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Projection

Consider a sub-space §; C R™ spanned by the basis functions U = {uy, us,
U e R™™ and u € R™.

If U is an orthonormal matrix, then UTU = 1.

A projection matrix IT € R™*™ satisfies the following property : IT> = II.

If rank(IT) = k, then there exists a basis X such that
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We can separate the bases into two sets

..., }, where

X = [Xl ) X2], with X1 € Rka7 X2 (= Rmx(m—k)-

For any vector x € R™, we have

o IIx € range(Xi) = range(Il) = S;

o (I-IDx € range(Xz) =range(I —II) = kernel(Il) = S,.
So II defines the projection onto S; parallel to Ss.
1AISO7 Sl & 82 = R™.



Projection

An orthogonal projection is defined by I = VV,
Where V is a basis set that spans §;.

Myvw=VV'w

&1 = range(V)




Projection

An oblique projection is defined by IT = V[WTV]~1wT,

Which describes the projection onto &; (spanned by V) perpendicular to
S5 (spanned by W).

S| = range(V)




Projection-based Model Reduction

Consider the high-fidelity model (HFM),

% =£(q(t)) ; q(0)=qq

From modal expansion of the solution q we have,

61 — Vqr
Substitute the modal expansion in the HFM,

dVq,(t)

o =f(Va.(t),t), Va,(0) =qo

q € R™
V € Rk

qr E ka

W € Rk




Projection-based Model Reduction

Let’s define a test basis W and project the equation onto the test subspace,

WTqud;t(t) = W't(Va,(t),t), W'Vaq,(0) =W'qo

Special case: Galerkin projection

If the test subspace is the same as the trial subspace (i.e., W = V), then the
ROM ODE is,

dq, (1)

dt — VTf(Vqr(t)a t), q-r (0) — VTqO




Errors in ROMs
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Errors in ROMs

de)

7 I [f(q(t),t) — f(a(t),t)] €(0) = 0.
d?:l—geﬂ = f(a®).?) (7.37)
dez—iﬂﬂl‘“)dz—it) = f(q(t),t) + [f(a(t),t) — £(TIq(t), )] (7.38)
dﬂdti(t) = TIf(TIq(t), t) + I[f(q(t), t) — f(Tq(t),t)]  (7.39)

Thus if we have the exact q(t) = Ilq(t),

dq(t - -
WO @), ) + TE(a() 1) - £(&(), 1) (7.40)
Thus, the term IT[f(q(t),t) — £(q(¢),t)] represents the impact of the unresolved modes
on the resolved modes, also known as the sub-scale terms. If not accounted for, this
term contributes directly to the evolution of the parallel error.




Errors in ROMs

1del'e 1
5 cgt | = ief[HA - [HA]T]GH + GhrHAGL (7.44)

we get the necessary condition ?, that ITA + [ITA]? should be negative definite. Addi-
tionally, the interaction between the parallel and orthogonal errors may also affect stability
in a profound manner.

In Galerkin ROMs, we do not have a great degree of control over II. Petrov Galerkin
methods give us additional control knobs to improve both accuracy and stability.



Petrov-Galerkin Projection

Consider the fully-discrete equations (e.g. with Euler explicit time-
stepping):

an . an—l 1
T ' — f V n
Let’s define a residual,
n Vq? - Vq:}_l n—
r(qr) — At T f(Vqr 1)

With Euler implicit we will have,

n Vq? T Vq?_l n




Petrov-Galerkin Projection

Then the update to the next time step is obtained by a residual
minimization approach,

n __ . ~ 2
qr=arg  min r(ar)||2

Let’s define the function to be minimized as,

m(q,) = [r(q?)]" [r(q})]
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Petrov-Galerkin Projection

The update to the next time step is obtained by a residual minimization
approach,

n __ . ~ 2
qr=arg  min r(ar)||2

This can be written in a more general form as,

" =ar min Ar(q,)]|?
ar=arg _ min |Ar(@):
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Petrov-Galerkin Projection

