

Model Order Reduction for Multi-scale, Multi-physics Problems Background

Karthik Duraisamy

caslab.engin.umich.edu \& afcoe.engin.umich.edu

Outline

Introduction (today)

Theory (today)

Practice (tomorrow)

The leading edge (tomorrow)

SVD, QR decompositions

Least squares regression
Theory Outline

Sampling \& Reconstruction

Sensing

Resources

https://caslab.engin.umich.edu/teaching

- Isaac Newton Institute tutorial on Model Order reduction for complex systems (Jan 2023)

1. Model Order Reduction theory manual
http://websites.umich.edu/~caslab/docs/Newton/MOR Theory.pdf
2. PERFORM (Prototyping environment for reacting flow order reduction methods : code)
3. PERFORM (Prototyping environment for reacting flow order reduction methods : doc)
4. Slides (coming soon)

Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

$$
\underbrace{\mathbf{A}}_{m \times n}=\underbrace{\mathbf{U}}_{m \times m} \underbrace{\boldsymbol{\Sigma}}_{m \times n} \underbrace{\mathbf{V}^{*}}_{n \times n}
$$

Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

- Σ is a diagonal matrix.

Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

- Σ is a diagonal matrix.
- Diagonal entries of Σ are the singular values of A.

Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

- Σ is a diagonal matrix.
- Diagonal entries of Σ are the singular values of A.
- Singular values are real and non-negative.

Singular Value Decomposition

Any matrix has a singular value decomposition.
SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

$$
\underbrace{\mathbf{A}}_{m \times n}=\underbrace{\mathbf{U}}_{m \times m} \underbrace{\boldsymbol{\Sigma}}_{m \times n} \underbrace{\mathbf{V}^{*}}_{n \times n}
$$

- Σ is a diagonal matrix.
- Diagonal entries of Σ are the singular values of A.
- Singular values are real and non-negative.
- Singular values are typically arranged in descending order.

Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

- Columns of \boldsymbol{U} are the left singular vectors of \boldsymbol{A}.

Singular Value Decomposition

Any matrix has a singular value decomposition.
SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

- Columns of \boldsymbol{U} are the left singular vectors of \boldsymbol{A}.
- Columns of V are the right singular vectors of A.

Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

- Columns of U are the left singular vectors of \boldsymbol{A}.
- Columns of V are the right singular vectors of A.
- The left and right singular vectors are orthonormal.

Singular Value Decomposition

Any matrix has a singular value decomposition.
SVD of a general matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is given by

- Columns of U are the left singular vectors of A.
- Columns of V are the right singular vectors of \boldsymbol{A}.
- The left and right singular vectors are orthonormal.
- U and V are unitary matrices.

Geometric Interpretation of SVD

Matrix multiplication introduces a rotation and a stretching action. Singular values are the lengths of semi-axes of the hyper-ellipsoid obtained as a result of operation of matrix \boldsymbol{A} on the unit hypersphere. In 3-D:

Singular Value Decomposition

Columns of A (snapshots matrix) can be

- Measurements from experiments
- Image pixels
- State of a physical system (velocity, pressure, etc.) at discrete points
-...

Rank of \boldsymbol{A} is equal to the number of non-zero singular values.

$$
\underbrace{\mathbf{A}}_{m \times n}=\underbrace{\mathbf{U}}_{m \times m} \underbrace{\boldsymbol{\Sigma}_{m \times n}}_{m \times n} \underbrace{\mathbf{V}^{*}} \quad \underbrace{\mathbf{A}}_{m \times n}=\underbrace{\hat{\mathbf{U}}}_{m \times r} \underbrace{\hat{\boldsymbol{\Sigma}}}_{r \times r} \underbrace{\hat{\mathbf{V}}^{*}}_{r \times n}
$$

SVD Facts

$$
A=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}
$$

I. Every matrix has a SVD and singular values are uniquely determined, but they are not necessarily distinct.

SVD Facts

$$
A=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}
$$

I. Every matrix has a SVD and singular values are uniquely determined, but they are not necessarily distinct.
2. If $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is rank deficient (of rank $r<n$), then $\boldsymbol{\Sigma}$ will have \mathbf{r} positive diagonal entries.

