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Resources

https://caslab.engin.umich.edu/teaching

* Isaac Newton Institute tutorial on Model Order reduction for complex systems (Jan 2023)

1. Model Order Reduction theory manual
http://websites.umich.edu/~caslab/docs/Newton/MOR Theory.pdf

2. PERFORM (Prototyping environment for reacting flow order reduction methods : code)

3. PERFORM (Prototyping environment for reacting flow order reduction methods : doc)

4. Slides (coming soon)


https://caslab.engin.umich.edu/teaching
http://www.google.com/url?q=http%3A%2F%2Fwebsites.umich.edu%2F~caslab%2Fdocs%2FNewton%2FMOR_Theory.pdf&sa=D&sntz=1&usg=AOvVaw0oJA2ZmLBn3ZdnAfz0YDV0
http://websites.umich.edu/~caslab/docs/Newton/MOR_Theory.pdf
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fcwentland0%2Fperform&sa=D&sntz=1&usg=AOvVaw2_mFfY61uyRmFa5kHMJ79z
https://www.google.com/url?q=https%3A%2F%2Fperform.readthedocs.io%2Fen%2Flatest%2F%23&sa=D&sntz=1&usg=AOvVaw1rxr2QJdw5t13DnJ1FKRZh
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Any matrix has a singular value decomposition.
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix A € C"™*"

A =U X V*
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is given by

* X is a diagonal matrix.

* Diagonal entries of X are the singular values of A.

* Singular values are real and non-negative.

* Singular values are typically arranged in descending order.
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix A € C"™*™ is given by

A =U X V*
N~~~

mXxn mXm mXn nXn

* Columns of U are the left singular vectors of A.

* Columns of V are the right singular vectors of A.

* The left and right singular vectors are orthonormal.
* Uand V are unitary matrices.



Geometric Interpretation of SVD

Matrix multiplication introduces a rotation and a stretching action.

Singular values are the lengths of semi-axes of the hyper-ellipsoid
obtained as a result of operation of matrix A on the unit hypersphere.

In 3-D:

2 =2 Brunton and Kutg42019



Singular Value Decomposition

Columns of A (snapshots matrix) can be

* Measurements from experiments

* Image pixels

* State of a physical system (velocity, pressure, etc.) at discrete points

Rank of A is equal to the number of non-zero singular values.

A =U Y% V* A=U 3% V
N N Y g

mXxn mXm mXn nXn mXxn mXr TXr rXn

A A



SVD Facts g

|. Every matrix has a SVD and singular values are uniquely
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SVD Facts g

. Every matrix has a SVD and singular values are uniquely
determined, but they are not necessarily distinct.

. If A € C™ ™ is rank deficient (of rank r < n), then X will have r
positive diagonal entries.

. Singular values of A are the square roots of the eigenvalues of A*A
A*A = [USVY [USVY]

= VI?V*
. Same can be proved for the eigenvalues of AA".

. The rank of A is equal to the number of its non-zero singular
values.

||A||2 — \/)‘max(A*A) — amaX(A)

20



SVD Facts

7.Given A =Xj_joj5u;viforany 0 < q <r thematrix A, =XI_ o;u;v;
satisfies the following properties:

HA - Aq||2 = Og+1

21



Image Compression with SVD

A =U > V-
NS N Sg
mXxn mXm mXn nXxn
A =U % V°
NS Ny Nl
mXn mXr TXr rXn

Full Image
D R—

|0 Modes

—l

20 Modes

D R—

30 Modes

—lp

40 Modes

b

|00 Modes

—
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QR Factorization

If A € C™*™ and A has full column rank, then the QR decomposition is
given by
A=QR

e Q € C™*"™ = {q1,q2, -9} are orthonormal vectors.

* R € C™*" is an upper-triangular matrix with non-zero diagonal
elements.

* QR factorization can be computed by the Gram-Schmidt procedure.

24



Gram-Schmidt Procedure

Given a linearly independent set of vectors S = {aj,a,,as,....a,}, where a; € R™, the
Gram-Schmidt procedure finds an orthonormal set of vectors {qi,q2,qs, ....q, } that spans
the same subspace as S. The procedure is as follows:

1.
- A= T

NS~ N

q =
S

A2 = a2 — (qf az)qu
— _92
L= Twr .
43 = a3z — (a7 a3)a: — (qz a3)q2
q3 = 5
37 Jlasll .
Repeat recursively

RO 2l
)

25



Gram-Schmidt Procedure

Given a linearly independent set of vectors S = {aj,a,,as,....a,}, where a; € R™, the
Gram-Schmidt procedure finds an orthonormal set of vectors {qi,q2,qs, ....q, } that spans
the same subspace as S. The procedure is as follows:

1. (ll = a~1
— 1

2 1= g

3. @2 = a; — (qfaz)qs
— _92

T .

