical velocity needs to be newly derived according to the
algorithm given here and in Appendix B.

The GC vertical coordinate z ∈ [0, ztop] maps to the range z ∈ [zs(λ, ϕ), ztop]. It is defined as

z = ztop

(
z − zs(λ, ϕ)
ztop − zs(λ, ϕ)

)
, (56)

where zs(λ, ϕ) is the surface elevation, for instance defined by (48), and ztop is the height position
of the model top. Coordinate surfaces in Cartesian space are defined via the inverse of (56),

z = zs(λ, ϕ) +
z

ztop
(ztop − zs(λ, ϕ)). (57)

To compute the perceived vertical velocity we differentiate (57) along surfaces of constant z,
obtaining

∂z

∂λ
=
∂zs
∂λ

(
1− z

ztop

)
, (58)

∂z

∂ϕ
=
∂zs
∂ϕ

(
1− z

ztop

)
. (59)

The final step in this procedure requires one to compute the horizontal derivatives of zs with
respect to λ and ϕ. Using the Schär mountain profile (48) the derivatives of the surface elevation are
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given as follows:

∂zs
∂x

=



{
− h0π

2Rm
sin
(
πrm
Rm

)
cos2

(
πrm
ζm

)
−

h0π

ζm

[
1 + cos

(
πrm
Rm

)]
cos
(
πrm
ζm

)
sin
(
πrm
ζm

)}(
∂rm
∂x

)
, if rm < Rm,

0, otherwise.
(60)

where x ∈ {λ, ϕ} and

∂rm
∂λ

=
cosϕm cosϕ sin(λ− λm)√

1− cos2(rm(λ, ϕ))
, (61)

∂rm
∂ϕ

=
− sinϕm cosϕ+ cosϕm sinϕ cos(λ− λm)√

1− cos2(rm(λ, ϕ))
. (62)

Note that when rm(λ, ϕ) = 0 or ±π, which will occur at (λ, ϕ) = (λm, ϕm) or (λm ± π,−ϕm), we
enforce ∂rm

∂λ = 0 and ∂rm
∂ϕ = 0. At each coordinate (λ, ϕ) the set of equations (54)-(62) then leads

to a unique perceived velocity associated with the terrain-following coordinate transform.

Grid spacings, simulation time, output and diagnostics

This test should be run at 1◦ resolution (∼ 110 km equatorial grid spacing) in both horizontal
directions with 30, 60, and 120 vertical levels for 12 days. For models using height levels a model
top of ztop = 12000 m is suggested with a uniformly-spaced vertical grid spacing of ∆z in the flat
regions away from the mountain range. For the e.g. 60 level setup (L60) this means that the model
interfaces are positioned at 0 m, 200 m, 400 m, etc. and that the full model levels are placed at 100 m,
300 m, 500 m, etc. in the flat regions. If the model utilizes orography-following vertical coordinates
the grid spacing will be non-uniform over the mountain range. From (1) the height position of
the model top corresponds to ptop ≈ 254.944 hPa. Appendix F.3 outlines how pressure-based levels
should be positioned in order to correspond to the equidistant grid spacing ∆z. At the L60 resolution
the three cloud-like tracers initially occupy 5, 5 and 2 vertical grid points for the lower, middle and
upper layers.

Output should be recorded daily (every 86400 s) and needs to include the initial state (13
time snapshots). The desired output variables on model levels are the instantaneous snapshots of
q1, q2, q3, q4. The following analysis results are suggested:

• Latitude-longitude cross sections of q4 should be produced at t = 6 and 12 days at the model
level that is closest to the (non-interpolated) height positions z = 3100 m, z = 5100 m and
z = 8100 m.

• Longitude-level cross sections of q4 should be produced at t = 6 and 12 days on model levels
along the equator. If q4 shows that vigorous mixing of the cloud-like tracers q1, q2 or q3 has
occured, longitude-height cross sections of q1, q2 and q3 should be plotted on model levels.

• The q4 field at the equator should be interpolated to constant height levels in the vertical
region between 2000-10000 m. Longitude-height cross sections of q4 should then be plotted
at t = 6 and 12 days along the equator. If q4 shows that vigorous mixing of the cloud-like
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tracers q1, q2 or q3 has occured, q1, q2 and q3 should also be interpolated to height levels, and
longitude-height cross sections of q1, q2 and q3 should be plotted.

• Normalized l1, l2 and l∞ error norms should be computed for q1, q2, q3 and q4 at t = 12 days
against the initial conditions.
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2. TEST CATEGORY 2-X: IMPACT OF OROGRAPHY ON A NON-ROTATING PLANET

The tests in section 2-x examine the impact of mountain profiles on an atmosphere at rest (2-
0-0) with a moderately-steep 3D Schär-like [9] circular mountain, an atmosphere at rest with a
single steep mountain ridge and more complex temperature structure (2-0-1), and on flow fields
with wind shear (2-1) and without vertical wind shear (2-2) in the presence of a 3D Schär-like
[9] circular mountain. A non-rotating planet is used for all configurations with Ωref = 0 s−1. Test
2-0-0 is conducted on an unscaled regular-size planet and primarily examines the accuracy of the
pressure gradient calculation in a steady-state hydrostatically-balanced atmosphere at rest. Test 2-
0-1 is similar to test 2-0-0, but focuses on the effects of finite terrain slopes which is especially
important for non-hydrostatic models at high resolutions. Test 2-0-1 is therefore run on a small-
planet and also includes more complex temperature variations in the vertical direction. Both steady-
state tests at rest are especially appealing for models with orography-following vertical coordinates.
They increase the complexity of test 1-3, that investigated the impact of an orographic profile on the
accuracy of purely-horizontal passive tracer advection.

Tests 2-1 and 2-2 increase the complexity even further since non-zero flow fields are now
prescribed with and without vertical wind shear. In order to trigger non-hydrostatic responses the
two tests are conducted on a reduced-size planet with reduction factor X = 500 which makes
the horizontal and vertical grid spacing comparable. This test clearly discriminates between non-
hydrostatic and hydrostatic models since the expected response is in the non-hydrostatic regime.
Therefore, the flow response is captured differently by hydrostatic models.

2.0. Test 2-0-0: Steady-State Atmosphere at Rest in the Presence of Orography with
Moderately-Steep Slopes

Table XII. List of constants used for the steady-state atmosphere at rest in the presence of orography test
case (Test 2− 0− 0).

Constant Value Description
ztop 12000 m Height position of the model top
ptop ≈ 205.448 hPa Pressure at the model top
X 1 Small-planet scaling factor (regular-size Earth)
Ω 0 s−1 Rotation rate of the Earth
T0 300 K Reference surface temperature
p0 1000 hPa Reference surface pressure
Γ 0.0065 K m−1 temperature lapse rate
λm 3π/2 Mountain longitude center point
ϕm 0 Mountain latitude center point
h0 2000 m Maximum mountain height
Rm 3π/4 Mountain radius (radians)
ζm π/16 Mountain oscillation half-width (radians)

The underlying idea behind the steady-state test is similar to the test in [11] which evaluated
the accuracy of two discrete approaches to the pressure gradient calculation in the presence of
orography. It especially gives insight into the accuracy of the pressure gradient in models with
orography-following coordinates due to the complexities of the coordinate transformations and
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metric terms. From an analytic viewpoint the atmosphere should remain in its motionless steady-
state indefinitely as determined by the continuous equations. In a discretized model, this will
generally not be the case due to numerical errors, unless special forms of the equations of motion
are chosen, that e.g. utilize the perturbation pressure from the discretely-determined hydrostatic
balance. Such models might appear to be ‘perfect’, which is a consequence of the idealized setup
considered here. For there models, this test might not be insightful and should be considered
optional. However, for most model designs the test will reveal the numerical characteristics of the
discrete pressure gradient terms, and it is furthermore quick to run from a computational viewpoint.

The chosen mountain profile is identical to the one used for test 1− 3. For convenience the
formulation for the surface height zs is repeated here

zs(λ, ϕ) =


h0

2

[
1 + cos

(
πrm
Rm

)]
cos2

(
πrm
ζm

)
, if rm < Rm,

0, otherwise.
(63)

This choice ensures that the topography is flat away from the mountain, but strongly oscillates over
the mountain range itself. The surface geopotential is then given by Φs(λ, ϕ) = gzs(λ, ϕ). This
moderately-steep Schär-like circular mountain is centered around the point (λm, ϕm). The great
circle distance from the mountain center point (in radians) is defined as

rm(λ, ϕ) = arccos [sinϕm sinϕ+ cosϕm cosϕ cos(λ− λm)]. (64)

We initialize the model with a hydrostatically-balanced steady-state at rest. The atmosphere is
stratified with a constant lapse rate Γ. The temperature is therefore given by

T (λ, ϕ, z) = T0 − Γz (65)

T (λ, ϕ, p) = T0

(
p(λ, ϕ, z)

p0

)RdΓ
g

(66)

for height-based and pressure-based vertical coordinates, respectively. T0 denotes the surface
temperature. The hydrostatically-balanced pressure equation then yields

p(λ, ϕ, z) = p0

(
1− Γ

T0
z(λ, ϕ)

) g
RdΓ

(67)

where p0 stands for the reference pressure at the height position z0 = 0 m. The surface pressure is
obtained by substituting z(λ, ϕ) = zs(λ, ϕ) into (67). Equation (67) can also be rewritten as

z(λ, ϕ, p) =
T0

Γ

1−
(
p

p0

)RdΓ
g

 . (68)
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The atmosphere is at rest with

u = 0 (69)

v = 0 (70)

w = ω = η̇ = 0 (71)

at all grid point positions. Consequently, the relative vorticity and divergence of the flow are zero.
In addition, the specific humidity q is set to zero.

For finite-volume-type models it could be advantageous to select a vertical-mean initial state
instead of the grid-point values since the vertical-mean might be closer to the discrete hydrostatic
balance. However, the vertical-mean is still not identical to a volume-mean in a 3D volume since
temperature and pressure also vary in the horizontal direction in orography-following vertical
coordinates. For the conditions specified here, the vertical-mean temperature and pressure can be
computed analytically. The vertical-mean temperature T̄ between the height levels zdown and zup

(with zdown < z < zup) is

T̄ (λ, ϕ, z) = T0 −
Γ

2(zup − zdown)
(
z2

up − z2
down

)
(72)

where the positions zdown and zup point to the surrounding model interface levels that enclose the
midpoint of the cell at position z. The vertical-mean temperature for pressure-based models is

T̄ (λ, ϕ, p) =
g T0 p0

(RdΓ + g)(pup − pdown)

(pup

p0

)RdΓ
g +1

−
(
pdown

p0

)RdΓ
g +1

 (73)

with the model interface pressures pdown and pup that surround the centered pressure position p (with
pup < p < pdown). The vertical-mean pressure p̄ for non-hydrostatic models is

p̄(λ, ϕ, z) =
p0 T0Rd

(zup − zdown)(RdΓ + g)

[(
1− Γ

T0
zdown

) g
RdΓ +1

−
(

1− Γ
T0
zup

) g
RdΓ +1

]
(74)

The density is given by the ideal gas law

ρ(λ, ϕ, z) =
p(λ, ϕ, z)

Rd T (λ, ϕ, z)
(75)

which could also be replaced by the approximate vertical-mean density when using p̄ and T̄ in (75).

Grid spacings, simulation time, output and diagnostics for test 2-0-0

The steady-state test should be run for 6 days (518400 s). A resolution of 1◦ (∼ 110 km) with 15
and 30 vertical levels should be chosen. Since the model top is set at ztop = 12 km, for models
with a height-based vertical coordinate we suggest uniformly spaced levels (in the flat regions away
from the mountain range) with thickness ∆z = 800 m and ∆z = 400 m, respectively. For the 15-
level setup this means that the model interfaces are positioned at 0 m, 800 m, 1600 m, etc. and
that the full model levels are placed at 400 m, 1200 m, 2000 m, etc. (away from the mountain
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range). The interface positions for the 30-level configuration are 0 m, 400 m, 800 m, etc. with full
model levels at 200 m, 600 m, 1000 m, etc. (away from the mountain range). If the model utilizes
orography-following vertical coordinates the grid spacing will be non-uniform over the mountain
range. For models utilizing a pressure-based vertical coordinate the corresponding pressure levels
can be chosen using (67). The position of the model top for pressure-based models is ≈ 205.448
hPa. Appendix F.3 outlines how pressure-based levels should be positioned in order to correspond
to the grid spacing ∆z.

Output should be written at 6 hr intervals including the initial state. The output file should
contain the instantaneous model-level snapshots of the u, v, w or ω, T, ps,Φs, T500, w500 or ω500

fields and p in case the pressure cannot be reconstructed via the surface pressure. The subscript
X500 denotes the 500 hPa level. For comparison, we suggest plotting the non-interpolated vertical
cross sections (λ-model level) of the zonal wind and vertical velocity along the equator at day 6.
We also propose analyzing the structure of the 500 hPa temperature field and plotting longitude-
latitude cross sections of the zonal wind, meridional wind and vertical velocity at the lowermost
model level and the model level closest to the 500 hPa level (which lies around 5700 m in height-
based models) at days 3 and 6. In addition, we suggest evaluating the time series of the global-mean
kinetic energy over the 6 simulation days. The global mean (globally-integrated) kinetic energy is
defined via the 2D horizontal velocities 0.5(u2 + v2) in hydrostatic models and the 3D velocities
0.5(u2 + v2 + w2) in nonhydrostatic models.

2.0.1. Test 2-0-1: Steady-State Atmosphere at Rest in the Presence of Orography with Steep
Slopes

optional test: description to follow, based on ideas by Joseph Klemp (NCAR) and the MPAS
modeling group, run on a small planet with X = 500 at the resolution 2◦ (≈ 667 m grid spacing)
with 30 levels and a model top at 12 km. The vertical temperature profile utilizes a constant lapse
rate at low and high levels and includes an embedded isothermal temperature layer at mid-levels.

2.X. Tests 2-1 and 2-2: Non-hydrostatic Mountain Waves over a Schär-type Mountain

The two mountain-induced gravity wave tests 2-1 and 2-2 examine the response of atmospheric
models to flow over a mountain profile, with and without vertical wind shear. Their analytical
descriptions are almost identical. They are therefore first presented together in their general form,
before we highlight the specific settings of the shear parameter c for 2-1 and 2-2 below. In order to
ensure the simulated response contains both hydrostatic and non-hydrostatic features, the radius of
the Earth is scaled so that the simulation is in the non-hydrostatic domain. We chose a non-rotating
reduced-size Earth with radius a = aref/X . The reduction factor is set toX = 500. This choice leads
to an Earth with a circumference at the equator of about 2πaref/X ≈ 80 km. The underlying ideas
behind the tests are based on the work of [12], [13] and [14]. Note however that in the presence of
vertical wind shear we cannot use isothermal conditions in the spherical domain as suggested by
[14]. Such isothermal conditions lead to imbalances of the initial data in spherical geometry. Recall
that the Earth’s radius and angular velocity must also be redefined in the GCM source code, and that
explicit diffusion coefficients (if applied) and the model time step need to be rescaled.
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Table XIII. List of constants used for the Non-Hydrostatic Mountain Wave test cases (Tests 2-1 and 2-2).

Constant Value Description
ztop 30000 m Height position of the model top
ptop ≈ 32.818 hPa Pressure at the model top at the equator
X 500 Reduced-size planet scaling factor
Ω 0 s−1 Rotation rate of the Earth
λc π/4 Longitude of Schär-type mountain centerpoint
ϕc 0 Latitude of the Schär-type mountain centerpoint
h0 250 m Maximum Schär-type mountain height
d 5000 m Schär-type mountain half-width
ξ 4000 m Schär-type mountain wavelength
peq 1000 hPa Reference surface pressure at the equator
Teq 300 K Reference surface temperature at the equator
ueq 20 m s−1 Reference zonal wind velocity
cs 2.5× 10−4 m−1 Equatorial surface wind shear (for sheared flow)
zh 20000 m Height of the Rayleigh damped layer
τ0 25 s Rayleigh friction time scale

For the Schär-type mountain test we specify topography of the form

zs(λ, ϕ) = h0 exp
(
−r(λ, ϕ)2

d2

)
cos2

(
πr(λ, ϕ)

ξ

)
, (76)

where zs symbolizes the surface elevation and r is the great-circle distance, defined by

r =
aref

X
arccos [sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)]. (77)

Hence, the surface geopotential is given by Φs(λ, ϕ) = gzs(λ, ϕ). Rotation is disabled (Ω = 0 s−1).
This test requires the specification of Rayleigh friction in a rather broad sponge layer which

occupies one third of the domain near the model top. It is needed to absorb upward propagating
gravity waves and prevent their reflection at the model top. We suggest applying the Rayleigh
friction to the horizontal velocity components in hydrostatic models, and to the 3D velocity
components in non-hydrostatic formulations, respectively. The Rayleigh friction is defined as an
additional forcing term of the momentum equations

∂u
∂t

= . . .− f(z)
τ0

(u− uref), (78)

where τ0 = 25 s is the damping time scale and u denotes the 2D or 3D vector form of the velocity,
respectively. The damping time scale τ0 is already scaled for small-planet conditions. The reference
profile uref is set identical to the initial velocity field described below. The function

f(z) =

 sin2

(
π

2

(
z − zh
ztop − zh

))
if z > zh,

0 if z ≤ zh,
(79)

determines the strength of the Rayleigh damping and reaches its maximum at the model top.
Here zh = 20 km denotes the altitude of the Rayleigh damped layer and ztop = 30 km denotes the
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altitude of the model top. For pressure-based models an identical form of the Rayleigh damping
should be chosen that utilizes the pressure-height conversion (84) shown below. Note that τ0 can
be adjusted depending on the behavior of the model, but should be chosen to minimize spurious
reflections from the model top. Please report the adjusted τ0 value when providing final results. If
a model is formulated in a vorticity-divergence form, the Rayleigh friction mechanism could also
be reformulated to force the divergence and vorticity towards their base initial states. Such changes
need to be documented. We do not apply any sponge-layer relaxation to the temperature field.