SVD Facts

$$
A=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}
$$

I. Every matrix has a SVD and singular values are uniquely determined, but they are not necessarily distinct.
2. If $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is rank deficient (of rank $r<n$), then $\boldsymbol{\Sigma}$ will have \mathbf{r} positive diagonal entries.
3. Singular values of \boldsymbol{A} are the square roots of the eigenvalues of $\boldsymbol{A}^{*} \boldsymbol{A}$

$$
\begin{aligned}
\mathbf{A}^{*} \mathbf{A} & \left.\left.=\left[\mathbf{U} \mathbf{V}^{*}\right]^{*}\right]^{[} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}\right] \\
& =\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{*},
\end{aligned}
$$

SVD Facts

$$
A=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}
$$

I. Every matrix has a SVD and singular values are uniquely determined, but they are not necessarily distinct.
2. If $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is rank deficient (of rank $r<n$), then $\boldsymbol{\Sigma}$ will have \mathbf{r} positive diagonal entries.
3. Singular values of \boldsymbol{A} are the square roots of the eigenvalues of $\boldsymbol{A}^{*} \boldsymbol{A}$

$$
\begin{aligned}
\mathbf{A}^{*} \mathbf{A} & =\left[\mathbf{U} \mathbf{V}^{*}\right]^{*}\left[\mathbf{U} \mathbf{V}^{*}\right] \\
& =\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{*},
\end{aligned}
$$

4. Same can be proved for the eigenvalues of $\boldsymbol{A A ^ { * }}$.

SVD Facts

$\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}$

I. Every matrix has a SVD and singular values are uniquely determined, but they are not necessarily distinct.
2. If $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ is rank deficient (of rank $r<n$), then $\boldsymbol{\Sigma}$ will have r positive diagonal entries.
3. Singular values of \boldsymbol{A} are the square roots of the eigenvalues of $\boldsymbol{A}^{*} \boldsymbol{A}$

$$
\begin{aligned}
\mathbf{A}^{*} \mathbf{A} & =\left[\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}\right]^{*}\left[\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{*}\right] \\
& =\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{*},
\end{aligned}
$$

4. Same can be proved for the eigenvalues of $\boldsymbol{A} \boldsymbol{A}^{*}$.
5. The rank of \boldsymbol{A} is equal to the number of its non-zero singular values.
6. $\quad\|\mathbf{A}\|_{2}=\sqrt{\lambda_{\max }\left(\mathbf{A}^{*} \mathbf{A}\right)}=\sigma_{\max }(\mathbf{A})$

SVD Facts

7. Given $\quad \mathbf{A}=\Sigma_{j=1}^{r} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{*}$ for any $0<q<r$ the matrix $\quad \mathbf{A}_{q}=\Sigma_{j=1}^{q} \sigma_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{*}$ satisfies the following properties:

$$
\begin{aligned}
& \left\|\mathbf{A}-\mathbf{A}_{q}\right\|_{2}=\sigma_{q+1} \\
& \left\|\mathbf{A}-\mathbf{A}_{q}\right\|_{F}=\sqrt{\sum_{i=q+1}^{r} \sigma_{i}^{2}} \\
& \left\|\mathbf{A}^{+}-\mathbf{A}_{q}^{+}\right\|_{F}=\sqrt{\sum_{i=q+1}^{r} \frac{1}{\sigma_{i}^{2}}}
\end{aligned}
$$

Image Compression with SVD

$$
\begin{aligned}
\underbrace{\mathbf{A}}_{m \times n} & =\underbrace{\mathbf{U}}_{m \times m} \underbrace{\sum_{m \times n}}_{m \times n} \underbrace{\mathbf{V}^{*}}_{n} \\
\underbrace{\mathbf{A}}_{m \times n} & =\underbrace{\hat{\mathbf{U}}}_{m \times r} \underbrace{\hat{\boldsymbol{\Sigma}}}_{r \times r} \underbrace{\hat{\mathbf{V}}^{*}}_{r \times n}
\end{aligned}
$$

40 Modes

100 Modes

QR Factorization

If $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ and \boldsymbol{A} has full column rank, then the QR decomposition is given by

$$
\mathbf{A}=\mathbf{Q R}
$$

- $\mathbf{Q} \in \mathbb{C}^{m \times n}=\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots \mathbf{q}_{n}\right\}$ are orthonormal vectors.
$-R \in \mathbb{C}^{n \times n}$ is an upper-triangular matrix with non-zero diagonal elements.
- QR factorization can be computed by the Gram-Schmidt procedure.

Gram-Schmidt Procedure

Given a linearly independent set of vectors $S \equiv\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots . \mathbf{a}_{n}\right\}$, where $\mathbf{a}_{i} \in \mathbb{R}^{m}$, the Gram-Schmidt procedure finds an orthonormal set of vectors $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}, \ldots . \mathbf{q}_{n}\right\}$ that spans the same subspace as S. The procedure is as follows:

1. $\tilde{\mathbf{q}}_{1}=\mathbf{a}_{1}$
2. $\mathbf{q}_{1}=\frac{\tilde{\mathbf{q}}_{1}}{\left\|\tilde{\mathbf{q}}_{1}\right\|}$
3. $\tilde{\mathbf{q}}_{2}=\mathbf{a}_{2}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{2}\right) \mathbf{q}_{1}$
4. $\mathbf{q}_{2}=\frac{\tilde{\mathbf{q}}_{2}}{\left\|\tilde{\mathbf{q}}_{2}\right\|}$
5. $\tilde{\mathbf{q}}_{3}=\mathbf{a}_{3}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{3}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{T} \mathbf{a}_{3}\right) \mathbf{q}_{2}$
6. $\mathbf{q}_{3}=\frac{\tilde{\mathbf{q}}_{3}}{\left\|\tilde{\mathbf{q}}_{3}\right\|}$
7. Repeat recursively

Gram-Schmidt Procedure

Given a linearly independent set of vectors $S \equiv\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots . \mathbf{a}_{n}\right\}$, where $\mathbf{a}_{i} \in \mathbb{R}^{m}$, the Gram-Schmidt procedure finds an orthonormal set of vectors $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}, \ldots . \mathbf{q}_{n}\right\}$ that spans the same subspace as S. The procedure is as follows:

1. $\tilde{\mathbf{q}}_{1}=\mathbf{a}_{1}$
2. $\mathbf{q}_{1}=\frac{\tilde{\mathbf{q}}_{1}}{\left\|\tilde{\mathbf{q}}_{1}\right\|}$
3. $\tilde{\mathbf{q}}_{2}=\mathbf{a}_{2}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{2}\right) \mathbf{q}_{1}$
4. $\mathbf{q}_{2}=\frac{\tilde{\mathbf{q}}_{2}}{\left\|\tilde{\mathbf{q}}_{2}\right\|}$
5. $\tilde{\mathbf{q}}_{3}=\mathbf{a}_{3}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{3}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{T} \mathbf{a}_{3}\right) \mathbf{q}_{2}$
6. $\mathbf{q}_{3}=\frac{\tilde{\mathbf{q}}_{3}}{\left\|\tilde{\mathbf{q}}_{3}\right\|}$
7. Repeat recursively

To compute QR factorization of \boldsymbol{A} using the Gram-Schmidt procedure:

$$
\mathbf{Q}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \ldots & \mathbf{q}_{n}
\end{array}\right]
$$

Gram-Schmidt Procedure

Given a linearly independent set of vectors $S \equiv\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \ldots . \mathbf{a}_{n}\right\}$, where $\mathbf{a}_{i} \in \mathbb{R}^{m}$, the Gram-Schmidt procedure finds an orthonormal set of vectors $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}, \ldots . \mathbf{q}_{n}\right\}$ that spans the same subspace as S. The procedure is as follows:

1. $\tilde{\mathbf{q}}_{1}=\mathbf{a}_{1}$
2. $\mathbf{q}_{1}=\frac{\tilde{\mathbf{q}}_{1}}{\left\|\tilde{\mathbf{q}}_{1}\right\|}$
3. $\tilde{\mathbf{q}}_{2}=\mathbf{a}_{2}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{2}\right) \mathbf{q}_{1}$
4. $\mathbf{q}_{2}=\frac{\tilde{\mathbf{q}}_{2}}{\left\|\tilde{\mathbf{q}}_{2}\right\|}$
5. $\tilde{\mathbf{q}}_{3}=\mathbf{a}_{3}-\left(\mathbf{q}_{1}^{T} \mathbf{a}_{3}\right) \mathbf{q}_{1}-\left(\mathbf{q}_{2}^{T} \mathbf{a}_{3}\right) \mathbf{q}_{2}$
6. $\mathbf{q}_{3}=\frac{\tilde{\mathbf{q}}_{3}}{\left\|\tilde{\mathbf{q}}_{3}\right\|}$
7. Repeat recursively

To compute QR factorization of \boldsymbol{A} using the Gram-Schmidt procedure:

$$
\mathbf{Q}=\left[\begin{array}{llll}
\mathbf{q}_{1} & \mathbf{q}_{2} & \ldots & \mathbf{q}_{n}
\end{array}\right]
$$

$$
\mathbf{R}=\left[\begin{array}{cccc}
\left\|\tilde{\mathbf{q}}_{1}\right\| & \mathbf{q}_{1}^{T} \mathbf{a}_{2} & \ldots & \mathbf{q}_{1}^{T} \mathbf{a}_{n} \\
0 & \left\|\tilde{\mathbf{q}}_{2}\right\| & \ldots & \mathbf{q}_{2}^{T} \mathbf{a}_{n} \\
0 & 0 & \ldots & \mathbf{q}_{i}^{T} \mathbf{a}_{n} \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \left\|\tilde{\mathbf{q}}_{n}\right\|
\end{array}\right]
$$

Least-squares Regression

Consider an over-determined system of equations

$$
\begin{gathered}
\mathbf{A x}=\mathbf{y} \\
\mathbf{A}=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
\end{gathered}
$$

Least-squares Regression

Consider an overdetermined system of equations

$$
\begin{gathered}
\mathbf{A x}=\mathbf{y} \\
\mathbf{A}=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]
\end{gathered}
$$

y : Observables (data, snapshots of quantities of interest)
x: Model parameters (unknown)

Least-squares Regression

$\mathrm{A} \quad \mathrm{x} \quad=\quad \mathrm{b}$

Least-squares Regression

An over-determined system usually has no solution.
But we can search for parameters that fit the equations best.
This can be done by solving the following optimization problem:

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}} S(\mathbf{x})
$$

Objective function:

$$
S(\mathbf{x})=\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}
$$

Least-squares Regression

The optimization problem has a unique solution if A is full column rank.