5. q3 = ag — (a7 a3)a: — (qz a3)q2
— _9qs3

6. as=mr

7. Repeat recursively

To compute QR factorization of A
using the Gram-Schmidt procedure:

Q=|a1 92 ... g



Gram-Schmidt Procedure

Given a linearly independent set of vectors S = {aj,a,,as,....a,}, where a; € R™, the
Gram-Schmidt procedure finds an orthonormal set of vectors {qi,q2,qs, ....q, } that spans
the same subspace as S. The procedure is as follows:

1. (il = a~1
— a1
2 41 =
3. @2 = a; — (qfaz)qs
— _92
T i
5. q3 = ag — (a7 a3)a: — (qz a3)q2
6. a5 =G5 - ]
7. Repeat recursively 6| q{az ... qfa,
To compute QR factorization of A 0l ... qgan
using the Gram-Schmidt procedure: R=| 0 R
Q=[a1 9 ... an 0 0 ... |l

27
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Least-squares Regression

Consider an over-determined system of equations

-All A12 e
A21 A22 e

Api Apg -

Aln |

A2n

Amn

I

)

_yl_

Yo

—ym —
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Least-squares Regression

Consider an overdetermined system of equations

Ax =y m>n
-A11 A - A, ] -33‘1- -yl ]
A A.21 A.22 . A.Zn 7 < — 1:2 | y = 3{2
Aml Am2 e Amn Tn Ym

y: Observables (data, snapshots of quantities of interest)

x: Model parameters (unknown)
30



Least-squares Regression

A X

Brunton and tht(., 2019



Least-squares Regression Ax =y

An over-determined system usually has no solution.

. But we can search for parameters that fit the equations best.

This can be done by solving the following optimization problem:
X = arg min S(x)

Obijective function: ,
S(x) = [ly - Ax|,

32



Least-squares Regression Ax =y

The optimization problem has a unique solution if A is full column rank.

X = argmin S(x)

4

= |ly — Ax||; = (y - Ax)T(y — Ax) = yTy — xTATy — yTAx + xTATAx

Substitute (xTATy)T = yTAx

Sx)=y'y —2x"ATy + x"ATAx

33




Least-squares Regression Ax =y

Sx)=y'y —2x"Aly + x"ATAx

Differentiate with respect to x:

~ATy +(ATA)x=0 m  First-order condition

AT A:The Gramian matrix of 4

A"y:The moment matrx

34



Least-squares Regression Ax =y

Sx)=y'y —2x"Aly + x"ATAx

Differentiate with respect to x:
~ATy +(ATA)x=0 m®  First-order condition
The solution to the optimization problem:
x=(ATA) Ay = A"y
The second-order condition for the minimum:
ATA>0

35



Pseudoinverse (from last lecture)

Any matrix has a pseudoinverse.

But A* can only be computed explicitly under these conditions:

|. If Ais full column rank, then AT A is invertible and

At = (A*A)~ 147

* This is called the left inverse as in this case ATA = I.
* In this case the pseudoinverse can also be computed by the QR

decomposition:
A+ — R—lQT

36




Least-squares Regression Ax =y

Sx)=y'y —2x"Aly + x"ATAx

Differentiate with respect to x:
~ATy +(ATA)x=0 m  First order condition
The solution to the optimization problem:
x=(ATA) ATy = Aty
AX is the orthogonal projection of y onto the range(A):
7Drange(A) (Y) = AX = A(ATA)_lATy

37



Least-squares Regression

These statements are equivalent:

» AX is the orthogonal projection of y onto the range(A):

Prange(A) (Y) = AX = A(ATA)_lATy

* The residual r = AX — y is orthogonal to the range of A.