Two wind fields are used for tests 2-1 and 2-2 that only differ by their vertical wind-shear
characteristics. Both choices of wind field use a hydrostatically-balanced 3D pressure field of the
form

p(λ, ϕ, z) = peq exp

(
−

u2
eq

2RdTeq
sin2 ϕ− gz

RdT (ϕ)

)
. (80)

The surface pressure is obtained from setting z = zs(λ, ϕ) in (80). The temperature field is chosen
to be

T (ϕ) = Teq

(
1−

cu2
eq

g
sin2 ϕ

)
with (81)

T (λ, ϕ, z) = T (λ, ϕ, p) = T (ϕ).

Note that the temperature only depends on the latitudinal position and is isothermal within each
vertical column. The parameter c denotes a prescribed vertical wind shear of the zonal velocity field
at the surface. The temperature field is balanced by the initial zonal velocity field

u(λ, ϕ, z) = ueq cos(ϕ)

√
2Teq
T (ϕ)

cz +
T (ϕ)
Teq

. (82)

This zonal wind field is characterized by a varying wind shear with altitude. In all cases the
meridional and vertical velocities are everywhere zero,

v(λ, ϕ, z) = 0, w(λ, ϕ, z) = 0, ω(λ, ϕ, z) = 0. (83)

For models with a pressure-based vertical coordinate, (80) can be rearranged to obtain

z(λ, ϕ, p) =
RdT (ϕ)

g
ln
(
peq
p

)
−
T (ϕ)u2

eq sin2 ϕ

2Teq g
. (84)

This height can then be plugged into (82) to obtain the pointwise zonal velocity field. The specific
humidity field q needs to be set to zero. The density is defined via the ideal gas law

ρ(λ, ϕ, z) =
p(λ, ϕ, z)

Rd T (λ, ϕ, z)
. (85)

2.1. Test 2-1: Non-Sheared Background Flow

This non-sheared test case utilizes a vertically-constant zonal velocity with the shear parameter c
set to zero (c = 0).
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2.2. Test 2-2: Sheared Background Flow

This test utilizes a sheared zonal velocity with the shear parameter c = cs where cs symbolizes the
vertical wind shear at the surface as listed in Table XIII. As noted before the resulting wind shear of
the zonal wind is not constant and depends on altitude. The analytic formulation (82) lets the zonal
wind vary from u = 20 m s−1 at the equatorial surface to about 80 m s−1 at the height of 30 km.

Grid spacings, simulation time, output and diagnostics for both tests 2-1 and 2-2

For tests 2-1 and 2-2, the model should be run until t = 7200 s (in unscaled time units) which
corresponds to a simulation length of 1000 hr in scaled time units. A resolution of 1.5◦ (∼ 333.6 m)
with 60 vertical levels should be chosen. Since the model top is set at ztop = 30 km, for models
with a height-based vertical coordinate we suggest uniformly spaced levels (in the flat regions away
from the mountain range) with thickness ∆z = 500 m. This means that the model interfaces are
positioned at 0 m, 500 m, 1000 m, etc. and that the full model levels are placed at 250 m, 750 m,
1250 m, etc. in the flat domain. If the model utilizes orography-following vertical coordinates the
grid spacing will be slightly non-uniform over the mountain range. For models utilizing a pressure-
based vertical coordinate the corresponding pressure levels can be chosen using (80) with ϕ = 0
so that pressure and height levels are coincident at the equator. The position of the model top for
pressure-based models is ≈ 32.818 hPa. Appendix F.3 outlines how pressure-based levels should be
positioned in order to correspond to the grid spacing ∆z.

Output should be written at 100 s (unscaled Earth) intervals including the initial state. This
corresponds to an output frequency of 50000 s in scaled Earth units. The output file should contain
the instantaneous model-level snapshots of the u, v, w or ω, T, ps,Φs fields and p in case the pressure
cannot be reconstructed via the surface pressure. For comparison, we suggest producing λ− z plots
of the temperature perturbation T ′(λ, z) = T − Teq at the equator at t = 2400 s, t = 3600 s and
t = 7200 s. The time snapshots at t = 2400 s and t = 3600 s capture the wave before it has fully
wrapped around the earth and will be the most informative analysis. The time snapshot t = 7200 s
captures the wave after it interfered with itself and the absorbing layer. A longitude-height animation
of the propagating temperature perturbation along the equator is also very informative. We also
recommend analyzing the vertical velocity. Note however, that a pressure-based velocity ω needs
to be converted to w if direct comparisons to non-hydrostatic models with height-based coordinates
are desired. The temperature perturbation plots avoid any conversions.
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3. TEST CATEGORY 3: NON-HYDROSTATIC GRAVITY WAVES

The non-hydrostatic gravity wave test examines the response of models to short time-scale wave-
motion triggered by a localized perturbation. The formulation presented in this document is new,
but is based on previous approaches by [15], [16] and [17]. The initial state is hydrostatically
balanced and in gradient-wind balance. An overlaid potential temperature perturbation then triggers
the evolution of gravity waves. We define the initial conditions in the most general form that includes
the Coriolis term. Therefore, this initial data equation set can also be used for other test scenarios
in the future. However, since we set the Earth’s angular velocity to zero it eliminates the impact
of the earth’s rotation in the initial conditions and simulations considered here. Remember that the
Earth’s radius and angular velocity must also be redefined in the GCM source code, and that explicit
diffusion coefficients (if applied) and the model time step need to be rescaled.

Initial Conditions for Test 3-x

Balanced basic state

The gravity wave test on a reduced-size earth discriminates between hydrostatic and non-hydrostatic
responses. We chose a non-rotating Earth with angular velocity Ωref = 0 s−1 and select a reduced-
size Earth with radius a = aref/X . The reduction factor is set to X = 125. This choice leads to an
Earth with a circumference at the equator of about 2πaref/X ≈ 320 km. The temperature field is
chosen to have a constant Brunt-Väisälä frequency N , which impacts the phase speed of the gravity
wave as discussed below.

Table XIV. List of constants used for the Gravity Wave test case (Test 3-x)

Constant Value Description
ztop 10000 m Height position of the model top
ptop ≈ 273.759 hPa Pressure at the model top at the equator
X 125 Reduced-size planet scaling factor
Ω 0 s−1 Rotation rate of the Earth
u0 20 m s−1 Maximum amplitude of the zonal wind
zs 0 m Surface elevation
N 0.01 s−1 Brunt-Väisälä frequency
Teq 300 K Surface temperature at the equator
peq 1000 hPa Reference surface pressure at the equator
d 5000 m Width parameter for Θ′

λc 2π/3 Longitudinal centerpoint of Θ′

ϕc 0 Latitudinal centerpoint of Θ′ (equator)
∆Θ 1 K Maximum amplitude of Θ′

Lz 20000 m Vertical wave length of the Θ′ perturbation

The initial zonal, meridional and vertical wind speeds are

u(λ, ϕ, z) = u0 cos(ϕ), (86)

v(λ, ϕ, z) = 0, (87)

w(λ, ϕ, z) = 0. (88)
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The corresponding pressure velocity is similarly set to zero everywhere, ω(λ, ϕ, z) = 0. No surface
topography is present (zs = 0 m), so that the surface geopotential satisfies Φs = Φ(z = zs) = 0 m2

s−2. The surface temperature is given by

Ts(λ, ϕ) = G+ (Teq −G) exp

(
− u0N

2

4g2
(u0 + 2Ωa)

(
cos(2ϕ)− 1

))
(89)

with

G =
g2

N2cp
(90)

where G denotes the temperature of an isothermal state for a prescribed N . The 3D (unperturbed)
background temperature field is represented by

Tb(λ, ϕ, z) = G

[
1− exp

(N2

g
z
)]

+ Ts(λ, ϕ) exp
(N2

g
z
)
, (91)

Tb(λ, ϕ, p) =
Ts(λ, ϕ)

(
p

ps(λ,ϕ)

)κ
Ts(λ,ϕ)
G

((
p

ps(λ,ϕ)

)κ − 1
)

+ 1
, (92)

in height and pressure coordinates, respectively. The surface pressure is defined by

ps(λ, ϕ) = peq exp

{
u0

4GRd
(u0 + 2Ωa)

(
cos(2ϕ)− 1

)}(Ts(λ, ϕ)
Teq

)1/κ

. (93)

The 3D unperturbed pressure field, in terms of height coordinates, is then

p(λ, ϕ, z) = ps(λ, ϕ)

[
G

Ts(λ, ϕ)
exp

(
− N2

g
z
)

+ 1− G

Ts(λ, ϕ)

]1/κ

. (94)

Note that (94) and (93) can also be combined to give an alternative form of the unperturbed pressure
equation

p(λ, ϕ, z) = peq exp

{
u0

4GRd
(u0 + 2Ωa)

(
cos(2ϕ)− 1

)}(Tb(λ, ϕ, z)
Teq

)1/κ

exp
(
− gz

GRd

)
.

(95)
Equation (94) can be reformulated to yield a pressure-based expression for the height z

z(λ, ϕ, p) = − g

N2
ln

[
Ts(λ, ϕ)

G

{(
p

ps(λ, ϕ)

)κ
− 1

}
+ 1

]
, (96)
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which was utilized to derive (92). The expressions for the unperturbed background potential
temperature are

Θb(λ, ϕ, z) = Ts(λ, ϕ)

(
p0

ps(λ, ϕ)

)κ
exp

(N2

g
z
)

(97)

Θb(λ, ϕ, p) =
Ts(λ, ϕ)

(
p0

ps(λ,ϕ)

)κ
Ts(λ,ϕ)
G

((
p

ps(λ,ϕ)

)κ − 1
)

+ 1
(98)

for height-based and pressure-based models.
For models in vorticity-divergence form, the relative vorticity ζ and divergence δ are defined by

ζ(λ, ϕ, z) =
2u0 sinϕ
aref/X

=
2Xu0 sinϕ

aref
(99)

δ(λ, ϕ, z) = 0 s−1. (100)

The specific humidity field q needs to be set to zero. The background (unperturbed) density is
defined via the ideal gas law

ρ(λ, ϕ, z) =
p(λ, ϕ, z)

Rd Tb(λ, ϕ, z)
. (101)

Test 3-1: Overlaid potential temperature perturbation at the equator

In order to trigger the propagation of a gravity wave, a small-amplitude potential temperature
perturbation Θ′ is added to the balanced background potential temperature field to yield

Θ(λ, ϕ, z) = Θb(λ, ϕ, z) + Θ′(λ, ϕ, z) (102)

Θ(λ, ϕ, p) = Θb(λ, ϕ, p) + Θ′(λ, ϕ, p) (103)

depending on the choice of the vertical coordinate. The analytic expression for the height-based
potential temperature perturbation is

Θ′(λ, ϕ, z) = ∆Θ s(λ, ϕ) sin
(2π z
Lz

)
, (104)

where Lz is the vertical wave length of the perturbation. The horizontal shape function s(λ, ϕ) is
defined as

s(λ, ϕ) =
d2

d2 + r2
, (105)

where d is a width parameter for the bell-shaped potential temperature perturbation and r symbolizes
the great circle distance between a position (λ, ϕ) and the center of the perturbation, initially set to
(λc, ϕc) along the equator. The great circle distance r is defined as

r =
aref

X
arccos [sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)]. (106)
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For pressure-based vertical coordinates, the potential temperature perturbation is given as

Θ′(λ, ϕ, p) = ∆Θ s(λ, ϕ) sin
(2π z(λ, ϕ, p)

Lz

)
, (107)

which utilizes (96) to evaluate the height z at a given pressure p.
The corresponding temperature perturbations for models with a prognostic temperature field are

T ′(λ, ϕ, z) = Θ′(λ, ϕ, z)

(
p(λ, ϕ, z)

p0

)κ
, (108)

T ′(λ, ϕ, p) = Θ′(λ, ϕ, p)
( p
p0

)κ
, (109)

depending on the choice of the vertical coordinate. These perturbations are added to the background
temperature field

T (λ, ϕ, z) = Tb(λ, ϕ, z) + T ′(λ, ϕ, z) (110)

T (λ, ϕ, p) = Tb(λ, ϕ, p) + T ′(λ, ϕ, p). (111)

Grid spacings, simulation time and output

The suggested grid spacings are 1.125◦ × 1.125◦ in the horizontal direction which yields a physical
horizontal grid spacing of about 1 km near the equator. On a latitude-longitude grid this corresponds
to 160× 320 grid points (without pole points) or 161× 320 (including pole points). In the vertical,
a grid spacing of ∆z = 1 km with a model top at ztop = 10 km is suggested which gives 10 full
model levels at the positions 0.5, 1.5, 2.5 km and so on. The position of the model top corresponds
to half a wave length ztop = Lz/2. Using N = 0.01 s−1 the top level (interface) pressure ptop is
ptop = p(ztop) ≈ 273.759 hPa according to (94). Here, the position of the model top is computed
for ps = peq. Appendix F.3 outlines how pressure-based levels should be positioned in order to
correspond to the equidistant grid spacing ∆z.

The simulation should be run until t = 3600 s in unscaled Earth units which corresponds to
125 hours in scaled time units. The output should be recorded every 100 s (in unscaled units)
including the initial state. The output file should contain the instantaneous model-level snapshots
of the u, v, w or ω, T, ps fields and p in case the pressure cannot be reconstructed via the surface
pressure.

This test can also be run in many variants if the perturbation is placed away from the equator. E.g.
Θ′ could be placed at ϕ = 45◦ in models with cubed-sphere coordinates to evaluate the potential
impact of the cubed-sphere corners on the propagation of the wave. It is left to the modeler’s
discretion if more than variant 3-1 should be tested. Additional test case numbers can then be
defined.

Diagnostics

Along the equator, the gravity wave propagates to the west and east of its initial location with a
longitudinal phase speed of

cx = u± NLz
2π

, (112)
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which corresponds to about 31.8 m s−1 without the background flow u. The inclusion of the
background flow leads to asymmetric phase speeds which are about -11.8 m s−1 (towards the west)
and 51.8 m s−1 towards the east along the equator. We suggest analyzing the potential temperature
deviations from the base state in form of a longitude-height cross section along the equator with
ϕ = 0◦ at time t = 3000 s (and optionally other times). The deviations are given by

Θ′m = Θm −Θ, (113)

where
Θm = T

(p0

p

)κ
(114)

is the modeled potential temperature, and the base state Θ is either defined by (97) or (98) depending
on the choice of the vertical coordinate. In addition, a line plot of the Θ′m at the height level
z = 5.5 km along the equator at time t = 3000 s is suggested. For models with pressure-based levels
the corresponding model level closest to p = 512.085 hPa should be selected without any vertical
interpolations since it corresponds almost exactly to the position z = 5.5 km at the equator.

37



38

4. TEST CATEGORY 4-X: BAROCLINIC INSTABILITY

The baroclinic instability test of [18, 19] and its rotated version described in [20] have been used
extensively to test the response of 3D atmospheric models to a controlled, evolving instability. This
test is specified in pressure-based η-coordinates for the vertical, defined by

η =
p

ps(λ, ϕ)
. (115)

Hence, the η coordinates is equal to unity at the surface and approaches zero as p→ 0. For
models using a height-based or isentropic vertical coordinate, an iterative procedure as described
in Appendix F.5 and Appendix F.6 is required in order to initialize this test.

Table XV. List of constants used for the Baroclinic Instability test cases (Test 4− x).

