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Least squares regression
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Resources

https://caslab.engin.umich.edu/teaching

• Isaac Newton Institute tutorial on Model Order reduction for complex systems (Jan 2023)
1. Model Order Reduction theory manual 

http://websites.umich.edu/~caslab/docs/Newton/MOR_Theory.pdf
2. PERFORM (Prototyping environment for reacting flow order reduction methods : code)
3. PERFORM (Prototyping environment for reacting flow order reduction methods : doc)
4. Slides (coming soon)

4

https://caslab.engin.umich.edu/teaching
http://www.google.com/url?q=http%3A%2F%2Fwebsites.umich.edu%2F~caslab%2Fdocs%2FNewton%2FMOR_Theory.pdf&sa=D&sntz=1&usg=AOvVaw0oJA2ZmLBn3ZdnAfz0YDV0
http://websites.umich.edu/~caslab/docs/Newton/MOR_Theory.pdf
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fcwentland0%2Fperform&sa=D&sntz=1&usg=AOvVaw2_mFfY61uyRmFa5kHMJ79z
https://www.google.com/url?q=https%3A%2F%2Fperform.readthedocs.io%2Fen%2Flatest%2F%23&sa=D&sntz=1&usg=AOvVaw1rxr2QJdw5t13DnJ1FKRZh


Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by

• 𝜮 is a diagonal matrix.
• Diagonal entries of 𝜮 are the singular values of 𝑨.
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by

• 𝜮 is a diagonal matrix.
• Diagonal entries of 𝜮 are the singular values of 𝑨.
• Singular values are real and non-negative.
• Singular values are typically arranged in descending order. 
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by

• Columns of 𝑼 are the left singular vectors of 𝑨.
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by

• Columns of 𝑼 are the left singular vectors of 𝑨.
• Columns of 𝑽 are the right singular vectors of 𝑨.
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by

• Columns of 𝑼 are the left singular vectors of 𝑨.
• Columns of 𝑽 are the right singular vectors of 𝑨.
• The left and right singular vectors are orthonormal. 
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Singular Value Decomposition

Any matrix has a singular value decomposition.

SVD of a general matrix 𝑨 ∈ ℂ!×# is given by

• Columns of 𝑼 are the left singular vectors of 𝑨.
• Columns of 𝑽 are the right singular vectors of 𝑨.
• The left and right singular vectors are orthonormal. 
• 𝑼 and 𝑽 are unitary matrices.
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Geometric Interpretation of SVD

Matrix multiplication introduces a rotation and a stretching action.
Singular values are the lengths of semi-axes of the hyper-ellipsoid 
obtained as a result of operation of matrix 𝑨 on the unit hypersphere. 
In 3-D:

𝑨

Brunton and Kutz, 201914



Singular Value Decomposition

Columns of 𝑨 (snapshots matrix) can be 
• Measurements from experiments
• Image pixels
• State of a physical system (velocity, pressure, etc.) at discrete points
• …

Rank of 𝑨 is equal to the number of non-zero singular values.
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SVD Facts

1. Every matrix has a SVD and singular values are uniquely 
determined, but they are not necessarily distinct.

𝑨 = 𝑼𝜮𝑽∗
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SVD Facts

1. Every matrix has a SVD and singular values are uniquely 
determined, but they are not necessarily distinct.
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SVD Facts

1. Every matrix has a SVD and singular values are uniquely 
determined, but they are not necessarily distinct.

2. If 𝑨 ∈ ℂ!×# is rank deficient (of rank 𝑟 < 𝑛), then 𝜮 will have r 
positive diagonal entries. 

3. Singular values of 𝑨 are the square roots of the eigenvalues of 𝑨∗𝑨

4. Same can be proved for the eigenvalues of 𝑨𝑨∗.

𝑨 = 𝑼𝜮𝑽∗
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SVD Facts
1. Every matrix has a SVD and singular values are uniquely 

determined, but they are not necessarily distinct.
2. If 𝑨 ∈ ℂ!×# is rank deficient (of rank 𝑟 < 𝑛), then 𝜮 will have r 

positive diagonal entries. 
3. Singular values of 𝑨 are the square roots of the eigenvalues of 𝑨∗𝑨

4. Same can be proved for the eigenvalues of 𝑨𝑨∗.
5. The rank of 𝑨 is equal to the number of its non-zero singular 

values.