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}} S(\mathbf{x})
$$

$S(\mathbf{x})=\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}=(\mathbf{y}-\mathbf{A} \mathbf{x})^{\mathrm{T}}(\mathbf{y}-\mathbf{A} \mathbf{x})=\mathbf{y}^{\mathrm{T}} \mathbf{y}-\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{y}-\mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{x}+\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}$
Substitute $\left(\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{y}\right)^{\mathrm{T}}=\mathbf{y}^{\mathrm{T}} \mathbf{A x}$

$$
S(\mathbf{x})=\mathbf{y}^{\mathrm{T}} \mathbf{y}-2 \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}
$$

Least-squares Regression

$$
S(\mathbf{x})=\mathbf{y}^{\mathrm{T}} \mathbf{y}-2 \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}
$$

Differentiate with respect to x :

$$
-\mathbf{A}^{\mathrm{T}} \mathbf{y}+\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \mathbf{x}=0 \quad \Rightarrow \quad \text { First-order condition }
$$

$A^{T} A$:The Gramian matrix of A
$A^{T} y$:The moment matrx

Least-squares Regression

$$
S(\mathbf{x})=\mathbf{y}^{\mathrm{T}} \mathbf{y}-2 \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}
$$

Differentiate with respect to x :

$$
-\mathbf{A}^{\mathrm{T}} \mathbf{y}+\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \mathbf{x}=0
$$

The solution to the optimization problem:

$$
\hat{\mathbf{x}}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{y}=\mathbf{A}^{+} \mathbf{y}
$$

The second-order condition for the minimum:

$$
\boldsymbol{A}^{T} \boldsymbol{A}>\mathbf{0}
$$

Pseudoinverse (from last lecture)

Any matrix has a pseudoinverse.
But \boldsymbol{A}^{+}can only be computed explicitly under these conditions:
I. If \boldsymbol{A} is full column rank, then $\boldsymbol{A}^{T} \boldsymbol{A}$ is invertible and $\boldsymbol{A}^{+}=\left(\boldsymbol{A}^{*} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{*}$.

- This is called the left inverse as in this case $\boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{I}$.
- In this case the pseudoinverse can also be computed by the QR decomposition:

$$
\mathbf{A}^{+}=\mathbf{R}^{-1} \mathbf{Q}^{T}
$$

Least-squares Regression

$$
S(\mathbf{x})=\mathbf{y}^{\mathrm{T}} \mathbf{y}-2 \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}
$$

Differentiate with respect to x :

$$
-\mathbf{A}^{\mathrm{T}} \mathbf{y}+\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \mathbf{x}=0 \quad \Rightarrow \quad \text { First order condition }
$$

The solution to the optimization problem:

$$
\hat{\mathbf{x}}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{y}=\mathbf{A}^{+} \mathbf{y}
$$

$A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

$$
\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}=\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

Least-squares Regression

These statements are equivalent:

- $A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

$$
\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}=\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

- The residual $\mathbf{r}=\mathbf{A} \hat{\mathbf{x}}-\mathbf{y}$ is orthogonal to the range of \boldsymbol{A}.

Least-squares Regression

These statements are equivalent:

- $A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

$$
\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}=\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

- The residual $\mathbf{r}=\mathbf{A} \hat{\mathbf{x}}-\mathbf{y}$ is orthogonal to the range of \boldsymbol{A}.
- r is in the null space of \boldsymbol{A}^{T}

Least-squares Regression

These statements are equivalent:

- $A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

$$
\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}=\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

- The residual $\mathbf{r}=\mathbf{A} \hat{\mathbf{x}}-\mathbf{y}$ is orthogonal to the range of \boldsymbol{A}.
- r is in the null space of \boldsymbol{A}^{T}
- $\mathbf{A}^{T}(\mathbf{A} \hat{\mathbf{x}}-\mathbf{y})=0$

Least-squares Regression

These statements are equivalent:

- $A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

$$
\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}=\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