Constant Value Description
ztop 44000 m Recommended height position of the model top
ptop ≈ 2.26 hPa Recommended pressure at the model top
X various Reduced-size planet scaling factor, see below
a aref/X Scaled radius of the Earth
Ω ΩrefX Scaled angular speed of the Earth
ps 1000 hPa Surface pressure (constant)
p0 1000 hPa Reference pressure (constant)
η0 0.252 Value of η at a reference level (position of the jet)
ηt 0.2 Value of η at the tropopause
ηs 1 Value of η at the surface
u0 35 m s−1 Maximum amplitude of the zonal wind
up 1 m s−1 Maximum amplitude of the zonal wind perturbation
λc π/9 Longitude of the zonal wind perturbation centerpoint (20◦ E)
ϕc 2π/9 Latitude of the zonal wind perturbation centerpoint (40◦ N)
R a/10 Radius of the zonal wind perturbation
T0 288 K Horizontal-mean temperature at the surface
Γ 0.005 K m−1 Temperature lapse rate
∆T 4.8× 105 K Empirical temperature difference

An auxiliary variable ην is defined by

ην = (η − η0)
π

2
. (116)

The zonal velocity field consists of two symmetric zonal jets in the midlatitudes which are overlaid
by a Gaussian-type zonal wind perturbation. The zonal wind u is defined as

u(λ, ϕ, η) = u0 cos
3
2 ην sin2(2ϕ) + up exp

(
−
( r
R

)2
)
. (117)

The meridional and vertical velocity is everywhere zero,

v(λ, ϕ, z) = 0, w(λ, ϕ, z) = 0, ω(λ, ϕ, z) = 0. (118)
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Here r is the great circle distance from the zonal wind perturbation centerpoint, defined by

r = a arccos (sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc)) . (119)

In addition, the specific humidity field q is set to zero for the dry test variants 4-1-x, and the surface
pressure is set to the constant ps = p0 = 1000 hPa.

The total temperature distribution comprises the horizontal-mean temperature and a horizontal
variation at each level. It is given by

T (λ, ϕ, η) = T (η) +
3
4
ηπu0

Rd
sin ην cos

1
2 ην ×{

2u0 cos
3
2 ην

(
−2 sin6 ϕ

(
cos2 ϕ+

1
3

)
+

10
63

)
+

aΩ
(

8
5

cos3 ϕ

(
sin2 ϕ+

2
3

)
− π

4

)}
. (120)

The horizontally averaged temperature T (η) is split into two representations for the lower (121) and
middle atmosphere (122). It is given by

T (η) = T0η
RdΓ
g , (for 1 ≥ η ≥ ηt) (121)

T (η) = T0η
RdΓ
g + ∆T (ηt − η)5, (for ηt > η) (122)

The density ρ is defined by the ideal gas law

ρ(λ, ϕ, η) =
p(λ, ϕ, η)

Rd T (λ, ϕ, η)
. (123)

The geopotential Φ = gz completes the description of the steady-state initial conditions, where z
symbolizes the elevation at model level η. The total geopotential distribution Φ = Φ + Φ′ consists
of the horizontal-mean geopotential Φ and a horizontal variation Φ′ at each level. It is given by

Φ(λ, ϕ, η) = Φ(η) + u0 cos
3
2 ην ×{

u0 cos
3
2 ην

(
−2 sin6 ϕ

(
cos2 ϕ+

1
3

)
+

10
63

)
+

aΩ
(

8
5

cos3 ϕ

(
sin2 ϕ+

2
3

)
− π

4

)}
, (124)

with horizontal-mean geopotential

Φ(η) =
T0g

Γ

(
1− η

RdΓ
g

)
, (for 1 ≥ η ≥ ηt), (125)

Φ(η) =
T0g

Γ

(
1− η

RdΓ
g

)
−∆Φ(η), (for ηt > η), (126)

where

∆Φ(η) = Rd∆T
{(

ln
(
η

ηt

)
+

137
60

)
η5
t − 5η4

t η + 5η3
t η

2 − 10
3
η2
t η

3 +
5
4
ηtη

4 − 1
5
η5

}
. (127)
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The test requires the initialization of the surface geopotential Φs. The orography field balances the
non-zero zonal wind at the surface and is determined by (124) when evaluated at the surface with
ηs = 1. It is given by

Φs(λ, ϕ) = u0 cos
3
2

(
(ηs − η0)

π

2

)
×{

u0 cos
3
2

(
(ηs − η0)

π

2

)(
− 2 sin6 ϕ (cos2 ϕ+

1
3

) +
10
63

)
+

a Ω
( 8

5
cos3 ϕ (sin2 ϕ+

2
3

)− π

4

)}
. (128)

Note that the use of a scaling parameter X > 1 does not impact the initialization of u, v, T, ps or Φs
since the rescaled radius is always multiplied with the rescaled angular velocity.

4.1. Test 4-1-x: Dry Baroclinic Instability on a Small Planet with Dynamic Tracers

The baroclinic instability on a small planet is initialized as above, except we vary the scaling
parameter X (defined in Table III) to redefine the radius and rotation rate of the Earth, relative to
real-world reference values. This change needs to be implemented in the GCM code. Analogously,
we define a small planet timescale according to ts = t/X which reflects the faster development
of the baroclinic instability associated with contraction of the length scale. Since both the radius
a = aref/X and the rotation rate Ω = ΩrefX are impacted by the scaling factor X , their product
aΩ remains the same. It means that the initial conditions on small planets will be identical to the
initial conditions on the regular-size planet with the exception of the Ertel potential vorticity field
used as an invariant dynamic tracer (see below).

In hydrostatic models variations in X should have very minor effects on the model output. The
most dominant differences to a regular-size planet experiment are that the amplitude of the vertical
velocity approximately scales withX and thereby increases in strength on small planets. In addition,
the amplitude of the Ertel potential vorticity tracer increases by the factor X . While these changes
do not seem to impact the overall development of the baroclinic wave in hydrostatic models, the
evolution of the wave has been observed to become very different in non-hydrostatic models with
increased scaling factorX . The investigation of the regime shifts in the baroclinic wave development
are of particular interest here.

Invariant tracers

Test 4-1-x includes two invariant tracer fields, potential temperature (q1 = Θ) and the absolute value
of Ertel’s potential vorticity (q2 = |EPV|). That is, it follows from the primitive equations that each
of the invariant tracers inherently satisfies the advection equation with no exterior source terms.
Since the numerical simulation is inexact, we expect there to be a deviation between the invariant
tracer field and the dynamically computed tracer over time. Comparing these two quantities yields
insight into how well a model conserves the invariant relationships with time.

The initial distribution of potential temperature can be immediately computed from the
temperature field (120)-(122),

q1(λ, ϕ, η) = Θ(λ, ϕ, η) = T (η)η−κ +
3
4
πu0

Rd
η1−κ sin ηv cos

1
2 ηvY, (129)
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where

Y =
(
−2 sin6 ϕ

[
cos2 ϕ+

1
3

]
+

10
63

)
2u0 cos3/2 ηv +

(
8
5

cos3 ϕ

[
sin2 ϕ+

2
3

]
− π

4

)
aΩ. (130)

The definition of the absolute value of the hydrostatic variant of Ertel’s potential vorticity on
pressure levels is

q2(λ, ϕ, η) = |EPV(λ, ϕ, η)| =

∣∣∣∣∣g
{

1
a cosϕ

∂v

∂p

(
∂Θ
∂λ

)
p

− 1
a

∂u

∂p

(
∂Θ
∂ϕ

)
p

+ (f + ζp)
(
−∂Θ
∂p

)}∣∣∣∣∣ ,
(131)

where ζp is the relative vorticity computed at constant pressure [21] and f = 2Ω sin(ϕ) is the
Coriolis parameter. The subscript p denotes that these partial derivatives are taken at constant
pressure levels. We consider the analytic initial conditions and EPV formulation described in [18]
and [22]. Since the basic initial state is hydrostatically balanced and the pressure does not vary
along the η-levels, this formulation for the initial EPV field is also valid for non-hydrostatic shallow-
atmosphere models. As noted before the scaling parameter X leads to an increase of EPV by the
factor X as both a = aref/X and Ω = ΩrefX are present in (131).

Note that the initial potential temperature does not vary in the longitudinal direction (∂Θ/∂λ = 0)
and that ∂p can be expressed as p0∂η since the surface pressure is constant. Using all simplifications
in (131), the initial absolute value of the EPV tracer yields

q2(λ, ϕ, η) = |EPV(λ, ϕ, η)| =

∣∣∣∣∣ gp0

{
−1
a

∂u

∂η

(
∂Θ
∂ϕ

)
p

− (f + ζp)
∂Θ
∂η

}∣∣∣∣∣ . (132)

The total velocity components for the test case are given by (117) and (118). As also specified
in [18] this immediately leads to the relative vorticity in the outward direction (perpendicular to the
pressure surfaces in this case) being given by

ζ(λ, ϕ, η) = ζb(λ, ϕ, η) + ζ ′(λ, ϕ, η)

= −4
u0

a
cos

3
2 ηv sinϕ cosϕ(2− 5 sin2 ϕ) +

up
a

exp
(
−
( r
R

)2
)
×{

tan(ϕ)− 2
( a
R

)2

arccos(K)
sinϕc cosϕ− cosϕc sinϕ cos(λ− λc)√

1−K2

}
(133)

where ζb is the unperturbed background relative vorticity, ζ ′ denotes the relative vorticity
perturbation, and K is defined as K = sinϕc sinϕ+ cosϕc cosϕ cos(λ− λc). For the singular
points (λc, ϕc) and (λc + π,−ϕc) with K2 = 1, ζ ′(λc, ϕc) = up tanϕ/a is well-defined and
limλ→λc+π,ϕ→−ϕc ζ

′ is zero. Similarly, limϕ→±π2 ζ
′ is zero at the poles. These limits need to be

enforced in the implementation of the initial conditions.
The vertical derivative of the zonal wind yields

∂u

∂η
= −u0 sin2(2ϕ)

3π
4

cos
1
2 ηv sin ηv. (134)
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The vertical derivative of the potential temperature is calculated from (129) as

∂Θ
∂η

=
∂Θ
∂η

+
3
4
πu0

Rd
(1− κ) η−κ sin ηv cos

1
2 ηvY +

3
8
π2u0

Rd
η1−κ cos

3
2 ηvY

− 3
16
π2u0

Rd
η1−κ sin2 ηv cos−

1
2 ηvY (135)

−9
8
π2u2

0
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η1−κ sin2 ηv cos ηv
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−2 sin6 ϕ

[
cos2 ϕ+

1
3

]
+
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63

)
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∂Θ
∂η

=


T0

(
RdΓ
g − κ

)
η(RdΓ/g−κ)−1 for ηs ≥ η ≥ ηt
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(
RdΓ
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)
η(RdΓ/g−κ)−1

−∆T
(
5(ηt − η)4η−κ + κ(ηt − η)5η−κ−1

) for ηt > η.
(136)

The derivative of potential temperature with respect to the latitudinal direction is also computed as

∂Θ
∂ϕ

=
3
4
πu0

Rd
η1−κ sin ηv cos

1
2 ηv

×
{

2u0 cos
3
2 ηv

(
−12 cosϕ sin5 ϕ

[
cos2 ϕ+

1
3

]
+ 4 cosϕ sin7 ϕ

)
(137)

+ aΩ
(
−24

5
sinϕ cos2 ϕ

[
sin2 ϕ+

2
3

]
+

16
5

cos4 ϕ sinϕ
)}

.

Combining all of these terms as illustrated in (132) we can define the initial EPV distribution
analytically. The EPV is positive in the Northern Hemisphere, and negative in the Southern
Hemisphere. However, we initialize the EPV tracer field with the absolute value of EPV in order to
avoid model errors arising from negative tracer constituents. In this case the tracer distribution will
only correspond to the dynamically computed EPV in the Northern Hemisphere, and to the absolute
value of the dynamic EPV field in the Southern Hemisphere.

We suggest running the dry baroclinic instability test with the following small-planet scaling
factors:

Test Name Scaling Factor
Test 4-1-0 X = 1
Test 4-1-1 X = 10
Test 4-1-2 X = 100
Test 4-1-3 X = 1000

Grid spacings, simulation time and output

The simulation should be run for ts = 30 small planet days, which corresponds to t = (2592000/X)
seconds in unscaled Earth units. Output should be written every small planet day (each 86400/X
seconds in unscaled Earth units) including the initial state. The output file should contain the
instantaneous model-level snapshots of the q1, q2, u, v, w or ω, T, ps,Φs fields and p in case the
pressure cannot be reconstructed via the surface pressure. In addition, we ask for 2D fields at the

42



43

850 hPa pressure level if available as output quantities. They are u, v, T, w or ω at the interpolated
850 hPa level.

The grid resolution is chosen to be roughly 1◦ at the equator with 30 vertical levels arranged in
approximate correspondence with Appendix F.1. The model top in height-based models should be
at least 30 km high. However, a higher model top of about 44 km is the preferred choice since it
mimics the model top in the pressure-based L30 setup (Table XVIII) more closely. The position
of the model top in pressure-based models should lie around 2.26 hPa as specified by the level
distribution in Table XVIII. Appendix F.2 makes suggestions for the placement of the 30 model
levels in height-based models.

Diagnostics

Surface pressure, the 850 hPa temperature, 850 hPa vertical velocity and 850 hPa relative vorticity
should be plotted at small planet days 7, 9, 12 and 15 for each of these simulations. Further, we are
interested in the consistency between the dynamic tracers Θ and EPV and the dynamics themselves.
We suggest plotting Θ and q1 at the small planet days 7, 9, 12 and 15 at the 850 hPa level. In addition,
we suggest interpolating q1 to the Θ0 = 315 K isentropic level to evaluate the deviations of the tracer
q1 from Θ0 at this isentropic level. The 315 K isentropic level does not intersect with the ground and
lies close to the 900 hPa pressure surface in the tropics and between 400-500 hPa in mid- and high
latitudes. The deviation (q1 −Θ0) along the Θ0 isentropic level should be plotted at the small planet
days 7, 9, 12 and 15 as a longitude-latitude cross section. Error measures for (q1 −Θ0), like the
normalized l2 error norm , might be considered while acknowledging that the vertical interpolation
contributes to the overall error. However, its effect might be small in comparison to the dynamic
inconsistency errors depending on the model formulation.

We suggest comparing the tracer EPV and dynamic EPV fields at the Θ0 = 315 K isentropic level
in the Northern Hemisphere. The dynamic EPV field can be computed from the output quantities.
Such analysis routines will be provided in form of NCL scripts. Of course, if an analysis of the
dynamic EPV field is already provided in the model, we ask for it as an output quantity. We suggest
plotting both the 315 K dynamic and tracer EPV fields in the Northern Hemisphere (ϕ ∈ [0◦, 90◦]) at
small Earth days 8, 12 and 15. In addition, we suggest creating x-y scatter plots of the dynamic 315
K EPV (x-axis) versus the tracer EPV (y-axis) field in the region ϕ ∈ [30◦, 90◦] at the small planet
days 8, 12 and 15. The spread on these scatter plots is an indication of dynamic inconsistencies in
the model as discussed in [22].

In order to gain an appreciation for the dissipation characteristics of the model, we also propose
plotting the 700 hPa kinetic energy (KE) spectrum at small planet day 30. The selected rather low-
lying pressure level is selected since the baroclinic wave is most pronounced at the lower levels.
Such plots can be directly compared to KE-spectra analyses in [23].

4.2. Test 4-2: Moist Variant of the Baroclinic Wave Test Case with Large-Scale Condensation

Moist initial conditions

The initial conditions for the moist baroclinic wave are almost identical to the initial conditions
for the dry baroclinic wave. We utilize the regular-size planet with the scaling factor X = 1. The
differences to the dry baroclinic wave test case 4-1 are that the original temperature equation T
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Table XVI. List of additional constants used for the Moist Baroclinic Instability test cases (Test 4− 2), see
also Table XV.

Constant Value Description
X 1 small-planet scaling factor (regular-size Earth)
ϕw 2π/9 Specific humidity latitudinal width parameter (40◦)
pw 340 hPa Specific humidity vertical pressure width parameter
q0 0.021 kg/kg Maximum specific humidity amplitude
p0 1000 hPa Surface pressure

now gets interpreted as an equation for the virtual temperature Tv, the formally dry surface pressure
ps = p0 gets interpreted as the surface pressure of the moist air, the definition of the density needs
to utilize the virtual temperature instead of the temperature, and an analytic equation for the specific
humidity q is added. The wind initialization of the moist baroclinic wave is identical to the dry case.
No passive tracers q1 or q2 are specified.

The specific humidity field is

q(λ, ϕ, η) = q0 exp

[
−
( ϕ

ϕw

)4
]

exp

[
−

(
(η − 1)p0

pw

)2]
(138)

with the latitudinal width parameter ϕw = 2π/9 (corresponding to 40◦ latitude) and the pressure-
based width parameter pw = 340 hPa. Since the surface pressure of the moist air ps is constant with
ps = p0 = 1000 hPa the vertical coordinate η is represented by η = p/p0. The functional form of q
and its parameters were inspired by observations. This moisture fields leads to maximum relative
humidities around 90% in the lower levels of the midlatitudes, and around 70% in the topics.