Ax =y

38



Least-squares Regression

These statements are equivalent:

» AX is the orthogonal projection of y onto the range(A):

7Drange(A) (Y) = AX = A(ATA)_lATy
* The residual T = AX =¥ is orthogonal to the range of A.

e ris in the null space of AT

Ax =y

39



Least-squares Regression

These statements are equivalent:

» AX is the orthogonal projection of y onto the range(A):

7Drange(A) (Y) = AX = A(ATA)_lATy
* The residual T = AX =¥ is orthogonal to the range of A.

e ris in the null space of AT

¢« AT(A%x—y)=0

Ax =y

40



Least-squares Regression

These statements are equivalent:

» AX is the orthogonal projection of y onto the range(A):

Prange(a)(y) = A% = A(ATA)'Aly
* The residual T = AX =¥ is orthogonal to the range of A.
e ris in the null space of AT
« AT(AX—y) =0
e (r,Az) =0 Vze R"

Ax =y

41



Least-squares Regression

These statements are equivalent:

» AX is the orthogonal projection of y onto the range(A):

Prange(A) (Y) = AX = A(ATA)_lATy
J

\

Projection matrix

Ax =y

42



Least-squares Regression

These statements are equivalent:

» AX is the orthogonal projection of y onto the range(A):

Prange(A) (Y) = AX = A(ATA)_lATy
A Ve \ ]

@ Y
w\ Projection matrix
=
B

oj(\g Ax

|

/ g

Ax =y

43



Least-squares Regression Ax =y

These statements are equivalent:
» AX is the orthogonal projection of y onto the range(A):

Prange(A) (Y) = AX = A(ATA)_lATy

If y € range(A) then we can satisfy y = AX precisely.

Otherwise, we can satisfy Prange(a)(y) = Ak -

44



What about

regularized
Least Squares?

min F(x;,\) = [ Ax; - yll5 + Allxl3

min |[Axs —yll3 st [[x2]l3<n

solution (A=0)

\‘\\‘i\\\‘\\ BRI

\%\\\\ \ AR
\ §\\ AL Least squares _
W+

Feasible
Optimum




Consider p(y|f) = N (y; A8, C) with A € R"*™, Assume p(6) = N(0; 6y, B). Thus, Y ~ N (Aby, ABAT +C)
To mimic a linear regression problem, consider the goal of estimating

6* = arg min L(0)

’ What about SGD?

L(0) = Ey|(y — A8)"C™"(y — AB)] + (6 — 60)" B~ (6 — o)

where

y
SGD Converges to: os| “+
0,=[ATC'A+ B 71 (ATC 'uy + B 16y)

s = o[ATC'A+ BT TATC gJTCT A
=a[ATCT'A+ B7'TATC'EyC A it
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Compression, Sensing and Reconstruction

It is not always possible/efficient to collect high-dimensional measurement
data.

s it possible to measure the quantity of interest at a few sensor locations
and use these measurements to reconstruct the entire signal?

0.26 0.28 0.3 48



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*"

coefficients a € R",

and basis

x = Va

49



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*™ and basis
coefficients a € R",

x = Va

Goal:

Instead of using the entire signal X, we want to subsample X, and see if we
can reconstruct X using sparse measurements.

50



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",

x = Va
In order to subsample X, let’s define a matrix P € RP*™ so that,
y =Px € R?

is the signal obtained by subsampling x.

51



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",

x = Va
Example:

If x € R>, and we want to sample only the fourth and second
measurements of X, then matrix P takes the form,

00010
P_[OIOOO]

52



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",

x = Va
In order to subsample X, let’s define a matrix P € RP*™, such that y,
y =Px € R?

is the signal obtained by subsampling x.

Therefore,
Px =y =PVa

53



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",
x = Va

We subsample x by,
Px =y =PVa

Therefore, the basis coefficients a can be estimated as,

a=[PY|y

54



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",
x = Va

We subsample x by,
Px =y =PVa
Therefore, the basis coefficients a can be estimated as,

a=[PU|"y
And reconstruct X as,

% = U[PY]ty

55



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",

x = Va
We subsample x by,
Px =y =PVa
And reconstruct X as,
x = VU[PVY|Ty

Note:

If the original signal had p non-zero coefficients, then p measurements

reconstruct the signal exactly. o



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",

x = Va

And reconstruct X as,
X = \II[P\I!]+y

Questions:
* How do we know a is sparse!?
* What if we have noisy measurements!?
* How to choose optimal sensor locations?

57



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*" and basis
coefficients a € R",

x = Va
And reconstruct X as,
x = U[PY|Ty
Questions:
* How do we know a is sparse!?
* What if we have noisy measurements!?