- The residual $\mathbf{r}=\mathbf{A} \hat{\mathbf{x}}-\mathbf{y}$ is orthogonal to the range of \boldsymbol{A}.
- r is in the null space of \boldsymbol{A}^{T}
- $\mathbf{A}^{T}(\mathbf{A} \hat{\mathbf{x}}-\mathbf{y})=0$
- $(\mathbf{r}, \mathbf{A z})=0 \quad \forall \mathbf{z} \in \mathbb{R}^{n}$

Least-squares Regression

$\mathrm{Ax}=\mathbf{y}$

These statements are equivalent:

- $A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

$$
\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}=\underbrace{\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}}_{\text {Projection matrix }}
$$

Least-squares Regression

These statements are equivalent:

- $A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

Least-squares Regression

These statements are equivalent:

- $A \widehat{x}$ is the orthogonal projection of y onto the $\operatorname{range}(A)$:

$$
\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}=\mathbf{A}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{y}
$$

If $\mathbf{y} \in \operatorname{range}(\mathbf{A})$ then we can satisfy $\mathbf{y}=\mathbf{A} \hat{\mathbf{x}}$ precisely.
Otherwise, we can satisfy $\mathcal{P}_{\text {range }(\mathbf{A})}(\mathbf{y})=\mathbf{A} \hat{\mathbf{x}}$.

What about regularized Least Squares?

$$
\min _{\mathbf{x}_{1}} \mathcal{F}\left(\mathbf{x}_{1}, \lambda\right)=\left\|\mathbf{A} \mathbf{x}_{\mathbf{1}}-\mathbf{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{x}_{1}\right\|_{2}^{2}
$$

$$
\min _{\mathbf{x}_{2}}\left\|\mathbf{A} \mathbf{x}_{\mathbf{2}}-\mathbf{y}\right\|_{2}^{2} \text { s.t. }\left\|\mathbf{x}_{2}\right\|_{2}^{2} \leq \eta
$$

Consider $p(y \mid \theta)=\mathcal{N}(y ; A \theta, C)$ with $A \in \mathbb{R}^{n \times m}$. Assume $p(\theta)=\mathcal{N}\left(\theta ; \theta_{0}, B\right)$. Thus, $Y \sim \mathcal{N}\left(A \theta_{0}, A B A^{T}+C\right)$ To mimic a linear regression problem, consider the goal of estimating

$$
\theta^{*}=\underset{\theta}{\arg \min } L(\theta)
$$

What about SGD?

where

$$
L(\theta)=\mathbb{E}_{Y}\left[(y-A \theta)^{T} C^{-1}(y-A \theta)\right]+\left(\theta-\theta_{0}\right)^{T} B^{-1}\left(\theta-\theta_{0}\right)
$$

SGD Converges to:

$$
\begin{aligned}
\theta_{\mu} & =\left[A^{T} C^{-1} A+B^{-1}\right]^{-1}\left(A^{T} C^{-1} \mu_{Y}+B^{-1} \theta_{0}\right) \\
\theta_{\Sigma} & =\alpha\left[A^{T} C^{-1} A+B^{-1}\right]^{-1} A^{T} C^{-1} J J^{T} C^{-1} A \\
& =\alpha\left[A^{T} C^{-1} A+B^{-1}\right]^{-1} A^{T} C^{-1} \Sigma_{Y} C^{-1} A
\end{aligned}
$$

Compression, Sensing and Reconstruction

It is not always possible/efficient to collect high-dimensional measurement data.

Is it possible to measure the quantity of interest at a few sensor locations and use these measurements to reconstruct the entire signal?

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients $\mathbf{a} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

Sampling and Reconstruction

Let's consider a signal $\boldsymbol{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients $\boldsymbol{a} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

Goal:

Instead of using the entire signal \mathbf{x}, we want to subsample \mathbf{x}, and see if we can reconstruct \mathbf{X} using sparse measurements.

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients a $\in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

In order to subsample \mathbf{x}, let's define a matrix $\mathbf{P} \in \mathbb{R}^{p \times m}$, so that,

$$
\mathbf{y}=\mathbf{P x} \in \mathbb{R}^{p}
$$

is the signal obtained by subsampling \mathbf{x}.

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients $\mathbf{a} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

Example:

If $\mathbf{x} \in \mathbb{R}^{5}$, and we want to sample only the fourth and second measurements of \mathbf{x}, then matrix \boldsymbol{P} takes the form,

$$
\mathbf{P}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients a $\in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

In order to subsample \mathbf{x}, let's define a matrix $\boldsymbol{P} \in \mathbb{R}^{p \times m}$, such that y,

$$
\mathbf{y}=\mathbf{P x} \in \mathbb{R}^{p}
$$

is the signal obtained by subsampling \mathbf{x}.