This virtual temperature Tv field is given by the original temperature definition in (120)-(122),

Tv(λ, ϕ, η) = 〈Tv(η)〉+
3
4
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Rd
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2 ηv ×{(
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3
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4

)
a Ω

}
(139)

with the horizontal-mean virtual temperature

〈Tv(η)〉 = T0 η
RdΓ
g (for ηs ≥ η ≥ ηt) (140)

〈Tv(η)〉 = T0 η
RdΓ
g + ∆T (ηt − η)5 (for ηt > η). (141)

The density of the moist air is defined by the ideal gas law

ρ(λ, ϕ, η) =
p(λ, ϕ, η)

Rd Tv(λ, ϕ, η)
. (142)

and utilizes the pressure of the moist air and the virtual temperature.
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The formulation of the virtual temperature and specific humidity leads to the analytic
representation of the temperature

T (λ, ϕ, η) =
Tv(λ, ϕ, η)

1 + 0.608 q(λ, ϕ, η)
(143)

This temperature is colder than the original dry temperature. However, note that in the moist case the
virtual temperature and moist pressure determine the strength of the pressure gradient term in the
momentum equations. Since these are identical to the temperature and pressure in the dry case, the
forcing by the pressure gradient term is the same in both the dry and moist variant of the baroclinic
wave. The moist variant of the baroclinic wave without the temperature forcing from large-scale
condensation should lead to almost identical results when compared to the dry version. Very small
variations are expected since the moisture gets independently transported as a passive tracer in this
case and some models utilize the moist variant of the physical constant cp. If possible, the dry cp
should be used. Comparing the evolution of the dry baroclinic wave to its moist variant (without
large-scale condensation) can serve as a first sensibility check.

Inclusion of large-scale condensation

The underlying idea of the moist baroclinic wave test case is to provide a feedback mechanism
between the equations of motion and moisture. This is achieved via the inclusion of a large-scale
condensation process which is triggered in the case of supersaturation. If large-scale condensation
is invoked, the excess moisture is removed as large-scale precipitation without a cloud stage or re-
evaporation, and the released heat forces the thermodynamic variable. The suggested approach can
be considered one of the simplest possible tests of the coupled moist physics-dynamics system. The
scheme for large-scale condensation is based on the scheme of [3], and is described in Appendix
C. The large-scale condensation mechanism is also provided as part of the Fortran template routine
simple physics v5.f90 (updated on July/8/2012) that is provided on the DCMIP web page.

After the large-scale condensation is computed and moisture is removed from the system care
needs to be taken to ensure that the model conserves the total dry air mass or its analog, the global
average of the dry surface pressure. This is especially true if the moist surface pressure is predicted
in the dynamical core. If needed the ‘dry air adjustment’ should take place in either the dynamical
core or after the large-scale condensation was applied as a ‘physics’ package. This depends on the
design of the model. Most often, GCMs already provide a mechanism to ensure that the total dry air
mass is conserved, such as global mass fixers or explicit dry air adjustment routines as discussed in
e.g. [24]. If not, such a mechanism needs to be supplied and invoked after each ‘physics’ time step.

Grid spacings, simulation time, output and diagnostics

We suggest running this test until t = 15 days, which corresponds to 1296000 seconds with output at
6-hourly time intervals (every 21600 seconds) including the initial state. Two grid resolutions should
be chosen. The first experiment should be run at roughly 1◦ at the equator (110 km equatorial grid
spacing) with 30 vertical levels arranged in approximate correspondence with Appendix F.1. This
is also discussed above in section 4.1. The second experiment doubles the horizontal resolution and
sets the horizontal grid spacing to ≈ 0.5◦ (≈ 55 km) while keeping the L30 level configuration.
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If height-based coordinates are used we recommend a model top of about 44 km. The lowermost
full model level should lie around 60-70 m above the ground to mimic the position of the lowermost
level in the pressure-based level distribution (Table XVIII) most closely. Appendix F.2 makes
suggestions for the placement of the 30 model levels in height-based models.

The output file should contain instantaneous model-level snapshots of the
q, u, v, w or ω, T, ps,Φs, Pls fields and p in case the pressure cannot be reconstructed via the
surface pressure field. In addition, we ask for 2D fields at the 850 hPa pressure level, if available, as
output quantities. They are u, v, T, w or ω fields at the interpolated 850 hPa level. Surface pressure,
the 850 hPa temperature, 850 hPa vertical velocity and large-scale precipitation rate Pls should be
plotted at days 6, 9, 12 and 15. In addition, we recommend plotting the time history of the surface
pressure field at selected locations in the Northern midlatitudes (positions to be determined).

4.3. Optional Test 4-3: Moist Variant of the Baroclinic Wave Test Case, driven by
“Simple-Physics”

The setup of test 4-3 is formally identical to test 4-2 on a regular-size Earth (see section 4.2), but
now assumes that the Earth is a water-covered aqua-planet. The only difference to test 4-2 is that
additional simplified physical forcing mechanisms are applied at each physics time step. These
incorporate simple surface fluxes of momentum, latent and sensible heat, as well as a simplified
boundary layer diffusion mechanism which mixes the horizontal velocities, the temperature and
specific humidity via a second-order vertical diffusion. The design of this “simple-physics” package
has been introduced by [3] and is described in the Appendices C-E. However, there is one difference.
Instead of using a constant sea surface temperature (SST), the prescribed and time-independent SST
field needs to be initialized via (143) evaluated at the surface level η = 1. All test specific parameters
are listed in Tables XV and XVI. Section 0.6 provides practical recommendations on the provided
template routine for the “simple-physics” package.

As before in test 4-2, after physical forcings are computed and moisture is removed from the
system care needs to be taken to ensure that the model conserves the total dry air mass or its analog,
the global average of the dry surface pressure. This is especially true if the moist surface pressure
is predicted in the dynamical core. If needed this ‘dry air adjustment’ should take place in either
the dynamical core or after the large-scale condensation was applied as a ‘physics’ package. This
depends on the design of the model. Most often, GCMs already provide a mechanism to ensure that
the total dry air mass is conserved, such as global mass fixers or explicit dry air adjustment routines
as discussed in e.g. [24]. If not, such a mechanism needs to be supplied and invoked after each
‘physics’ time step.

Grid spacings, simulation time, output and diagnostics

We suggest running this test until t = 15 days, which corresponds to 1296000 seconds with output
at 6-hourly time intervals (every 21600 seconds). The output file should include the initial state. Two
grid resolutions are recommended. The first experiment should be run at roughly 1◦ at the equator
(110 km equatorial grid spacing) with 30 vertical levels arranged in approximate correspondence
with Appendix F.1. This is also discussed above in section 4.1. The second experiment doubles the
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horizontal resolution and sets the horizontal grid spacing to ≈ 0.5◦ (≈ 55 km) while keeping the
L30 level configuration.

If height-based coordinates are used we recommend a model top of about 44 km. As before, the
lowermost full model level should lie around 60-70 m above the ground to mimic the position of
the lowermost level in the pressure-based level distribution (Table XVIII) most closely. Since the
position of the lowest model level enters the computation of the simple-physics forcings, there might
be sensitivities to the level placement. Appendix F.2 makes suggestions for the placement of the 30
model levels in height-based models.

The output file should contain the instantaneous model-level snapshots of
q, u, v, w or ω, T, ps,Φs, Pls, SST , and p in case the pressure cannot be reconstructed via the
surface pressure field. In addition, we ask for 2D fields at the 850 hPa pressure level, if available, as
output quantities. They are u, v, T, w or ω fields at the interpolated 850 hPa level. Surface pressure,
the 850 hPa temperature, 850 hPa vertical velocity and large-scale precipitation rate Pls should be
plotted at days 6, 9, 12 an 15. In addition, we recommend plotting the time history of the surface
pressure field at selected locations in the Northern midlatitudes (positions to be determined).
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5. TEST CATEGORY 5-X: IDEALIZED TROPICAL CYCLONE EXPERIMENTS

The simplified tropical cyclone test case on a regular-size Earth is based on the work of
[3, 25, 26, 27]. In this test an analytic vortex is initialized in a background environment which is
tractable to a rapid intensification of tropical cyclones. Two test variants are suggested. The first test
variant 5-1 has intermediate complexity, requiring simplified physical forcings in order to drive the
tropical storm. This simplified physics parameterization suite called “simple-physics” is described
in detail in [3], although the important components have been reproduced here in Appendices C-
E. In short, the simple-physics suite provides a large-scale condensation process, surface fluxes
and boundary layer mixing. The use of the simplified parameterization package guarantees that the
model results can be intercompared.

The second test variant 5-2 is optional, and might be considered if the GCM is configurable
as an aqua-planet model described by [28]. The only differences to [28] are that the SST field
needs to be set to 29 C◦ and that the model is only integrated for 10 days. We propose using
the analytic initial vortex in combination with the model’s own complex physical parameterization
package in this aqua-planet mode. Of course, the physical parameterization packages in GCMs
vary widely and cannot be compared directly. However, such an experiment gives valuable insight
into the structural uncertainty among the DCMIP models that are run at comparable horizontal
and vertical resolutions. The structural uncertainties are therefore triggered by the designs of the
dynamical cores, the physical parameterizations, and their complex nonlinear interactions. Since
the models start with identical initial conditions, utilize an identical forcing at the lower boundary
via the prescribed SST, and share the same external forcing parameters like the solar constant or
greenhouse gas concentrations (defined in [28]) the initial data and boundary data uncertainties are
eliminated.

Table XVII. List of constants used for the Simplified Tropical Cyclone Experiments (Tests 5-1 and 5-2)

Constant Value Description
X 1 small-planet scaling factor (regular-size Earth)
zt 15000 m Tropopause height
q0 0.021 kg/kg Maximum specific humidity amplitude
qt 10−11 kg/kg Specific humidity in the upper atmosphere
T0 302.15 K Surface temperature of the air
Ts 302.15 K Sea surface temperature (SST), 29 C◦

zq1 3000 m Height related to the linear decrease of q with height
zq2 8000 m Height related to the quadratic decrease of q with height
Γ 0.007 K m−1 Virtual temperature lapse rate
pb 1015 hPa Background surface pressure
ϕc π/18 Initial latitude of vortex center
λc π Initial longitude of vortex center
∆p 11.15 hPa Pressure perturbation at vortex center
rp 282000 m Horizontal half-width of pressure perturbation
zp 7000 m Height related to the vertical decay rate of p perturbation
ε 10−25 Small threshold value
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Initial Conditions for Test 5-1 and 5-2

Background state

The background state consists of a prescribed specific humidity profile, virtual temperature and
pressure profile. These parameters are chosen to roughly match an observed tropical sounding
documented in [29]. The background specific humidity profile q(z) as a function of height z is

q(z) = q0 exp
(
− z

zq1

)
exp

(
−
(
z

zq2

)2
)

for 0 ≤ z ≤ zt,

q(z) = qt for zt < z. (144)

The background virtual temperature sounding T v(z) is split into two different representations for
the lower and upper atmosphere. It is given by

T v(z) = Tv0 − Γz for 0 ≤ z ≤ zt,
T v(z) = Tvt = Tv0 − Γzt for zt < z,

(145)

with the virtual temperature at the surface Tv0 = T0(1 + 0.608 q0) and the virtual temperature at the
tropopause level Tvt = Tv0 − Γzt. As a result, the background temperature profile T (z) is

T (z) =
T v(z)

1 + 0.608 q(z)
. (146)

The specific humidity values correspond to relative humidities of about 80% at lower levels and
prescribe a warm and moist environment.

The background vertical pressure profile p(z) of the moist air is computed using the hydrostatic
balance and the virtual temperature equation (145). The profile is given by

p(z) = pb

(
Tv0 − Γz
Tv0

) g
RdΓ

for 0 ≤ z ≤ zt,

p(z) = pt exp
(
g(zt − z)
RdTvt

)
for zt < z.

(147)

The pressure at the tropopause level zt is continuous and given by

pt = pb

(
Tvt
Tv0

) g
RdΓ

, (148)

which, for the given set of parameters, is approximately 130.5 hPa.

Axisymmetric Vortex

The pressure equation p(r, z) for the moist air is comprised of the background pressure profile (147)
plus a 2D pressure perturbation p′(r, z),

p(r, z) = p(z) + p′(r, z), (149)
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where r symbolizes the radial distance (or radius) to the center of the prescribed vortex. On the
sphere r is defined using the great circle distance

r = a arccos (sinϕc sinϕ+ cosϕc cosϕ cos (λ− λc)). (150)

The perturbation pressure is defined as

p′(r, z) = −∆p exp

(
−
(
r

rp

)3/2

−
(
z

zp

)2
)(

Tv0 − Γz
Tv0

) g
RdΓ

for 0 ≤ z ≤ zt,

p′(r, z) = 0 for zt < z. (151)

The pressure perturbation depends on the pressure difference ∆p between the background surface
pressure pb and the pressure at the center of the initial vortex, the pressure change in the radial
direction rp and the pressure decay with height within the vortex zp. The moist surface pressure
ps(r) is computed by setting z = 0 m in (149), which gives

ps(r) = pb −∆p exp

(
−
(
r

rp

)3/2
)
. (152)

The axisymmetric virtual temperature Tv(r, z) is computed using the hydrostatic equation and
ideal gas law

Tv(r, z) = −gp(r, z)
Rd

(
∂p(r, z)
∂z

)−1

. (153)

Again it can be written as a sum of the background state and a perturbation,

Tv(r, z) = T v(z) + T ′v(r, z), (154)

where the virtual temperature perturbation is defined as

T ′v(r, z) = (Tv0 − Γz)


1 +

2Rd(Tv0 − Γz)z

gz2
p

[
1− pb

∆p exp
((

r
rp

)3/2

+
(
z
zp

)2
)]

−1

− 1

 for 0 ≤ z ≤ zt,

T ′v(r, z) = 0 for zt < z.

(155)

The axisymmetric specific humidity q(r, z) is set to the background profile everywhere

q(r, z) = q(z). (156)

Consequently, the temperature can be written as

T (r, z) = T (z) + T ′(r, z), (157)
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with the temperature perturbation

T ′(r, z) =
Tv0 − Γz

1 + 0.608q(z)


1 +

2Rd(Tv0 − Γz)z

gz2
p

[
1− pb

∆p exp
((

r
rp

)3/2

+
(
z
zp

)2
)]

−1

− 1

 for 0 ≤ z ≤ zt,

T ′(r, z) = 0 for zt < z.

(158)

Due to the small specific humidity value in the upper atmosphere (10−11 kg/kg for z > zt) the virtual
temperature equals the temperature to a very good approximation in this region. The formulation
presented here is equivalent to the one presented in [3].

If the density of the moist air needs to be initialized its formulation is based on the ideal gas law

ρ(r, z) =
p(r, z)

RdTv(r, z)
(159)

which utilizes the moist pressure (149) and virtual temperature (154). The surface elevation zs and
thereby the surface geopotential Φs = gzs are set to zero.

Finally, the tangential velocity field vT (r, z) of the axisymmetric vortex is defined by utilizing the
gradient-wind balance, which depends on the pressure (149) and the virtual temperature (155). The
tangential velocity is given by

vT (r, z) = −fcr
2

+

√
f2
c r

2

4
+
Rd Tv(r, z) r
p(r, z)

∂p(r, z)
∂r

, (160)

where fc = 2Ω sin(ϕc) is the Coriolis parameter at the constant latitude ϕc. Substituting Tv(r, z)
and p(r, z) into (160) gives

vT (r, z) = −fcr
2

+

√√√√√√√f2
c r

2

4
−

3
2

(
r
rp

)3/2

(Tv0 − Γz)Rd

1 + 2Rd(Tv0−Γz)z
gz2
p

− pb
∆p exp

((
r
rp

)3/2

+
(
z
zp

)2
) for 0 ≤ z ≤ zt,

vT (r, z) = 0 for zt < z.

(161)

The last step is to split the tangential velocity (161) into its zonal and meridional wind components
u(λ, ϕ, z) and v(λ, ϕ, z). Similar to [30] these are computed using the following expressions,

d1 = sinϕc cosϕ− cosϕc sinϕ cos(λ− λc) (162)

d2 = cosϕc sin(λ− λc) (163)

d = max
(
ε,

√
d1

2 + d2
2
)
, (164)
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which are utilized in the projections

u(λ, ϕ, z) =
vT (λ, ϕ, z) d1

d
(165)

v(λ, ϕ, z) =
vT (λ, ϕ, z) d2

d
. (166)

A small ε = 10−25 value avoids divisions by zero. The vertical velocity is set to zero.

Test 5-1: Coupling to the “Simple-Physics” Physical Parameterizations

Without external physical forcing, the vortex initialized by the procedure above will simply dissipate
with time. Test 5-1 makes use of very simplified physical parameterizations which provide essential
forcing mechanisms relevant to tropical cyclone intensification. In particular, this test requires
parameterizations of large-scale condensation (Appendix C), idealized fluxes from a ocean surface
(Appendix D) and a representation of the planetary boundary layer (Appendix E). The design of the
simple-physics suite is discussed in detail in [3]. Section 0.6 provides practical recommendations
on the provided template routine for the “simple-physics” package.

An additional design choice needs to be made concerning the physics-dynamics coupling strategy.
If no prior constraint exists, we recommend coupling the simple-physics suite to the dynamical core
with a time-split coupling strategy [4]. This means that the dynamical core already updates the
model state before the physical parameterizations are called and vice versa. However, a process-
split coupling strategy (both the dynamical core and the physics package work with the identical
state variables before the state is advanced for one time step) is also acceptable if required by the
GCM design. A hybrid between the two approaches is also possible. The design choice needs to be
documented.