* How to choose optimal sensor locations?

* How many measurements do we collect!
58



Sampling and Reconstruction

Questions:
* How do we know a is sparse!

Sparse basis coefficients can be found by solving,

a=min, ||la||; such that y =PVa

This optimization problem is convex.

59



Sampling and Reconstruction

Questions:
* What if we have noisy measurements!? y =PWa +¢

e ~ N(0,0%)
Sparse basis coefficients can be found by solving,

a=min, ||al|1 such that |y —PVal|,<o

60



Sampling and Reconstruction

Questions:
* How to choose optimal sensor locations? (how to define matrix P?)

Rule:
Rows of P have to be orthogonal to the columns of V.

Px =y =PVa

6l



Sampling and Reconstruction

Questions:
* How to choose optimal sensor locations? (how to define matrix P?)

Possible choices for matrix P,

(a) Random single pixel (b) Gaussian random
1 o u
u N "
u u
1 |

Brunton and Kutz, 2019
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Sampling and Reconstruction

Questions:
* How to choose optimal sensor locations? (how to define matrix P?)

An example of a bad choice for matrix P,
y I P a

Brunton and Kutz, 2019 63



Sampling and Reconstruction

Questions:
* How to choose optimal sensor locations? (how to define matrix P?)

An example of a bad choice for matrix P,
y P b 4 a y () a

| "«____ﬁ :

Brunton and Kutz, 2019 0 4




Sampling and Reconstruction

Questions:
* How many measurements do we collect!

Theorem:

According to the Shannon-Nyquist sampling theorem, in order to recover
a signal we should sample the signal twice the rate of its highest
frequency.

65
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Sensing: Empirical Interpolation

Goal:

We want to design a sparse measurement matrix P such that the inverse
problem is as well-conditioned as possible. y = PUa 9 € R™

67



Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix P such that the inverse
problem is as well-conditioned as possible. y = PUa 9 € R™

In general, we may use randomly placed sensors to estimate a. However,

when p = n (the number of measurements equals the number of modes),
PY is often numerically singular.

68



Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix P such that the inverse
problem is as well-conditioned as possible. y = PUa 9 € R™

In general, we may use randomly placed sensors to estimate a. However,
when p = n (the number of measurements equals the number of modes),
PY is often numerically singular.

Solution:
* Oversampling
* Using QR factorization
69



Sensing: Empirical Interpolation

Goal:

We want to design a sparse measurement matrix P such that the inverse
roblem is as well-conditioned as possible.
P P y = PVa

|dea:

If we know the type of the signal, it is possible to design optimized
sensors using low-rank features extracted from patterns in the data.

Given a basis ¥, we can find a P* by solving,

P* = minp||x — Y[PY]Ty|,

70



Sensing: Empirical Interpolation

|dea:

If we know the type of he signal, it is possible to design optimized sensors
using low-rank features extracted from patterns in the data.

Given a basis ¥, we can find a P* by solving,

P* = minp|/x — }I’[P\Il]“Ly'HQ

Reconstruction of X using
sparse basis coefficients

71



Sampling and Reconstruction

Let’s consider a signal x € R™, represented by basis ¥ € R™*™ and basis
coefficients a € R",
x = Va

We subsample x by,
Px =y =PVa
Therefore, the basis coefficients a can be estimated as,

a=[PU|"y
And reconstruct x as,

x = U[PVY|Ty

72



Sensing: Empirical Interpolation

|dea:

If we know the type of the signal, it is possible to design optimized
sensors using low-rank features extracted from patterns in the data.

Given a basis ¥, we can find a P* by solving,
P* = minp|x — Y[PY]Ty|,

If p = n, then,
P* = minp||x — UV[PT] ly]|

73



Sensing: Empirical Interpolation

|dea:

If we know the type of the signal, it is possible to design optimized
sensors using low-rank features extracted from patterns in the data.

Given a basis ¥, we can find a P* by solving,

P* = minp||x — U[PY]y|2

For an orthonormal basis W,

lx — U[PY] " Px]|; < [[PY]~[o|[T — LT x|,

74



Sensing: Empirical Interpolation

|dea:

If we know the type of the signal, it is possible to design optimized
sensors using low-rank features extracted from patterns in the data.