Therefore,

$$
\mathbf{P x}=\mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients a $\in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

We subsample \mathbf{x} by,

$$
\mathbf{P} \mathbf{x}=\mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

Therefore, the basis coefficients a can be estimated as,

$$
\hat{\mathbf{a}}=[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients a $\in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

We subsample \mathbf{x} by,

$$
\mathbf{P} \mathbf{x}=\mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

Therefore, the basis coefficients a can be estimated as,

And reconstruct \mathbf{x} as,

$$
\hat{\mathbf{a}}=[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

$$
\hat{\mathbf{x}}=\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients a $\in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

We subsample \mathbf{x} by,

$$
\mathbf{P} \mathbf{x}=\mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

And reconstruct \mathbf{x} as,

$$
\hat{\mathbf{x}}=\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

Note:
If the original signal had p non-zero coefficients, then p measurements reconstruct the signal exactly.

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients $\mathbf{a} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

And reconstruct \mathbf{x} as,

$$
\hat{\mathbf{x}}=\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

Questions:

- How do we know â is sparse?
- What if we have noisy measurements?
- How to choose optimal sensor locations?

Sampling and Reconstruction

Let's consider a signal $\mathbf{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients $\mathbf{a} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

And reconstruct \mathbf{x} as,

$$
\hat{\mathbf{x}}=\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

Questions:

- How do we know â is sparse?
- What if we have noisy measurements?
- How to choose optimal sensor locations?
- How many measurements do we collect?

Sampling and Reconstruction

Questions:

- How do we know â is sparse?

Sparse basis coefficients can be found by solving,

$$
\hat{\mathbf{a}}=\min _{\mathbf{a}}\|\mathbf{a}\|_{1} \text { such that } \mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

This optimization problem is convex.

Sampling and Reconstruction

Questions:

- What if we have noisy measurements?

$$
\begin{array}{r}
\mathbf{y}=\mathbf{P} \Psi \mathbf{a}+\epsilon \\
\\
\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{array}
$$

Sparse basis coefficients can be found by solving,

$$
\hat{\mathbf{a}}=\min _{\mathbf{a}} \quad\|\mathbf{a}\|_{1} \text { such that }\|\mathbf{y}-\mathbf{P} \Psi \mathbf{a}\|_{2} \leq \sigma
$$

Sampling and Reconstruction

Questions:

- How to choose optimal sensor locations? (how to define matrix P ?)

Rule:

Rows of \boldsymbol{P} have to be orthogonal to the columns of Ψ.

$$
\mathbf{P x}=\mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

Sampling and Reconstruction

Questions:

- How to choose optimal sensor locations? (how to define matrix P ?)

Possible choices for matrix P,

Brunton and Kutz, 2019

Sampling and Reconstruction

Questions:

- How to choose optimal sensor locations? (how to define matrix P ?)

An example of a bad choice for matrix P,

Brunton and Kutz, 2019

Sampling and Reconstruction

Questions:

- How to choose optimal sensor locations? (how to define matrix P ?)

An example of a bad choice for matrix P,

Sampling and Reconstruction

Questions:

- How many measurements do we collect?

Theorem:

According to the Shannon-Nyquist sampling theorem, in order to recover a signal we should sample the signal twice the rate of its highest frequency.

Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix \mathbf{P} such that the inverse problem is as well-conditioned as possible. $\quad \mathbf{y}=\mathbf{P} \Psi \mathbf{a} \quad \mathbf{a} \in \mathbb{R}^{n}$

Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix \mathbf{P} such that the inverse problem is as well-conditioned as possible. $\quad \mathbf{y}=\mathbf{P} \Psi \mathbf{a} \quad \mathbf{a} \in \mathbb{R}^{n}$

In general, we may use randomly placed sensors to estimate a. However, when $p=n$ (the number of measurements equals the number of modes), $\mathbf{P} \Psi$ is often numerically singular.

Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix \mathbf{P} such that the inverse problem is as well-conditioned as possible. $\quad \mathbf{y}=\mathbf{P} \Psi \mathbf{a} \quad \mathbf{a} \in \mathbb{R}^{n}$

In general, we may use randomly placed sensors to estimate a. However, when $p=n$ (the number of measurements equals the number of modes), $\mathbf{P} \Psi$ is often numerically singular.