As before in tests 4-1 and 4-2, after physical forcings are computed and moisture is removed from
the system care needs to be taken to ensure that the model conserves the total dry air mass or its
analog, the global average of the dry surface pressure. This is especially true if the moist surface
pressure is predicted in the dynamical core. If needed the ‘dry air adjustment’ should take place in
either the dynamical core or after the large-scale condensation was applied as a ‘physics’ package.
This depends on the design of the model. Most often, GCMs already provide a mechanism to ensure
that the total dry air mass is conserved, such as global mass fixers or explicit dry air adjustment
routines as discussed in e.g. [24]. If not, such a mechanism needs to be supplied and invoked after
each ‘physics’ time step.

Grid spacings, simulation time, output and diagnostics

We suggest running this test until day 10, which corresponds to 864000 seconds with output written
at 6-hourly time intervals (every 21600 seconds). The output should include the initial state. Three
grid resolutions are suggested. The first experiment should be run at roughly 1◦ at the equator
(110 km equatorial grid spacing) with 30 vertical levels arranged in approximate correspondence
with Appendix F.1. The second experiment doubles the horizontal resolution and sets the horizontal
grid spacing to ≈ 0.5◦ while keeping the L30 level configuration. The third experiment sets the
resolution to ≈ 0.25◦ with the identical L30 levels.
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If height-based coordinates are used we recommend a model top of about 44 km. The lowermost
full model level should lie around 60-70 m above the ground to mimic the position of the lowermost
level in the pressure-based level distribution (Table XVIII) most closely. Since the position of
the lowest model level enters the computation of the simple-physics forcings, there might be
sensitivities to the level placement. Appendix F.2 makes suggestions for the placement of the 30
model levels in height-based models.

The output file should contain the instantaneous model-level snapshots of
q, u, v, w or ω, T, ps, Pls and p in case the pressure cannot be reconstructed via the surface
pressure. In addition, we ask for 2D fields at the 850 hPa pressure level if available as output
quantities. They are u, v, T, w or ω at the interpolated 850 hPa level. Surface pressure and the 100
m horizontal wind speed (

√
u2 + v2) should be plotted at days 3, 5, 7 and 10. The latter necessitates

a vertical interpolation to the 100 m level. In addition, we recommend plotting the longitude-height
cross sections of the horizontal wind speed through the center latitude of the vortex at days 3, 5, 7
and 10. NCL scripts will be provided.

Test 5-2: Using the Model’s Full-Physics Aqua-Planet Mode with a constant SST of 29 C◦

The second test variant 5-2 is optional, and as mentioned above, might be considered if the GCM
is configurable as an aqua-planet model described by [28]. We propose using the analytic initial
vortex in combination with the model’s own complex physical parameterization package in aqua-
planet mode. The only differences to the aqua-planet specification in [28] are that the SST field
needs to be set to 29 C◦ and that the model is run in a short deterministic mode for only 10 days.

Some physical parameterization schemes might have difficulty handling the zero vertical wind
shear that is present in the background environment. E.g. the gravity wave drag scheme or the
computation of the Richardson number in the planetary boundary layer routine might be set up to
divide by the discretely computed wind shear, which could lead to divisions by zero. Most often
though, the physical parameterization packages provide thresholds to avoid such difficulties.

Grid spacings, simulation time, output and diagnostics

We suggest running this experiment at a single resolution with the grid spacing ≈ 0.5◦ (55 km) in
the horizontal directions and the L30 level setup as used before in test 5-1.

The output file should contain the instantaneous model-level snapshots of q, u, v, w or ω, T, ps
and p in case the pressure cannot be reconstructed via the surface pressure. In addition, we ask for
2D fields at the 850 hPa pressure level if available as output quantities. They are u, v, T, w or ω at the
interpolated 850 hPa level. In addition, we suggest including the surface fluxes of latent and sensible
heat, and momentum. The precipitation rate is likely split into the components ‘total’, ‘large-scale’
and ‘convective’ precipitation rate. We recommend adding all three to the output file if available.

Surface pressure and the 100 m horizontal wind speed (
√
u2 + v2) should be plotted at days 3, 5, 7

and 10. The latter necessitates a vertical interpolation to the 100 m level. In addition, we recommend
plotting the longitude-height cross sections of the horizontal wind speed through the center latitude
of the vortex at days 3, 5, 7 and 10. NCL scripts will be provided. We leave other plots to the
modeler’s discretion.
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A. MIXING DIAGNOSTICS AND CORRELATION PLOTS

Mixing diagnostics and correlation plots are described by [31] as a method for determining the
nature of numerical mixing errors which are introduced by an advection scheme. These errors are of
particular importance in atmospheric chemistry modeling, since they represent important functional
relationships between tracer species.

By defining nonlinearly correlated tracer fields (χ, ξ), one can determine how well the numerical
scheme preserves these correlations over the duration of the simulation. For the deformational flow
test (Test 1-1), we have specified a tracer field q1(λ, ϕ, z) and a field q2(λ, ϕ, z) which satisfies the
initial relationship

q2(λ, ϕ, z) = ψ(q1(λ, ϕ, z)) ≡ 0.9− 0.8q1(λ, ϕ, z)2. (167)

We define the correlation plot of q1 and q2 as the scatter plot obtained from plotting the mixing
ratios (q1)k = χk against (q2)k = ξk for each cell k. For the given distribution, one will initially
obtain a curve similar to the one in Figure 1. As the simulation progresses, the nonlinear correlation
between these tracers will be lost due to numerical errors and so the scatter plot will drift from its
initial distribution. The final correlation plot reveals important information on how well the scheme
preserves these correlations.

A measure of the types of numerical mixing which occur during the simulation can be
quantitatively obtained using mixing diagnostics. We first define ∆Ak as the area of grid cell k
and A as the total area of the domain. Further, we define dk as the normalized shortest distance
between the point (χk, ξk) and the initial (χ, ψ(χ)) correlation curve. For the initial distribution
given in (167), dk is defined as

dk = L(χ(ψ)
k , χk, ξk), (168)
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Figure 1. Classifications of numerical mixing based on an original paired tracer distribution ((q1)k, (q2)k) =
(χk, ξk) (for all grid cells k) which initially follows the thick black curve. Mixing ratio pairs (χk, ξk) in
region A have undergone numerical mixing which resembles “real” mixing. Mixing ratio pairs in region B
have undergone numerical mixing which is inherently unphysical. Mixing ratio pairs outside of these regions
have overshot the original distribution due to an insufficient shape-preserving filter. This figure is reproduced

from [31].

where

C(χk, ξk) =
1
12

[
432χk + 6

√
750(2ξk − 1)3 + 5184χ2

k

]1/3

, (169)

χ
(root)
k (χk, ξk) = C(χk, ξk) +

1
C(χk, ξk)

(
5
24
− 5

12
ξk

)
, (170)

χ
(ψ)
k (χk, ξk) = min

[
max

(
χ(min), χ

(root)
k (χk, ξk)

)
, χ(max)

]
, (171)

and

L(χ, χk, ξk) =

√(
χk − χ

χ(max) − χ(min)

)2

+
(

ξk − ψ(χ)
ξ(max) − ξ(min)

)2

. (172)

The constant mixing ratios which bound the initial profile are

χ(min) = 0, χ(max) = 1.0, ξ(min) = 0.1, ξ(max) = 0.9. (173)

We chose to constrict our analysis to the five equidistantly-spaced model levels at 4500, 4700,
4900, 5100 and 5300 m when calculating the mixing diagnostics and correlation plots. The mixing
diagnostics work based on the classification of each element pair (χk, ξk) into region A, B or
(A ∪ B)′ (see Figure 1). For a mathematical description of these regions see [31].

The diagnostic for mixing that resembles ‘real’ mixing is defined as

`r ≡
1
A

∑
k

{
dk∆Ak, if (χk, ξk) ∈ A,
0 otherwise.

(174)
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The diagnostic for mixing that is range-preserving is

`u ≡
1
A

∑
k

{
dk∆Ak, if (χk, ξk) ∈ B,
0 otherwise.

(175)

Finally the diagnostic for overshooting is

`o ≡
1
A

∑
k

{
dk∆Ak, if (χk, ξk) 6∈ A ∪ B,
0 otherwise.

(176)

In all cases the summation is taken over all cell k.

B. COORDINATE-FOLLOWING VELOCITIES

B.1. Cartesian decomposition of a terrain-following horizontal velocity field

In this Appendix we are interested in writing a purely horizontal velocity field u in both a
coordinate-following and a Cartesian basis. This procedure will allow us to identify the source of
the “perceived” vertical velocities which may be caused by an underlying terrain-following vertical
coordinate system with sloping coordinate surfaces.

Observe that the basis vector following coordinate lines can be decomposed into a purely
horizontal velocity and a purely vertical velocity in accordance with Figure 2. Mathematically, this
takes the form

gs =
(
∂z

∂x

)
s

gz + gx, (177)

where x is an arbitrary horizontal coordinate, z is the height coordinate, s denotes the quantity which
is constant along coordinate lines and gs, gz and gx denote basis vectors along surfaces of constant
s, z and x, respectively.

A

B

C

Figure 2. A depiction of horizontal velocities in the coordinate-following frame and constant height frame.
Here (A) is the velocity field following coordinate lines, (B) is the purely horizontal component of the

velocity field and (C) is the purely vertical component of the velocity field.
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Given a velocity field in coordinate-following spherical coordinates (with basis vectors gλ̂ and
gϕ̂) we have

gλ̂ =
1

a cosϕ

(
∂z

∂λ

)
s

gz + gλ, (178)

gϕ̂ =
1
a

(
∂z

∂ϕ

)
s

gz + gϕ. (179)

We impose a purely horizontal velocity field u = uλgλ + uϕgϕ on the sphere (horizontal with
respect to the “main sea level”). Consequently, in coordinate-following spherical coordinates we
have

u = uλ

(
gλ̂ −

1
a cosϕ

(
∂z

∂λ

)
s

gz

)
+ uϕ

(
gϕ̂ −

1
a

(
∂z

∂ϕ

)
s

gz

)
, (180)

= uλgλ̂ + uϕgϕ̂ +
[
− uλ
a cosϕ

(
∂z

∂λ

)
s

− uϕ
a

(
∂z

∂ϕ

)
s

]
gz. (181)

The basis vector for the last term in (181) is gz . Therefore, we observe that in coordinate-following
form we have introduced the additional “perceived” vertical velocity

w = − uλ
a cosϕ

(
∂z

∂λ

)
s

− uϕ
a

(
∂z

∂ϕ

)
s

, (182)

which depends on how coordinate surfaces vary with height. Intuitively we should observe a
downward vertical velocity when a horizontal velocity field encounters coordinate lines are sloped
upward in the direction of the flow and an upward vertical velocity when coordinate lines are sloped
downward. One can quickly verify that this is the case.

B.2. Perceived vertical velocity under hybrid pressure-based η coordinates

Calculation of the perceived vertical velocity under hybrid-η coordinates requires us to compute the
horizontal derivatives of z with respect to λ and ϕ. Under hybrid-η coordinates we use the fact that
p = a(η)p0 + b(η)ps(λ, ϕ) [8]. Combining this with the pressure equation for isothermal conditions
with temperature T0 and the reference surface pressure p0

p = p0 exp
(
−gz
RdT0

)
, (183)

we obtain
z = −RdT0

g
ln
[
a(η) + b(η)

ps(λ, ϕ)
p0

]
. (184)

Consequently, (
∂z

∂λ

)
η

= −RdT0

g

[
a(η) + b(η)

ps(λ, ϕ)
p0

]−1
b(η)
p0

∂ps
∂λ

, (185)(
∂z

∂ϕ

)
η

= −RdT0

g

[
a(η) + b(η)

ps(λ, ϕ)
p0

]−1
b(η)
p0

∂ps
∂ϕ

. (186)
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Equivalently, (
∂z

∂λ

)
η

= − RdT0

gp(η, λ, ϕ)
b(η)

∂ps
∂λ

, (187)(
∂z

∂ϕ

)
η

= − RdT0

gp(η, λ, ϕ)
b(η)

∂ps
∂ϕ

. (188)

Since the surface profile is given in terms of height z, we need to use

∂ps
∂x

= − gp0

RdT0
exp

(
−gzs
RdT0

)
∂zs
∂x

, (189)

where x ∈ {λ, ϕ}. Since pressure is constant with time, we also have that pressure velocity is related
to vertical velocity via

ω = −ρgw. (190)

In practice the following steps can be used to apply the perceived vertical velocity under a hybrid-
η vertical coordinate:

1. Compute the surface height derivatives from (60)-(62).
2. Compute the surface pressure derivatives from (189).
3. For each coordinate line (vertical edge) compute (187)-(188).
4. Compute the perceived vertical velocity w from (54).
5. Compute the perceived pressure velocity ω from (190).

C. LARGE-SCALE CONDENSATION

The forcing by large-scale condensation is described in [3] which is partly reproduced here. The
parameterization of the large-scale condensation leads to the forcing mechanisms

∂T

∂t
=

L

cp
C (191)

∂q

∂t
= −C, (192)

where L is the latent heat of vaporization at 0 ◦C (= 2.5× 106 J kg−1) and cp is the specific heat of
dry air (= 1004.5 J kg−1 K−1). The condensation rate C is the rate at which the saturation specific
humidity qsat changes with time t

C =
dqsat

dt
. (193)

If the air is found to be supersaturated (that is q > qsat(T )) T and q need to be adjusted to their
saturation values, which will lead to the updated values Tn+1 and qn+1 at the future time level
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n+ 1

Tn+1 = T + ∆T (194)

qn+1 = q + ∆q. (195)

The time index of the T and q values on the right hand side (RHS) of these equations depends
upon the AGCM design which might enforce constraints on the suitable physics-dynamics coupling
strategy. Two coupling strategies are common which are called process-split and time-split [4]. In
models with process-split physics-dynamics coupling T and q represent either the values at the
current time level (n) for two-time-level schemes or the values at the previous time level (n− 1)
for three-time-level schemes, like e.g. the leapfrog method used in CAM 5 EUL [24]. In time-split
models, the values of T and q are already partially updated by the time tendencies of the dynamical
core before physical forcings are invoked. We leave the specific choice of the physics-dynamics
coupling to the modeling group. However, in case no prior constraints exist we recommend the
time-split approach.

The correction factors ∆T and ∆q are given by

∆T = − L
cp

∆q (196)

∆q = qsat(Tn+1)− q. (197)

Here qsat(Tn+1) is approximated by a first-order Taylor series

qsat(Tn+1) ∼= qsat(T ) +
dqsat(T )

dT
∆T. (198)

The forms of Tn+1 and qn+1 are then represented by

Tn+1 = T +
L

cp

 q − qsat(T )

1 + L
cp

dqsat(T )
dT

 (199)

qn+1 = q − q − qsat(T )

1 + L
cp

dqsat(T )
dT

. (200)

This leads to the expression of the condensation rate for models with two-time-level schemes

C =
1

∆t

 q − qsat(T )

1 + L
cp

dqsat(T )
dT

 (201)

where ∆t symbolizes the discrete physics time step. Note that the physics time step may be different
from the dynamics or tracer advection time steps as it is the case in the model CAM 5 FV [24]. In
models with a three-time-level leapfrog scheme, ∆t needs to be replaced with 2∆t.

We now need to define the derivative of the saturated specific humidity with respect to
temperature. From [32] we approximate this to be

dqsat
dT

≈ ε

p

des
dT

=
Lqsat
RνT 2

(202)
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where p is pressure, es is the saturation vapor pressure, Rν is the gas constant for water vapor
(= 461.5 J kg−1 K−1) and ε is the ratio of the gas constant for dry air Rd to that for water vapor
(ε = Rd/Rν ≈ 0.622). We approximate the saturation specific humidity by utilizing the Clausius-
Clapeyron equation for the saturation vapor pressure in the form

qsat(T ) ≈ εes
p
≈ ε

p
e∗0e
−(L/Rν)[(1/T )−(1/T0)] (203)

where e∗0 (= 6.1078 hPa) is the saturation vapor pressure at T0 = 273.16 K. As mentioned before,
it is assumed that all of the condensed water vapor immediately falls out as precipitation without
re-evaporation. The large-scale precipitation rate Pls is therefore given as

Pls =
1

ρwater

∫ ∞
0

Cρdz =
1

ρwaterg

∫ ps

0

Cdp (204)

where the hydrostatic relation is used to eliminate the air density ρ, ρwater = 1000 kg m−3 is the
density of water, and ps is the surface pressure. The units of Pls are meters of water per second
(mH2O s−1). The quantity Pls can be used as a diagnostic quantity.

D. SURFACE FLUXES ON AN AQUA-PLANET WITH PRESCRIBED SEA SURFACE
TEMPERATURES

The forcing by surface fluxes from an idealized ocean is described in [3] and is partly reproduced
here. We use a model configuration which corresponds to an aqua-planet setup with prescribed sea
surface temperatures (SSTs). This forcing by the surface fluxes is applied to the state variables in
the lowermost model level using a partially implicit formulation to avoid numerical instabilities.
Throughout this section we use the subscript a to denote variables defined on the lowermost model
level.