The minimization problem can be written in a more general form as,

qr =arg  min [|Ar(q,)l

ar€range(V)
Which is equivalent to a Petrov-Galerkin projection,

W(q?)" [r(qr)] =0

Where,

W(q?) = [ATA(?r(qZ?)] _ [ATA(?B(;")] v
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Petrov-Galerkin Projection

The test subspace in Petrov-Galerkin projection is,

Which is the same as Galerkin if,
At >0

* Scheme is explicit

e ATA — [31'((1)]_1
dq

[v
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Petrov-Galerkin Projection

The test subspace in Petrov-Galerkin projection is,

or(qr)| | .7 .0r(d")
oqr ] a [A A dqn

W(q}) - |ATA

* For LSPG: A =1
* For balanced truncation: W = W_.W,

[v
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Linear Stability : 1/2

Continuous FOM

dq
—_— O p—
g Jq, q(0) =qp,

Discrete FOM

I-Ad)q"=q"", ¢"=qp

Decomposition

q(t) = Vq,(t), where V € RV*k and q, € R¥

Theorem 1: If the Discrete FOM above is asymptotically stable in
the sense of ||I—AtJ)7!||, <1, then the Backward Euler Galerkin

ROM is also asymptotically stable if A, (I— 0.5At(J+1J ) >1

Model Reduction for Multi-Scale Transport Problems using Structure-Preserving Least-Squares Projections with

Variable Transformation C Huang, C Wentland, K Duraisamy, C Merkle, JCP 2021.




Linear Stability : 2/2

Continuous FOM Discrete FOM

d -
d_(tl:J‘la q(0) = qo, I-Ad)q"=q"", ¢’ =qo

Decomposition

q(t) = Vq,(t), where V € RV*k and q, € R¥

Theorem 2 : If the Discrete FOM above is asymptotically stable in
the sense of ||(I—AtJ)~!||, <1 , then the associated LSPG ROM is also
asymptotically stable with no further assumptions required.

Model Reduction for Multi-Scale Transport Problems using Structure-Preserving Least-Squares Projections with
Variable Transformation C Huang, C Wentland, K Duraisamy, C Merkle, JCP 2021.




Off-line/On-line costs in ROMs

Consider a linear system

% = Aq(t) + Bu(t) ; q(0) = qo,

where A € R™*™ and B € R™*? and u € RP.

Then the ROM that solves of q, € R* is

dq,(t)
dt

= A.q,(t) +Bru(t) ; a-(0) = Vqo,
where

A, = [WIV]'WTAV ¢ RF*#
B, = [WIV]"'WTB ¢ R**?

rr o1 1 11 . f ie . ls ol ie /e



Off-line/On-line costs in ROMs

dq(t
% = Aq(t) + Bll(t) dq#t(t) - Arqr(t) + Bru(t)

A € R""™ and B € R™*? and u € RP.

o = f(a() dq(;ft) = [WIVI"WH(Va, (0), 1)



Off-line/On-line costs in ROMs

dq,(t)

e = WIVITTWIE(Va, (), 1)

To do this, we can represent snapshots of the non-linear function f(x) € R™ in terms of
some basis ¥ € R™**
f =Va,

where a € R* are the basis coefficients. These basis functions, can, for instance be con-
structed using POD on a collection of snapshots

F e R™™ = [f(x(t1) f(x(t2) F(x(ts))..£(x(tm)).

Then, we can sub-sample f by multiplying it by a sample selection matrix P € R**".
Then we have a few measurements Pf = f, € R®, for which

Pf =PVa.
Now, based on the few samples, we can estimate a using
a= [PY]*f,.
and we can reconstruct the entire f as

f = U[PU*f,.



Off-line/On-line costs in ROMs

dq,(t)
dt

= [WV[T'W(Va, (1), )

dq-(t)
dt

= [WIV]"'WIU[PU]*f,(t)



Petrov-Galerkin Projection

The test subspace in Petrov-Galerkin projection is,

oqr

Wia®) = [ AT A@r(q:f)] _ [ a2

oqy

(W Wt — a2 ) = — (W]

T

[v

r(qd").
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