Solution:

- Oversampling
- Using QR factorization

Sensing: Empirical Interpolation

Goal:

We want to design a sparse measurement matrix \mathbf{P} such that the inverse problem is as well-conditioned as possible.

$$
\mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

Idea:
If we know the type of the signal, it is possible to design optimized sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a \boldsymbol{P}^{*} by solving,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}\right\|_{2}
$$

Sensing: Empirical Interpolation

Idea:
If we know the type of he signal, it is possible to design optimized sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a \boldsymbol{P}^{*} by solving,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\|\mathbf{x}-\underbrace{\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}}\|_{2}
$$

Reconstruction of \mathbf{x} using
sparse basis coefficients

Sampling and Reconstruction

Let's consider a signal $\boldsymbol{x} \in \mathbb{R}^{m}$, represented by basis $\Psi \in \mathbb{R}^{m \times n}$ and basis coefficients $\mathbf{a} \in \mathbb{R}^{n}$,

$$
\mathbf{x}=\Psi \mathbf{a}
$$

We subsample \boldsymbol{x} by,

$$
\mathbf{P x}=\mathbf{y}=\mathbf{P} \Psi \mathbf{a}
$$

Therefore, the basis coefficients a can be estimated as,

And reconstruct x as,

$$
\hat{\mathbf{a}}=[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

$$
\hat{\mathbf{x}}=\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}
$$

Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a \boldsymbol{P}^{*} by solving,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{+} \mathbf{y}\right\|_{2}
$$

If $p=n$, then,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{y}\right\|_{2}
$$

Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a \boldsymbol{P}^{*} by solving,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{y}\right\|_{2}
$$

For an orthonormal basis Ψ,

$$
\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{P} \mathbf{x}\right\|_{2} \leq\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}\left\|\left[\mathbf{I}-\Psi \Psi^{T}\right] \mathbf{x}\right\|_{2}
$$

Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a \boldsymbol{P}^{*} by solving,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{y}\right\|_{2}
$$

For an orthonormal basis Ψ,

$$
\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{P} \mathbf{x}\right\|_{2} \leq\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2} \| \underbrace{\left[\mathbf{I}-\Psi \Psi^{T}\right.}] \mathbf{x} \|_{2}
$$

Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a \boldsymbol{P}^{*} by solving,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{y}\right\|_{2}
$$

For an orthonormal basis Ψ,
Sampling error

$$
\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{P} \mathbf{x}\right\|_{2} \leq \overbrace{\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2} \|\left[\mathbf{I}-\Psi \Psi^{T}\right] \mathbf{x}} \|_{2}
$$

Projection error

Sensing: Discrete Empirical Interpolation

Given a basis Ψ, we can find a \boldsymbol{P}^{*} by solving,

$$
\mathbf{P}^{*}=\min _{\mathbf{P}}\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{y}\right\|_{2}
$$

For an orthonormal basis Ψ,

$$
\left\|\mathbf{x}-\Psi[\mathbf{P} \Psi]^{-1} \mathbf{P} \mathbf{x}\right\|_{2} \leq\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}\left\|\left[\mathbf{I}-\Psi \Psi^{T}\right] \mathbf{x}\right\|_{2}
$$

Therefore, the sensor selection process reduces to,

$$
\mathbf{P}^{*}=m i n_{\mathbf{P}}\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}
$$

Sea Surface temperature dataset (Manohar et al.)

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix (sensor locations).

Why QR factorization?
Reminder: we want to design a sparse measurement matrix \mathbf{P} such that the inverse problem is as well-conditioned as possible. $\quad \mathbf{y}=\mathbf{P} \Psi \mathbf{a}$

QR factorization with pivoting, maximizes the submatrix volume and controls the condition number.

Sensing: QDEIM

Side Note: QR factorization with column pivoting
QR decomposition with column pivoting decomposes a matrix into a unitary matrix \mathbf{Q}, an upper triangular matrix \mathbf{R}, and a column permutation matrix Φ,

$$
\mathbf{W} \Phi=\mathbf{Q R}
$$

Where, $\mathbf{Q} \in \mathbb{C}^{n \times n}$ and $\mathbf{R} \in \mathbb{C}^{n \times m}$.

Sensing: QDEIM

Side Note: QR factorization with column pivoting
Given $\mathbf{W} \in \mathbb{R}^{n \times m}$, with a column pivoted QR decomposition we have,

$$
\mathbf{W} \Phi=\mathbf{Q} \mathbf{R}
$$

Where, $\mathbf{Q} \in \mathbb{C}^{n \times n}$ and $\mathbf{R} \in \mathbb{C}^{n \times m}$, therefore,

$$
\mathbf{W} \Phi=\mathbf{Q}\left[\begin{array}{ll}
\mathbf{R}_{1} & \mathbf{R}_{2}
\end{array}\right]
$$

$\boldsymbol{R}_{\mathbf{1}} \in \mathbb{C}^{n \times n}$ is an upper triangular matrix.
The columns of \mathbf{W} are permuted such that the diagonal elements of $\boldsymbol{R}_{\mathbf{1}}$ are non-increasing.