The surface fluxes depend on the drag coefficient Cd, defined as

Cd = Cd0 + Cd1|~va| for |~va| < 20 m s−1

Cd = 0.002 for |~va| ≥ 20 m s−1,
(205)

where Cd0 and Cd1 are 7.0× 10−4 (unitless) and 6.5× 10−5 s m−1, respectively, and |~va| is the
magnitude of the horizontal wind at the lowermost model level. In terms of the zonal wind ua and
meridional wind va, it is defined as

|~va| =
√
u2
a + v2

a. (206)

For both evaporation and sensible heat the bulk coefficient is set to

CE = CH = 0.0011. (207)

The formulation of the surface fluxes makes use of the height of the lowermost full model level
za (in m). For pressure-based models, za can be expressed with the help of the hydrostatic equation
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in terms of pressure

za =
RdTν,a
g

(ln ps − ln p−)
2

, (208)

where Tν,a = Ta(1 + 0.608qa) is the virtual temperature at the lowermost full model level and p− is
the edge pressure at the model level interface between the lowest and second lowest full model
levels. This notation and all following equations assume that the temperature, horizontal wind
components and the specific humidity in the physical parameterization package are co-located in
both the vertical and horizontal directions, as is the case for the Lorenz grid. The height of the
lowest full model level should ideally lie between 60-70m above the ground to make the results
comparable to those in the literature.

As described in [3], the surface fluxes can be written as

∂~va
∂t

= −Cd|~va|~va
za

(209)

∂Ta
∂t

=
CH |~va|(Ts − Ta)

za
(210)

∂qa
∂t

=
CE |~va|(qsat,s − qa)

za
. (211)

We note that the wind at the surface is taken to be zero and therefore does not appear explicitly in
(209). In these equations Ts denotes the prescribed sea surface temperature (SST) and qsat,s is the
saturation specific humidity defined by (203) and computed with the SST value.

The final form of the surface fluxes will vary for models with other choices of prognostic
variables. For example, if potential temperature Θa is used (210) takes the form

∂Θa

∂t
=

CH |~va|(Ts − Ta)
za

(
p0

pa

)Rd/cp
(212)

where p0 = 1000 hPa is a reference pressure. This conversion uses the assumption that the pressure
is time-invariant when individual physics parameterizations are applied. For other choices of
prognostic variables like (ρu)a, (ρv)a, (ρΘ)a and (ρq)a the right-hand-side of (209), (212) and
(211) would need to be multiplied by the density of the air ρ.

In order to ensure numerical stability, each of the aforementioned surface fluxes are applied via a
semi-implicit operator. We demonstrate this procedure on the temperature evolution equation (210).
First, the time derivative is expanded using a backward Euler operator,

Tn+1
a − Tna

∆t
=

CH |~vna |(Ts − Tn+1
a )

za
. (213)

The superscripts n and n+ 1 represent the current time step (after the update from the large-scale
condensation scheme) and the future time step, respectively. Note, that on the right-hand-side of the
equation the only variable taken implicitly is Ta. |~vna | is evaluated at the current time step and CH is
constant. The equation can now be solved for Tn+1

a

Tn+1
a =

Tna + CH |~vna |Ts∆t
za

1 + CH |~vna |∆tza
. (214)
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Similar equations for ~va and qa can be calculated

~vn+1
a =

~vna
1 + Cnd |~vna |

∆t
za

(215)

qn+1
a =

qna + CE |~vna |qnsat,s∆t
za

1 + CE |~vna |∆tza
, (216)

with the time-level dependent coefficient Cnd . Notice that the second term in the numerator of (215)
is absent in the case of the zonal and merdional wind. This is because the wind is set to zero at the
surface.

E. SIMPLIFIED MIXING IN THE PLANETARY BOUNDARY LAYER

The forcing by the planetary boundary layer is described in [3] and is partly reproduced here. To
parameterize the surface fluxes that impact the zonal velocity u, the meridional velocity v and
moisture q we start with the time rate of change equations

∂u

∂t
= −1

ρ

∂ρ w′u′

∂z
(217)

∂v

∂t
= −1

ρ

∂ρ w′v′

∂z
(218)

∂q

∂t
= −1

ρ

∂ρ w′q′

∂z
. (219)

Potential temperature, as opposed to temperature, is used in the boundary layer parameterization
because the vertical profile of the potential temperature is a suitable indicator of static stability. This
adds the time rate of change equation

∂Θ
∂t

= −1
ρ

∂ρ w′Θ′

∂z
. (220)

Here u′, v′, w′, Θ′ and q′ symbolize the deviations of the zonal velocity, meridional velocity, vertical
velocity, potential temperature and specific humidity from their averages, respectively. The average
is indicated by an overbar. The eddy turbulence surface momentum fluxes on the RHS of (217)-(219)
are approximated by the bulk aerodynamic formulae in kinematic units

w′u′ = −Cd|~v|u (221)

w′v′ = −Cd|~v|v, (222)

where Cd is again defined by (205). Evaporation occurs at the surface and is similarly described by
the kinematic eddy flux of water vapor. It is expressed via the bulk formula for latent heat

w′q′ = CE |~v|(qsat − q), (223)
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where CE is defined by (207), qsat is again defined by (203) and q is the specific humidity. The
kinematic eddy sensible heat flux at the surface is defined by the formula

w′Θ′ = CH |~v|(Θs −Θ), (224)

where Θs is the potential temperature at the surface. Assuming pressure is held constant (which is
a common assumption in physical parameterizations), the potential temperature time tendency can
be converted back to a temperature tendency of the following form

∂T

∂t
= −1

ρ

(
p

p0

)κ
∂ρ w′Θ′

∂z
. (225)

with the reference pressure p0 = 1000 hPa.
We suggest implementing the boundary layer scheme with an implicit temporal discretization to

avoid numerical instabilities. The details of this discretization are somewhat complicated, and so we
refer to implementation details in Appendix D of [3]. In addition, we supply the DCMIP modeling
groups with the complete “simple-physics” package as used in the model CAM which can serve as
a template routine.

F. INFORMATION ON THE PLACEMENT OF THE VERTICAL LEVELS

F.1. Hybrid Coefficients for the L30 Setup with a Stretched Vertical Grid

Test cases 4-1-x, 4-2, 4-3 and 5 utilize a stretched vertical grid that provides 9 model levels below
700 hPa and is gradually stretched in the vertical direction. We suggest using a stretched vertical grid
that is based on the hybrid η coordinate used in NCAR’s Community Atmosphere Model (CAM)
[24]. This hybrid orography-following η-coordinate [8] comprises a pure pressure coordinate and a
σ-component with σ = p/ps. The pressure p at a vertical level η is given by

p(λ, ϕ, η, t) = a(η) p0 + b(η) ps(λ, ϕ, t) (226)

where the coefficients a(η) and b(η) are height-dependent and provided in tabular form (e.g. see
Table XVIII for the suggested L30 configuration). Most commonly the reference pressure p0 is
set to 1000 hPa which is chosen here. If a different p0 is generally implemented in a GCM (like
1013.25 hPa), it needs to be changed to p0 = 1000 hPa. In case, the initial surface pressure ps is set
to the constant p0, as it is the case for the baroclinic wave experiments (tests 4-x), this leads to the
simplified expression

p(λ, ϕ, η, t = 0) = (a(η) + b(η)) p0 = η p0 . (227)

In the discrete representation, the vertical direction is subdivided intoNlev model levels which are
bounded byNlev + 1 interface levels (denoted by the half indices k + 1

2 below). The index increases
downwards. The pressure at the interfaces is then given by

pk+ 1
2

= ak+ 1
2
p0 + bk+ 1

2
ps ≡ ηk+ 1

2
p0( if ps = p0) (228)
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with ηk+ 1
2

= ak+ 1
2

+ bk+ 1
2

and k = 0, 1, 2, · · ·Nlev. The corresponding ηk values at the centers are
determined via the average ηk = 1

2 (ηk+ 1
2

+ ηk− 1
2
). For ps = p0 follows pk = ηk p0.

For the baroclinic wave tests and the tropical cyclone test case a 30 model level setup (L30) is
chosen. The corresponding coefficients for the model interfaces ak+ 1

2
and bk+ 1

2
are listed in Table

XVIII. Here it is important to note that some GCMs (for example [33]) employ the alternative
notation pk+ 1

2
= ak+ 1

2
+ bk+ 1

2
ps where the coefficients ak+ 1

2
are given in Pa. If such a setup is

encountered, the ak+ 1
2

coefficients in Table XVIII need to be multiplied by p0.

Table XVIII. Suggested vertical hybrid coefficients at 31 level interfaces for a 30-level (L30) setup. The
coefficient ai+ 1

2
represents the pure pressure component and bi+ 1

2
denotes the σ-pressure component, with

the subscript i+ 1
2 defining the model interface between two full model levels. i = 0 indicates the model

top (interface level).

i ai+ 1
2

bi+ 1
2

0 0.00225523952394724 0.
1 0.00503169186413288 0.
2 0.0101579474285245 0.
3 0.0185553170740604 0.
4 0.0306691229343414 0.
5 0.0458674766123295 0.
6 0.0633234828710556 0.
7 0.0807014182209969 0.
8 0.0949410423636436 0.
9 0.11169321089983 0.
10 0.131401270627975 0.
11 0.154586806893349 0.
12 0.181863352656364 0.
13 0.17459799349308 0.0393548272550106
14 0.166050657629967 0.0856537595391273
15 0.155995160341263 0.140122056007385
16 0.14416541159153 0.204201176762581
17 0.130248308181763 0.279586911201477
18 0.113875567913055 0.368274360895157
19 0.0946138575673103 0.47261056303978
20 0.0753444507718086 0.576988518238068
21 0.0576589405536652 0.672786951065063
22 0.0427346378564835 0.753628432750702
23 0.0316426791250706 0.813710987567902
24 0.0252212174236774 0.848494648933411
25 0.0191967375576496 0.881127893924713
26 0.0136180268600583 0.911346435546875
27 0.00853108894079924 0.938901245594025
28 0.00397881818935275 0.963559806346893
29 0. 0.985112190246582
30 0. 1.
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F.2. Suggestion: L30 Level Distribution for Height-Based Models

It is not possible to exactly match the pressure-based L30 distribution shown in Table XVIII in
a height-based model. However, here we provide some guidance how the height-based positions
might be chosen via discrete fractional height positions or an analytical function. Modelers might
also decide to choose their own level distributions. If this is the case we ask to pick 30 vertical
levels with a model top at about 44 km to make the results comparable to others. A finer grid
spacing should be placed near the surface (we recommend about 9 full levels below 700 hPa or ≈
3000 m) and the grid might be stretched in the vertical direction. The lowest full model level should
be placed at roughly 60− 70 m above the ground. This will be important for tests 4-3 and 5 since the
applied “simple-physics” physical parameterization suite utilizes the height position of the lowest
level.

If the model accepts discrete positions for the vertical levels we recommend the fractional height
positions (z − zs)/(ztop − zs) listed in Table XIX (right column). These fractional height positions
are based on the positions of the pressure levels listed in Table XVIII which have been evaluated
with the help of (124) and z = Φ/g in midlatitudes at ϕ = π/4. Note though that the order of the
level index is reversed here in contrast to Table XVIII. The level index here counts the levels in
a bottom-up approach whereas the pressure levels are listed in a top-down order. These fractional
height positions are the preferred choice since they are the closest match to the pressure-based level
distribution. We note that the height thicknesses of the model layers are given by the distances of
the neighboring model interface levels which are listed in the middle column in Table XIX. These
are in this example about 122 m, 146 m, 170 m, etc. and thereby stretched in the vertical direction.

However, if an analytic mapping function is required we suggest defining the positions of the
model level interfaces via the following formula

zn = ztop

√
φ(n/30)2 + 1− 1√

φ+ 1− 1
, (229)

where φ = 15 is a flattening parameter and n = {0, 1, . . . , 30} is the model interface level (with
the surface at n = 0 counting upwards). The function provides about 6-7 full levels below 3000 m
(somewhat coarser than the pressure-level distribution) and tends to a uniform distribution of levels
at upper levels. Using ztop = 44 km the thickness of the lowest model level between the surface
and the next interface level is about 121.7 m. This places the lowermost full model level at about
60.9 m above the ground. Full model levels are always placed at the midpoint within each layer that
is enclosed by the model interfaces.

F.3. Analytic Conversion from z to p Levels: Hybrid Coefficients

If level spacings are prescribed in z-coordinates as in tests 1-x, 2-x and 3, the z positions can be
analytically translated into a pressure-based system. This is possible for initial conditions with rather
simple temperature profiles. For isothermal conditions (within the vertical column) the vertical
pressure profiles at the equator in tests 1-x, 2-1 and 2-2 are given by

p(z) = peq exp
(
−gz
Rd T0

)
(230)
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Table XIX. List of the altitudes of 31 model interface levels corresponding to the pressure levels prescribed
in Appendix F.1 for the baroclinic instability test (Test 4-x), evaluated at ϕ = 45◦. Note that interface level

0 is located at the surface which is different from the order in Table XVIII.

Interface Level Altitude z in m Fraction of total height z−zs
ztop−zs

0 zs = −50.154680940719 (surface) 0.0
1 71.859873718723 0.00277313208750091
2 217.90597770021 0.00609245033059798
3 387.795626858368 0.00995368179374962
4 581.338418392235 0.0143524990250550
5 798.321401584915 0.0192840621062922
6 1038.53239060309 0.0247435485034241
7 1301.74464384305 0.0307258048606185
8 1775.35740259496 0.0414900185399455
9 2455.30741876575 0.0569438405286354
10 3336.07885762681 0.0769619075999979
11 4410.44563738228 0.101379986238196
12 5638.88811825063 0.129299878835001
13 6844.44565652005 0.156699645215562
14 8026.11085495629 0.183556389376999
15 9183.13736386181 0.209853148373368
16 10315.0862542580 0.235579946279765
17 11421.7993603143 0.260733188322264
18 12503.3408461626 0.285314332815515
19 13560.0640574031 0.309331410555718
20 14593.6667576978 0.332823008110694
21 15608.7432468909 0.355893544173383
22 16612.8461828224 0.378714674640579
23 17615.1909141375 0.401495844845236
24 19127.5085718247 0.435867618235090
25 21206.0521276769 0.483108505570857
26 23947.4486879917 0.545414636074529
27 27595.1338254421 0.628318784091769
28 32199.6060034172 0.732968672610087
29 37699.3990101633 0.857967304979478
30 ztop = 43948.6707661513 (model top) 1.0

which is based on (1) and (80). peq is a reference surface pressure at the equator and T0 is the
equatorial reference surface temperature. For temperature profiles with a constant lapse rate Γ (test
2-0-0) the pressure equation (67) is

p(z) = p0

(
1− Γ

T0
z

) g
RdΓ

(231)

where p0 and T0 stand for the surface pressure and surface temperature. For an atmosphere with a
constant Brunt-Väisälä frequency N (Test 3-1) the pressure profile (94) at the equator is

p(z) = peq

[
G

Teq
exp

(
− N2z

g

)
+ 1− G

Teq

] 1
κ

(232)
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with the temperature parameter G = g2/(cpN2). As before, Teq and peq symbolize the surface
temperature and a reference surface pressure at the equator.

Using (230)-(232) the corresponding σ-levels according to [34] are

σ(z) =
p(z)− p(ztop)
ps − p(ztop)

(233)

where ztop denotes the height position of the model top. For hybrid vertical coordinate systems like

p(η) = A(η) p0 +B(η) ps (234)

we recommend using the hybrid coefficients A and B

A(η) = η −B(η) (235)

B(η) =
(
η − ηtop

1− ηtop

)c
(236)

for the interface levels as suggested by [35]. For ps = p0, the definitions are η = p(z)/ps and
ηtop = p(ztop)/ps. We recommend these definitions of η and ηtop as the chosen reference settings
even if orography is present. The exponent c determines the smoothness of the transition between
the σ-coordinate at low levels to the pressure coordinate near the upper boundary. We recommend
choosing c = 1 which closely resembles the σ-system. Bigger coefficients c > 1 would allow for a
more gradual transition and could potentially also be tested (e.g. c = 2).

This hybrid coordinate system is a variant of the one used by [8]. It guarantees the conditions
p(η = ηtop) = ptop and p(η = 1) = ps at the top and bottom boundaries. The hybrid coefficients at
the full model levels can then be computed via the linear average

Ak =
1
2
(
Ak+1/2 +Ak−1/2

)
, (237)

Bk =
1
2
(
Bk+1/2 +Bk−1/2

)
(238)

where the index k denotes the discrete full model level which is surrounded by the two interface
levels shown with half indices. The linear average guarantees that vertical differencing operations
conserve energy. We note that some models, e.g. [33], use the alternative definition of (234)

p(η) = A(η) +B(η) ps. (239)

where the coefficients A have pressure units. Then (235) is represented by A(η) = p0[η −B(η)].