Given a basis ¥, we can find a P* by solving,

P* = minp||x — U[PY]y|2

For an orthonormal basis W,

Ix — UPY] ' Px]l> < [|[PY] |1 - w97 x5

Projection error 75



Sensing: Empirical Interpolation

|dea:

If we know the type of the signal, it is possible to design optimized
sensors using low-rank features extracted from patterns in the data.

Given a basis ¥, we can find a P* by solving,

P* = minp||x — U[PU] ly]

For an orthonormal basis 'V, Sampling error
A

Ix — UPY] " Px]l> < [|[PY] |1 - w97 x5

Projection error 76



Sensing: Discrete Empirical Interpolation

Given a basis ¥, we can find a P* by solving,
P* = minp||x — U[PU] ly]

For an orthonormal basis W,

Ix — U[PY]™"Px]|; < [[PY]~[o|[T — LT x|,

Therefore, the sensor selection process reduces to,

P* = minp||[P¥] !,

77



Sea Surface temperature dataset (Manohar et al.)

100 Sensors 200 Sensors 302 Sensors




Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix (sensor locations).

Why QR factorization!?
Reminder: we want to design a sparse measurement matrix P such that
the inverse problem is as well-conditioned as possible. y = PUa

QR factorization with pivoting, maximizes the submatrix volume and
controls the condition number.

79



Sensing: QDEIM

Side Note: QR factorization with column pivoting

QR decomposition with column pivoting decomposes a matrix into a
unitary matrix Q, an upper triangular matrix R, and a column permutation

matrix @,
Wo = QR

Where, Q € C™*™ and R € C"*™,

80



Sensing: QDEIM

Side Note: QR factorization with column pivoting
Given W € R™™ ™ with a column pivoted QR decomposition we have,

Wo = QR

Where, Q € C™*" and R € C™"*™, therefore,

Wo = Q[R; Rj]
R, € C™™ is an upper triangular matrix.

The columns of W are permuted such that the diagonal elements of R4

are non-increasing. 8l



Sensing: QDEIM

Side Note: QR factorization with column pivoting
Given W € R™™ ™ with a column pivoted QR decomposition we have,

Wo = QR

Where, Q € C™*" and R € C™"*™, therefore,

Wo = Q[R; Rj]
R, € C™™ is an upper triangular matrix.

Also,

0'7;2=|7'iz'|2 ) 1§’LSTL

82



Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix (sensor locations).

Wo = QR
Let’s set W = W7, and
PV = [QRI]T — R{QT

We want to solve
P* = mz'np||[P\If]‘1||2

83



Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix (sensor locations).

Let’s set W = W7, and
PV = [QRI]T = R{QT
We want to solve
P* = minp||[P¥] 7|,

Therefore, -
PPz = [|R; Q" [l2 = 0maz(Ra1)

84



Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix (sensor locations).

We want to solve
P* = mz’np||[P\If]‘1||2

Therefore,
PPz = |[R{ Q"2 = Omac(Ra)

and,
1

O min (Rl)

PPz =

85



Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix (sensor locations).

We want to solve
P* = mz’np||[P\If]‘1||2

Therefore,
PPz = |[R{ Q"2 = Omac(Ra)

and,
1 We should keep g,,i,, (R1)

P Y|, = as large as possible.
P9 = s

86



Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix (sensor locations).

We want to minimize sampling error,

_ 1 We should keep 6,,i,, (R1)
IPw)~")), = e

O min(R1) as large as possible.

QR factorization with column pivoting expands the submatrix volume by
enforcing a diagonal dominance structure (Manohar, 2018),

k
G%:‘Tii‘ZZZ’rjk‘z; 1<i<k<m
j=i
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix (sensor locations).

Let’s set W = W7 in
Wo = QR, Ry

QDEIM solves the column pivoted QR factorization
\I’T‘I) — QRl
and the optimal sampling matrix is,

P*Z@T
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling
matrix C.

if (p==r) % QR sensor selection, p=r
[Q,R,pivot] = qr(Psi_r’,’vector’); WY/CT=QR
elseif (p>r) % Oversampled QR sensors, p>r
[Q,R,pivot] = gr(Psi_r«Psi_r’,’vector’); (¥,¥7)C’'=0QR
end
C = zeros(p,n);
for j=1:p
C(j,pivot(j))=1;
end

Brunton and Kutz, 2019

p: number of sensors
r: number of basis functions a € R" 89