Sensing: QDEIM

Side Note: QR factorization with column pivoting
Given $\mathbf{W} \in \mathbb{R}^{n \times m}$, with a column pivoted QR decomposition we have,

$$
\mathbf{W} \Phi=\mathbf{Q} \mathbf{R}
$$

Where, $\mathbf{Q} \in \mathbb{C}^{n \times n}$ and $\mathbf{R} \in \mathbb{C}^{n \times m}$, therefore,

$$
\mathbf{W} \Phi=\mathbf{Q}\left[\begin{array}{ll}
\mathbf{R}_{1} & \mathbf{R}_{2}
\end{array}\right]
$$

$\boldsymbol{R}_{\mathbf{1}} \in \mathbb{C}^{n \times n}$ is an upper triangular matrix.
Also,

$$
\sigma_{i}^{2}=\left|r_{i i}\right|^{2} ; \quad 1 \leq i \leq n
$$

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix (sensor locations).
$\mathbf{W} \Phi=\mathbf{Q R}$
Let's set $\mathbf{W}=\Psi^{T}$, and

$$
\mathbf{P} \Psi=\left[\mathbf{Q R}_{1}\right]^{T}=\mathbf{R}_{1}^{T} \mathbf{Q}^{T}
$$

We want to solve

$$
\mathbf{P}^{*}=m i n_{\mathbf{P}}\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}
$$

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix (sensor locations).

Let's set $\mathbf{W}=\Psi^{T}$, and

$$
\mathbf{P} \Psi=\left[\mathbf{Q R}_{1}\right]^{T}=\mathbf{R}_{1}^{T} \mathbf{Q}^{T}
$$

We want to solve

$$
\mathbf{P}^{*}=m i n_{\mathbf{P}}\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}
$$

Therefore,

$$
\|\mathbf{P} \Psi\|_{2}=\left\|\mathbf{R}_{1}^{T} \mathbf{Q}^{T}\right\|_{2}=\sigma_{\max }\left(\mathbf{R}_{1}\right)
$$

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix (sensor locations).

We want to solve

$$
\mathbf{P}^{*}=m i n_{\mathbf{P}}\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}
$$

Therefore,

$$
\|\mathbf{P} \Psi\|_{2}=\left\|\mathbf{R}_{1}^{T} \mathbf{Q}^{T}\right\|_{2}=\sigma_{\max }\left(\mathbf{R}_{1}\right)
$$

and,

$$
\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}=\frac{1}{\sigma_{\min }\left(\mathbf{R}_{1}\right)}
$$

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix (sensor locations).

We want to solve

$$
\mathbf{P}^{*}=m i n_{\mathbf{P}}\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}
$$

Therefore,

$$
\|\mathbf{P} \Psi\|_{2}=\left\|\mathbf{R}_{1}^{T} \mathbf{Q}^{T}\right\|_{2}=\sigma_{\max }\left(\mathbf{R}_{1}\right)
$$

and,

$$
\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}=\frac{1}{\sigma_{\min }\left(\mathbf{R}_{1}\right)}
$$

We should keep $\sigma_{\text {min }}\left(\mathbf{R}_{1}\right)$ as large as possible.

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix (sensor locations).

We want to minimize sampling error,

$$
\left\|[\mathbf{P} \Psi]^{-1}\right\|_{2}=\frac{1}{\sigma_{\min }\left(\mathbf{R}_{1}\right)} \quad \begin{aligned}
& \text { We should keep } \sigma_{\min }\left(\mathbf{R}_{1}\right) \\
& \text { as large as possible. }
\end{aligned}
$$

QR factorization with column pivoting expands the submatrix volume by enforcing a diagonal dominance structure (Manohar, 2018),

$$
\sigma_{i}^{2}=\left|r_{i i}\right|^{2} \geq \sum_{j=i}^{k}\left|r_{j k}\right|^{2} ; \quad 1 \leq i \leq k \leq m
$$

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix (sensor locations).

Let's set $\mathbf{W}=\Psi^{T}$ in

$$
\mathbf{W} \Phi=\mathbf{Q}\left[\begin{array}{ll}
\mathbf{R}_{1} & \mathbf{R}_{2}
\end{array}\right]
$$

QDEIM solves the column pivoted QR factorization

$$
\Psi^{T} \Phi=\mathrm{QR}_{1}
$$

and the optimal sampling matrix is,

$$
\mathbf{P}^{*}=\boldsymbol{\Phi}^{T}
$$

Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling matrix \mathbf{C}.

```
if (p==r) % QR sensor selection, p=r
    [Q,R,pivot] = qr(Psi_r','vector'); 祍T}\mp@subsup{\mathbf{C}}{}{T}=\mathbf{QR
elseif (p>r) % Oversampled QR sensors, p>r
```



```
end
C = zeros (p,n);
for j=1:p
    C(j,pivot(j))=1;
end
```

Brunton and Kutz, 2019
p : number of sensors
r : number of basis functions $\mathbf{a} \in \mathbb{R}^{r}$