F.4. Iterative Conversion from p to z Levels: Tropical Cyclone Test Case (Test 5-x)

For GCMs that are built upon pressure-based vertical coordinates, such as the σ-coordinate [7] or
the hybrid σ-pressure (η) coordinate [8], the equivalent height position for each pressure position
along the model levels must be found to initialize the tropical cyclone experiment. The conversion is
analytic for the background conditions of the idealized tropical vortex and in the upper atmosphere
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above the tropopause height zt, but requires straightforward fixed-point iterations in the vortex-
covered region.

Given the background pressure profile (147) where p0 is now generalized to be surface pressure
ps, the analytic conversion between pressure p and height z is given by

z = Tv0
Γ

(
1−

(
p
ps

)RdΓ
g

)
for ps ≥ p ≥ pt,

z = zt + RdTvt
g ln

(
pt
p

)
for pt > p.

(240)

The pressure p denotes the pressure position of a GCM grid point, which can be computed via
the analytically prescribed surface pressure (152) and the prescribed positions of the σ- or η-levels
(see Table XVIII and the explanations in Appendix F.1). The z-value (240) that corresponds to the
pressure position p can then be plugged into the equations for the specific humidity, temperature
and horizontal velocities according to (156), (157), (165) and (166).

This analytic conversion is not accurate within the vortex due to its pressure perturbation and
warm-core structure. Within the vortex the z-value at each model level needs to be computed
iteratively via Newton’s method

zn+1 = zn − F (λ, ϕ, zn)
∂F/∂z(λ, ϕ, zn)

. (241)

The superscript n = 0, 1, 2, 3,... indicates the iteration count. The function F is determined by

F (λ, ϕ, z) = pmodel − p(λ, ϕ, z). (242)

pmodel is the pressure of the GCM grid point at a given longitude λ, latitude ϕ and model level, and
p(λ, ϕ, z) represents (149) evaluated with the great circle distance r. Therefore, ∂F/∂z is defined
by

∂F (λ, ϕ, z)
∂z

= −∂p(λ, ϕ, z)
∂z

, (243)

which can be computed analytically from (149). The analytic form of ∂p/∂z in terms of the great
circle distance r is

∂p(r, z)
∂z

=
2∆p z
z2
p

exp

(
−
(
r

rp

)3/2
)

exp

(
−
(
z

zp

)2
)(

Tv0 − Γz
Tv0

) g
RdΓ

(244)

− g

RdTv0

[
p0 −∆p exp

(
−
(
r

rp

)3/2
)

exp

(
−
(
z

zp

)2
)](

Tv0 − Γz
Tv0

) g
RdΓ−1

.

(241) is iterated until it converges to |zn+1 − zn|/|zn+1| < εn where εn is set to 2 × 10−13 (close to
machine precision for double precision arithmetic). We recommend starting the iterations with the
start value z0 equal to z given in (240). Typically, the computations converge within the εn precision
in under ten iterations. We apply the iterative technique below zt (equivalent to pmodel > pt where pt
is the pressure at the tropopause level) within a great circle distance of r ≤ 1000 km from the vortex
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center. It represents the distance at which the pressure (151) and temperature (158) perturbations
become negligible.

F.5. Iterative Conversion from z to Pressure-Based η Levels (Test 4-x)

If models utilize a height-based vertical coordinate, the height position z needs to be translated
into a pressure and thereby η position for the baroclinic wave experiments (Test 4-x). The initial
conditions for the baroclinic instability are given in terms of pressure-based vertical coordinates
with η = p/p0 with p0 = 1000 hPa. To find the corresponding η level for a given height z, we must
implicitly solve a nonlinear equation relating η and z. Here we choose to use the iterative Newton
fixed-point strategy as described before in Appendix F.4, which is now given by

ηn+1 = ηn −
[
∂F

∂η
(λ, ϕ, ηn)

]−1

F (λ, ϕ, ηn), (245)

where n = 0, 1, 2, . . . is the iteration count. The functions F and ∂F/∂η are determined by

F (λ, ϕ, ηn) = −gz + Φ(λ, ϕ, ηn), (246)
∂F

∂η
(λ, ϕ, ηn) = −Rd

ηn
T (λ, ϕ, ηn). (247)

Here Φ and T are given by (124) and (120), respectively. The starting value of η0 = 10−7 is used
for all Newton iterations, corresponding to a model top of about 100 km. If a higher model top
is required, the value of η0 needs to be decreased. Convergence is deemed to have occurred if
|ηn+1 − ηn| ≤ 10−14, and usually takes about 10 iterations in most cases.

Once the η(λ, ϕ, z) position is determined via the iterative technique at the grid point location
(λ, ϕ, z) the temperature can be evaluated according to (120). The pressure p, density ρ and potential
temperature Θ at position (λ, ϕ, z) are then given by

p(λ, ϕ, η) = η(λ, ϕ, z)p0, (248)

ρ(λ, ϕ, η) =
p(λ, ϕ, η)

Rd T (λ, ϕ, η)
, (249)

Θ(λ, ϕ, η) = T (λ, ϕ, η)
(

p0

p(λ, ϕ, η)

)κ
. (250)

The formal initialization procedure for T,Θ and p is identical for both the dry and moist variants
of the baroclinic wave. The main difference is that T,Θ and p are interpreted differently in the moist
case since they then symbolize the virtual temperature Tv, virtual potential temperature Θv and the
pressure of the moist air. This leads to the density equation for moist air

ρ(λ, ϕ, η) =
p(λ, ϕ, η)

Rd Tv(λ, ϕ, η)
. (251)
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F.6. Iterative Conversion from Θ to Pressure-Based η Levels (Test 4-x)

If isentropic levels are utilized the same fixed-point iteration strategy

ηn+1 = ηn −
[
∂F

∂η
(λ, ϕ, ηn)

]−1

F (λ, ϕ, ηn), (252)

can be employed where n = 0, 1, 2, . . . is the iteration count. The function F is defined by

F (λ, ϕ, ηn) = −Θ + (ηn)−κ T (λ, ϕ, ηn). (253)

For ∂F/∂η it follows

∂F

∂η
(λ, ϕ, ηn) = V (ηn)− 3π u0

4Rd (ηn)κ
cos

1
2 ηnv

{3π
2
u0η

nA sin2 ηnv cos
1
2 ηnv− (254)(

2Au0 cos
3
2 ηnv +B aΩ

) (
(1− κ) sin ηnv +

π ηn

4 cos ηnv
(2− 3 sin2 ηnv )

)}
with A =

(
− 2 sin6 ϕ (cos2 ϕ+ 1

3 ) + 10
63

)
, B =

(
8
5 cos3 ϕ (sin2 ϕ+ 2

3 )− π
4

)
and ηnv = ((ηn −

η0)π/2). V symbolizes the vertical derivative of the horizontal-mean potential temperature
〈Θ(η)〉 = η−κ 〈T (η)〉. It is given by

V (ηn) = T0

(Rd Γ
g
− κ
)

(ηn)(
RdΓ
g −κ−1) (for ηs ≥ ηn ≥ ηt) (255)

V (ηn) = T0

(Rd Γ
g
− κ
)

(ηn)(
RdΓ
g −κ−1) − ∆T

(ηn)(κ+1)
(ηt − ηn)4

(
κ ηt + ηn(5− κ)

)
(for ηt > ηn) . (256)

The starting value of η0 = 10−7 is used for all Newton iterations, corresponding to a model top of
about 100 km. Convergence is deemed to have occurred if |ηn+1 − ηn| ≤ 10−14, and usually takes
about 10 iterations in most cases.

G. REQUIRED NETCDF OUTPUT FORMAT

As mentioned in section 0.4 a fundamental requirement for the exchange of scientific data is
the ability to precisely describe the physical quantities being represented. We require data in the
‘Network Common Data Form’ (netCDF) [1] that adhere to the netCDF Climate and Forecast (CF)
metadata convention (if possible to version 1.6 from Dec. 2011 [2]). NetCDF files should have
the file name extension “.nc”. In particular, netCDF metadata need to be present. If models cannot
adhere to the CF standards, we will work with these modeling groups before the DCMIP workshop
and evaluate the application of ‘NCO’ (netCDF operator [36]) tools to help make the output netCDF-
CF compliant after the model execution.
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G.1. Global attributes

We ask for netCDF “global attributes” that make the output files self-describing and searchable by
cyberinfrastructure tools. We ask for the inclusion of the global attributes

• model
• test case
• horizontal resolution
• levels
• grid
• native grid
• equation
• time frequency
• description

The entries “model, test case, horizontal resolution, levels, grid, native grid, equation” need to
follow the file naming convention outlined in Tables IV and V. The “native grid” attribute indicates
the computational base grid that was used for the computations. An example is “cubed” for a cubed-
sphere model. The models will then be searchable on the DCMIP webpage according to their
computational meshes. The “time frequency” attribute indicates the output frequency in seconds
(s), hours (hr) or days (day), and needs be specified as e.g.

time_frequency = "1hr"

time_frequency = "6hr"

time_frequency = "day"

time_frequency = "100s"

for the 1-hourly, 6-hourly, daily, or 100-second output. The last “100s” entry refers to the unscaled
time in the non-rotating small-planet experiments 21, 22 and 31. However, the rotating small-planet
experiments (411, 412, 413) with the scaled “daily” output need to be specified with the scaled
time frequency attribute “day” to make the comparison to the unscaled experiment 410 simple.
Other global attributes might also be present as shown in the example in section G.3.

G.2. Coordinates, variable names, metadata

The standard netCDF variable names (here denoted as “acronyms”), the requested physical ‘units’
attribute, a suggested ‘long name’ and the standardized netCDF attribute ‘standard name’ are listed
in Tables XX and XXI. The entry for the netCDF attribute ‘long name’ can be freely selected.
However, if ‘standard name’ is present its value must come from the standard netCDF CF-compliant
entries listed below. The ‘units’ and ‘long name’ attributes need to be part of the metadata of the
netCDF output file. The ‘standard name’ might be added as an option. Remember that the case is
significant in netCDF names, and that all variable listed in Tables XX and XXI are written with
upper case letters, all others like the dimensions or coordinates are written with lower case letters.
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Table XX. List of symbols and corresponding netCDF attributes

Symbol Acronym ‘units’ Suggested ‘long name’ NetCDF ‘standard name’
λ lon degrees east longitude longitude
ϕ lat degrees north latitude latitude
ps PS Pa Surface pressure surface air pressure
Φs PHIS m2/m2 Surface geopotential surface geopotential
u U m/s Zonal wind eastward wind
v V m/s Meridional wind northward wind
w W m/s Vertical velocity upward air velocity
ω OMEGA Pa/s Vertical pressure velocity lagrangian tendency of air pressure
p P Pa Pressure air pressure
T T K Temperature air temperature
q Q kg/kg Specific humidity specific humidity
Pls PRECL m/s Large-scale precipitation rate rainfall rate
q1 Q1 kg/kg Tracer mixing ratio q1
q2 Q2 kg/kg Tracer mixing ratio q2
q3 Q3 kg/kg Tracer mixing ratio q3
q4 Q4 kg/kg Tracer mixing ratio q4
q5 Q5 kg/kg Tracer mixing ratio q5

Table XXI. Optional model variables: List of symbols and corresponding netCDF attributes

Symbol Acronym ‘units’ Suggested ‘long name’
SST SST K Sea surface temperature
u850 U850 m/s Zonal wind at 850 hPa
v850 V850 m/s Meridional wind at 850 hPa
w500 W500 m/s Vertical velocity at 500 hPa
w850 W850 m/s Vertical velocity at 850 hPa
ω500 OMEGA500 Pa/s Vertical pressure velocity at 500 hPa
ω850 OMEGA850 Pa/s Vertical pressure velocity at 850 hPa
T500 T500 K Temperature at 500 hPa
T850 T850 K Temperature at 850 hPa
Z500 Z500 m Geopotential height at 500 hPa

G.3. Example: Selected entries of a netCDF file with latitude-longitude grid

An example of selected entries of an NCAR CAM-FV output file ‘cam-fv.42.medium.L30’ is shown
below. The simulation was run at the medium resolution on a regular 181× 360 latitude-longitude
grid with grid spacing 1◦ × 1◦ (including the poles) and 30 hybrid η-levels. Note that this output data
set also lists the approximate (reference) pressure positions of the 30 full levels (lev) and 31 model
interface levels (ilev) as well as the hybrid coefficients for the full (hyam, hybm) and half levels
(hyai, hybi). The latter can be used in combination with the surface pressure to reconstruct the actual
pressure at each grid point as explained in section F.1 (where hyam and hybm correspond to the
coefficients Ak and Bk in (237) and (238)). The surface geopotential PHIS is provided as a 3D data
set despite its time-independency. The time-dependent data sets PS, U, V, T and OMEGA (actual
data not listed) contain 61 instantaneous 6-hourly snapshots between day 0 and 15. In addition, the
NetCDF header also lists variables on the 850 hPa pressure surface.

Desirable output quantities are the time step ’mdt’ used for the simulation (here it represents
the physics time step 1800 s), and the ‘gw’ field. The latter contains the latitudinal area-based
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(“Gaussian”) weights that need to be used for area-averages on the latitude-longitude grid. The sum
of these ‘gw’ weights is 2.

Example of a NetCDF file (header and selected entries and data sets):

netcdf cam-fv.42.medium.L30.latlon.hydro.4th_order_div_damping.nc {

dimensions:

lat = 181 ;

lon = 360 ;

lev = 30 ;

ilev = 31 ;

time = UNLIMITED ; // (61 currently)

variables:

double P0 ;

P0:long_name = "reference pressure" ;

P0:units = "Pa" ;

double lat(lat) ;

lat:long_name = "latitude" ;

lat:units = "degrees_north" ;

double lon(lon) ;

lon:long_name = "longitude" ;

lon:units = "degrees_east" ;

double lev(lev) ;

lev:long_name = "hybrid level at midpoints(1000*(A+B))" ;

lev:units = "level" ;

lev:positive = "down" ;

lev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;

lev:formula_terms = "a: hyam b: hybm p0: P0 ps: PS" ;

double ilev(ilev) ;

ilev:long_name = "hybrid level at interfaces (1000*(A+B))" ;

ilev:units = "level" ;

ilev:positive = "down" ;

ilev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;

ilev:formula_terms = "a: hyai b: hybi p0: P0 ps: PS" ;

double time(time) ;

time:long_name = "time" ;

time:units = "days since 2000-01-01 00:00:00" ;

time:calendar = "noleap" ;

double mdt ;

mdt:long_name = "timestep" ;

mdt:units = "s" ;

double hyai(ilev) ;

hyai:long_name = "hybrid A coefficient at layer interfaces" ;

double hybi(ilev) ;
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hybi:long_name = "hybrid B coefficient at layer interfaces" ;

double hyam(lev) ;

hyam:long_name = "hybrid A coefficient at layer midpoints" ;

double hybm(lev) ;

hybm:long_name = "hybrid B coefficient at layer midpoints" ;

double gw(lat) ;

gw:long_name = "gauss weights" ;

float PHIS(lat, lon) ;

PHIS:units = m2/s2" ;

PHIS:long_name = "Surface geopotential" ;

float PS(time, lat, lon) ;

PS:units = "Pa" ;

PS:long_name = "Surface pressure" ;

float PRECL(time, lat, lon) ;

PRECL:units = "m/s" ;

PRECL:long_name = "Large-scale precipitation rate" ;

float Q(time, lev, lat, lon) ;

Q:units = "kg/kg" ;

Q:long_name = "Specific humidity" ;

float T(time, lev, lat, lon) ;

T:units = "K" ;

T:long_name = "Temperature" ;

float U(time, lev, lat, lon) ;

U:units = "m/s" ;

U:long_name = "Zonal wind" ;

float V(time, lev, lat, lon) ;

V:units = "m/s" ;

V:long_name = "Meridional wind" ;

float OMEGA(time, lev, lat, lon) ;

OMEGA:units = Pa/s" ;

OMEGA:long_name = "Vertical pressure velocity" ;

float OMEGA850(time, lat, lon) ;

OMEGA850:units = Pa/s" ;

OMEGA850:long_name = "Vertical pressure velocity at 850 hPa" ;

float T850(time, lat, lon) ;

T850:units = "K" ;

T850:long_name = "Temperature at 850 hPa" ;

float U850(time, lat, lon) ;

U850:units = "m/s" ;

U850:long_name = "Zonal wind at 850 hPa" ;

float V850(time, lat, lon) ;

V850:units = "m/s" ;

V850:long_name = "Meridional wind at 850 hPa" ;
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// global attributes:

:Conventions = "CF-1.0" ;

:model = "cam-fv" ;

:test_case = "42" ;

:horizontal_resolution= "medium" ;

:levels = "L30" ;

:grid = "latlon" ;

:native_grid = "latlon" ;

:equation = "hydro";

:time_frequency = "6hr";

:description = "4th-oder divergence damping" ;

data:

P0 = 100000 ;

lat = -90.0, -89.0, -88.0, -87.0, -86.0, -85.0, -84.0, -83.0,

-82.0, -81.0, -80.0, -79.0, -78.0, -77.0, -76.0, -75.0,

-74.0, -73.0, -72.0, -71.0, -70.0, -69.0, -68.0, -67.0,

-66.0, -65.0, -64.0, -63.0, -62.0, -61.0, -60.0, -59.0,

-58.0, -57.0, -56.0, -55.0, -54.0, -53.0, -52.0, -51.0,

-50.0, -49.0, -48.0, -47.0, -46.0, -45.0, -44.0, -43.0,

-42.0, -41.0, -40.0, -39.0, -38.0, -37.0, -36.0, -35.0,

-34.0, -33.0, -32.0, -31.0, -30.0, -29.0, -28.0, -27.0,

-26.0, -25.0, -24.0, -23.0, -22.0, -21.0, -20.0, -19.0,

-18.0, -17.0, -16.0, -15.0, -14.0, -13.0, -12.0, -11.0,

-10.0, -9.0, -8.0, -7.0, -6.0, -5.0, -4.0, -3.0,

-2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0,

6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0,

14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0,

22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0,

30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0,

38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0,

46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0,

54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0,

62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0,

70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0,

78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0,

86.0, 87.0, 88.0, 89.0, 90.0;

lon = 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,

10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
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20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,

30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,

40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,

50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,

60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,

70., 71., 72., 73., 74., 75., 76., 77., 78., 79.,

80., 81., 82., 83., 84., 85., 86., 87., 88., 89.,

90., 91., 92., 93., 94., 95., 96., 97., 98., 99.,

100., 101., 102., 103., 104., 105., 106., 107., 108., 109.,

110., 111., 112., 113., 114., 115., 116., 117., 118., 119.,

120., 121., 122., 123., 124., 125., 126., 127., 128., 129.,

130., 131., 132., 133., 134., 135., 136., 137., 138., 139.,

140., 141., 142., 143., 144., 145., 146., 147., 148., 149.,

150., 151., 152., 153., 154., 155., 156., 157., 158., 159.,

160., 161., 162., 163., 164., 165., 166., 167., 168., 169.,

170., 171., 172., 173., 174., 175., 176., 177., 178., 179.,

180., 181., 182., 183., 184., 185., 186., 187., 188., 189.,

190., 191., 192., 193., 194., 195., 196., 197., 198., 199.,

200., 201., 202., 203., 204., 205., 206., 207., 208., 209.,

210., 211., 212., 213., 214., 215., 216., 217., 218., 219.,

220., 221., 222., 223., 224., 225., 226., 227., 228., 229.,

230., 231., 232., 233., 234., 235., 236., 237., 238., 239.,

240., 241., 242., 243., 244., 245., 246., 247., 248., 249.,

250., 251., 252., 253., 254., 255., 256., 257., 258., 259.,

260., 261., 262., 263., 264., 265., 266., 267., 268., 269.,

270., 271., 272., 273., 274., 275., 276., 277., 278., 279.,

280., 281., 282., 283., 284., 285., 286., 287., 288., 289.,

290., 291., 292., 293., 294., 295., 296., 297., 298., 299.,

300., 301., 302., 303., 304., 305., 306., 307., 308., 309.,

310., 311., 312., 313., 314., 315., 316., 317., 318., 319.,

320., 321., 322., 323., 324., 325., 326., 327., 328., 329.,

330., 331., 332., 333., 334., 335., 336., 337., 338., 339.,

340., 341., 342., 343., 344., 345., 346., 347., 348., 349.,

350., 351., 352., 353., 354., 355., 356., 357., 358., 359.;

gw = 0.3807694E-04, 0.3045981E-03, 0.6091034E-03, 0.9134232E-03,

0.1217465E-02, 0.1521135E-02, 0.1824343E-02, 0.2126994E-02,

0.2428998E-02, 0.2730262E-02, 0.3030694E-02, 0.3330203E-02,

0.3628698E-02, 0.3926087E-02, 0.4222280E-02, 0.4517187E-02,

0.4810718E-02, 0.5102784E-02, 0.5393296E-02, 0.5682164E-02,

0.5969302E-02, 0.6254621E-02, 0.6538035E-02, 0.6819458E-02,

0.7098804E-02, 0.7375987E-02, 0.7650923E-02, 0.7923528E-02,

0.8193721E-02, 0.8461417E-02, 0.8726535E-02, 0.8988996E-02,
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0.9248719E-02, 0.9505624E-02, 0.9759633E-02, 0.1001067E-01,

0.1025866E-01, 0.1050352E-01, 0.1074518E-01, 0.1098357E-01,

0.1121862E-01, 0.1145024E-01, 0.1167838E-01, 0.1190297E-01,

0.1212392E-01, 0.1234118E-01, 0.1255469E-01, 0.1276437E-01,

0.1297016E-01, 0.1317200E-01, 0.1336983E-01, 0.1356358E-01,

0.1375321E-01, 0.1393864E-01, 0.1411983E-01, 0.1429672E-01,

0.1446925E-01, 0.1463738E-01, 0.1480104E-01, 0.1496020E-01,

0.1511480E-01, 0.1526480E-01, 0.1541015E-01, 0.1555080E-01,

0.1568672E-01, 0.1581785E-01, 0.1594417E-01, 0.1606564E-01,

0.1618221E-01, 0.1629385E-01, 0.1640052E-01, 0.1650220E-01,

0.1659886E-01, 0.1669045E-01, 0.1677697E-01, 0.1685837E-01,

0.1693464E-01, 0.1700575E-01, 0.1707168E-01, 0.1713241E-01,

0.1718792E-01, 0.1723819E-01, 0.1728322E-01, 0.1732298E-01,

0.1735746E-01, 0.1738666E-01, 0.1741056E-01, 0.1742915E-01,

0.1744244E-01, 0.1745041E-01, 0.1745307E-01, 0.1745041E-01,

0.1744244E-01, 0.1742915E-01, 0.1741056E-01, 0.1738666E-01,

0.1735746E-01, 0.1732298E-01, 0.1728322E-01, 0.1723819E-01,

0.1718792E-01, 0.1713241E-01, 0.1707168E-01, 0.1700575E-01,

0.1693464E-01, 0.1685837E-01, 0.1677697E-01, 0.1669045E-01,

0.1659886E-01, 0.1650220E-01, 0.1640052E-01, 0.1629385E-01,

0.1618221E-01, 0.1606564E-01, 0.1594417E-01, 0.1581785E-01,

0.1568672E-01, 0.1555080E-01, 0.1541015E-01, 0.1526480E-01,

0.1511480E-01, 0.1496020E-01, 0.1480104E-01, 0.1463738E-01,

0.1446925E-01, 0.1429672E-01, 0.1411983E-01, 0.1393864E-01,

0.1375321E-01, 0.1356358E-01, 0.1336983E-01, 0.1317200E-01,

0.1297016E-01, 0.1276437E-01, 0.1255469E-01, 0.1234118E-01,

0.1212392E-01, 0.1190297E-01, 0.1167838E-01, 0.1145024E-01,

0.1121862E-01, 0.1098357E-01, 0.1074518E-01, 0.1050352E-01,

0.1025866E-01, 0.1001067E-01, 0.9759633E-02, 0.9505624E-02,

0.9248719E-02, 0.8988996E-02, 0.8726535E-02, 0.8461417E-02,

0.8193721E-02, 0.7923528E-02, 0.7650923E-02, 0.7375987E-02,

0.7098804E-02, 0.6819458E-02, 0.6538035E-02, 0.6254621E-02,

0.5969302E-02, 0.5682164E-02, 0.5393296E-02, 0.5102784E-02,

0.4810718E-02, 0.4517187E-02, 0.4222280E-02, 0.3926087E-02,

0.3628698E-02, 0.3330203E-02, 0.3030694E-02, 0.2730262E-02,

0.2428998E-02, 0.2126994E-02, 0.1824343E-02, 0.1521135E-02,

0.1217465E-02, 0.9134232E-03, 0.6091034E-03, 0.3045981E-03,

0.3807694E-04;

lev = 3.64346569404006, 7.59481964632869, 14.3566322512925,

24.6122200042009, 38.2682997733355, 54.5954797416925, 72.0124505460262,

87.8212302923203, 103.317126631737, 121.547240763903, 142.994038760662,

168.225079774857, 197.908086702227, 232.828618958592, 273.910816758871,
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322.241902351379, 379.100903868675, 445.992574095726, 524.687174707651,

609.778694808483, 691.389430314303, 763.404481112957, 820.858368650079,

859.53476652503, 887.020248919726, 912.644546944648, 936.198398470879,

957.485479535535, 976.325407391414, 992.556095123291 ;

ilev = 2.25523952394724, 5.03169186413288, 10.1579474285245,

18.5553170740604, 30.6691229343414, 45.8674766123295, 63.3234828710556,

80.7014182209969, 94.9410423636436, 111.69321089983, 131.401270627975,

154.586806893349, 181.863352656364, 213.952820748091, 251.704417169094,

296.117216348648, 348.366588354111, 409.83521938324, 482.149928808212,

567.22442060709, 652.332969009877, 730.445891618728, 796.363070607185,

845.353666692973, 873.715866357088, 900.324631482363, 924.964462406933,

947.432334534824, 967.538624536246, 985.112190246582, 1000 ;

hyai = 0.00225523952394724, 0.00503169186413288, 0.0101579474285245,

0.0185553170740604, 0.0306691229343414, 0.0458674766123295,

0.0633234828710556, 0.0807014182209969, 0.0949410423636436,

0.11169321089983, 0.131401270627975, 0.154586806893349,

0.181863352656364, 0.17459799349308, 0.166050657629967,

0.155995160341263, 0.14416541159153, 0.130248308181763,

0.113875567913055, 0.0946138575673103, 0.0753444507718086,

0.0576589405536652, 0.0427346378564835, 0.0316426791250706,

0.0252212174236774, 0.0191967375576496, 0.0136180268600583,

0.00853108894079924, 0.00397881818935275, 0, 0 ;

hybi = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0393548272550106,

0.0856537595391273, 0.140122056007385, 0.204201176762581,

0.279586911201477, 0.368274360895157, 0.47261056303978,

0.576988518238068, 0.672786951065063, 0.753628432750702,

0.813710987567902, 0.848494648933411, 0.881127893924713,

0.911346435546875, 0.938901245594025, 0.963559806346893,

0.985112190246582, 1 ;

hyam = 0.00364346569404006, 0.00759481964632869, 0.0143566322512925,

0.0246122200042009, 0.0382682997733355, 0.0545954797416925,

0.0720124505460262, 0.0878212302923203, 0.103317126631737,

0.121547240763903, 0.142994038760662, 0.168225079774857,

0.178230673074722, 0.170324325561523, 0.161022908985615,

0.150080285966396, 0.137206859886646, 0.122061938047409,

0.104244712740183, 0.0849791541695595, 0.0665016956627369,

0.0501967892050743, 0.037188658490777, 0.028431948274374,

0.0222089774906635, 0.016407382208854, 0.0110745579004288,

0.00625495356507599, 0.00198940909467638, 0 ;
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hybm = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196774136275053,

0.062504293397069, 0.112887907773256, 0.172161616384983,

0.241894043982029, 0.323930636048317, 0.420442461967468,

0.524799540638924, 0.624887734651566, 0.713207691907883,

0.783669710159302, 0.831102818250656, 0.864811271429062,

0.896237164735794, 0.92512384057045, 0.951230525970459,

0.974335998296738, 0.992556095123291 ;

time = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25,

2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75,

5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25,

7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25, 9.5, 9.75,

10, 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25,

12.5, 12.75, 13, 13.25, 13.5, 13.75, 14, 14.25, 14.5, 14.75,

15 ;

mdt = 1800 ;

}

Note that the notation of the variables uses the NetCDF-specific order of the dimensions
(time,lev,lat,lon). We ask for output data (like U, V, T, PS, etc.) with single precision (float) accuracy
using 4 bytes per datum. This uses the storage space more economically than double-precision
(double) data.

G.4. Dimensions & metadata & time stamp

The NetCDF file must contain information about the grid and time dimensions. For a regular
latitude-longitude grid (either as the native computational grid or as the result of interpolations)
the dimensions need to utilize the keywords (see also the in section G.3)

dimensions:

lat = 181 ;

lon = 360 ;

lev = 30 ;

ilev = 31 ;

time = UNLIMITED ; // (61 currently)

where “lat” and “lon” denote the number of latitudes and longitudes, “lev” and “ilev” symbolize the
number of full model levels and interface levels, and ‘time’ denotes the number of time snapshots.
These keywords for the dimensions are also used to define the size of the coordinate arrays like

double lat(lat) ;

lat:long_name = "latitude" ;

lat:units = "degrees_north" ;

80



81

double lon(lon) ;

lon:long_name = "longitude" ;

lon:units = "degrees_east" ;

and to define the dimensions of the model output variables like

float U(time, lev, lat, lon) ;

U:units = "m/s" ;

U:long_name = "Zonal wind" ;

As in the example above, the coordinates and model output variables need to be accompanied
by metadata that describe, at a minimum, the “units” and “long name” of the entry, except “units”
are not necessary for non-dimensional quantities. The “standard name” as listed in Table XX might
also be included.

Idealized test cases are not associated with a particular date. However, a date must be chosen as a
reference date, e.g.

double time(time) ;

time:long_name = "time" ;

time:units = "days since 2000-01-01 00:00:00" ;

time:calendar = "none" ;

so that the data entries for the “time” variable can read

time = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25,

2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75,

5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25,

7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25, 9.5, 9.75,

10, 10.25, 10.5, 10.75, 11, 11.25, 11.5, 11.75, 12, 12.25,

12.5, 12.75, 13, 13.25, 13.5, 13.75, 14, 14.25, 14.5, 14.75,

15 ;

for 6-hourly snapshots. We recommend picking the reference date “2000-01-01 00:00:00”. This
date is arbitrary and irrelevant for practical purposes, since the model simulations are idealized.
However, a sensible date such as this must be picked to avoid potential problems in the DCMIP
visualization tools. Daily time snapshots (e.g. 13 snapshots for 12 days including the initial state)
need to be listed as

time = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;

G.5. Computational grid

The netCDF file must list the longitudinal and latitudinal positions of the horizontal grid (in degrees)
and must contain sufficient information about the vertical grid. In orography-following hybrid
σ − p (η) coordinates, as shown in the example in section G.3, the necessary information for the
reconstruction of the pressure values along the full model and interface levels is the surface pressure
PS, the surface geopotential PHIS and the list of the ’a’ and ’b’ hybrid coefficients, here called
HYAM, HYBM, HYAI, HYBI. The key point is that the vertical positions of the grid, either in
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pressure coordinates (for most hydrostatic model) or height coordinates (for most non-hydrostatic
models), need to be reconstructable based on the information in the netCDF output file. Details on
the vertical grids and the equations for the reconstruction of the pressure or height values need to
be provided, possibly in form of a model documentation or a journal paper. In addition, the netCDF
file needs to define whether the order of the vertical levels is positive downwards (“down”), as in
the example above, or positive upwards (“up”). The metadata entry ‘positive =’ as shown in

double lev(lev) ;

lev:long_name = "hybrid level at midpoints(1000*(A+B))" ;

lev:units = "level" ;

lev:positive = "down" ;

lev:standard_name = "atmosphere_hybrid_sigma_pressure_coordinate" ;

lev:formula_terms = "a: hyam b: hybm p0: P0 ps: PS" ;

defines this order, and needs to be present. If the vertical arrangement can be freely chosen, the
‘down’ numbering system is recommended (level counter increases downwards).

G.6. Example: NetCDF data structure for a non-latitude-longitude grid

An example netCDF data structure for a non-latitude-longitude (e.g. spherical geodesic) grid is
given below.

dimensions:

cell = 2562 ; // number of grid cells

lev = 30 ;

ilev = 31 ;

time = UNLIMITED ; // (11 currently)

variables:

double lon(cell) ;

lon:long_name = "longitude" ;

lon:units = "degrees_east" ;

lon:bounds="lon_vertices" ;

double lat(cell) ;

lat:long_name = "latitude" ;

lat:units = "degrees_north" ;

lat:bounds="lat_vertices" ;

double time(time) ;

time:long_name = "time" ;

time:units = "days since 2000-01-01 00:00:00" ;

double cell_area(cell) ;

cell_area:long_name = "area of grid cell" ;

cell_area:standard_name="area";

cell_area:units = "m2"

float PS(time,cell) ;

PS:units = "Pa" ;
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PS:coordinates = "lon lat" ;

PS:cell_measures = "area: cell_area" ;

PS:long_name = "Surface pressure" ;

float T(time, lev, cell) ;

T:units = "K" ;

T:coordinates = "lon lat" ;

T:cell_measures = "area: cell_area" ;

T:long_name = "Temperature" ;

On non-latitude-longitude grids the area weight “cell area” of cell should be included in the
netCDF output file. This allows for the computation of global error norms based on the original grid
point locations. Here, the data structure for the non-orthogonal grid utilizes a single index “cell” for
all positions of the horizontal grid. The longitudinal and latitudinal positions are listed according
this single array index. Other data structures are also possible.
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