𝑨 = 𝑼𝜮𝑽∗

20
6.  



SVD Facts

7. Given                          , for any 0 < 𝑞 < 𝑟 the matrix             
satisfies the following properties:
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Image Compression with SVD
Full Image

10 Modes

30 Modes

100 Modes

20 Modes

40 Modes

22
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SVD, QR decompositions

Least squares regression

Sampling & Reconstruction

Sensing



QR Factorization

If 𝑨 ∈ ℂ!×# and 𝑨 has full column rank, then the QR decomposition is 
given by

• are orthonormal vectors.
• 𝑅 ∈ ℂ#×# is an upper-triangular matrix with non-zero diagonal 

elements.
• QR factorization can be computed by the Gram-Schmidt procedure.

24



Gram-Schmidt Procedure
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Gram-Schmidt Procedure

To compute QR factorization of 𝑨
using the Gram-Schmidt procedure:
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Gram-Schmidt Procedure

To compute QR factorization of 𝑨
using the Gram-Schmidt procedure:
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SVD, QR decompositions

Least squares regression

Sampling & Reconstruction

Sensing



Least-squares Regression

Consider an over-determined system of equations
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Least-squares Regression

Consider an overdetermined system of equations

𝒎 > 𝒏

y: Observables (data, snapshots of quantities of interest)

x: Model parameters (unknown)
30



Least-squares Regression

Brunton and Kutz, 201931



Least-squares Regression

An over-determined system usually has no solution.

💡But we can search for parameters that fit the equations best.

This can be done by solving the following optimization problem:

Objective function:
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Least-squares Regression

The optimization problem has a unique solution if 𝑨 is full column rank. 

Substitute

33



Least-squares Regression

Differentiate with respect to x:

First-order condition

𝑨𝑻𝑨: The Gramian matrix of 𝑨

𝑨𝑻𝒚: The moment matrx

34



Least-squares Regression

Differentiate with respect to x:

The solution to the optimization problem:

The second-order condition for the minimum:

First-order condition

𝑨𝑻𝑨 > 𝟎
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Pseudoinverse (from last lecture)

Any matrix has a pseudoinverse.
But 𝑨% can only be computed explicitly under these conditions:

1. If 𝑨 is full column rank, then 𝑨𝑻𝑨 is invertible and 𝑨% = (𝑨∗𝑨)'𝟏𝑨∗. 

• This is called the left inverse as in this case 𝑨%𝑨 = 𝑰.
• In this case the pseudoinverse can also be computed by the QR 

decomposition: 
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Least-squares Regression

Differentiate with respect to x:

The solution to the optimization problem:

𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

First order condition

37



Least-squares Regression

These statements are equivalent:
• 𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

• The residual                   is orthogonal to the range of 𝑨.
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Least-squares Regression

These statements are equivalent:
• 𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

• The residual                   is orthogonal to the range of 𝑨.
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Least-squares Regression

These statements are equivalent:
• 𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

• The residual                   is orthogonal to the range of 𝑨.

• r is in the null space of 𝑨𝑻

•
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Least-squares Regression

These statements are equivalent:
• 𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

• The residual                   is orthogonal to the range of 𝑨.

• r is in the null space of 𝑨𝑻

•

•
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Least-squares Regression

These statements are equivalent:
• 𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

Projection matrix
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Least-squares Regression

These statements are equivalent:
• 𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

Projection matrix
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𝑟𝑎𝑛
𝑔𝑒(𝑨

)

𝒚



Least-squares Regression

These statements are equivalent:
• 𝑨4𝒙 is the orthogonal projection of 𝒚 onto the 𝑟𝑎𝑛𝑔𝑒(𝑨):

If                           then we can satisfy                 precisely. 

Otherwise, we can satisfy                              .
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What about 
regularized
Least Squares?
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What about  SGD?

SGD Converges to:
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SVD, QR decompositions

Least squares regression

Sampling & Reconstruction

Sensing



Compression, Sensing and Reconstruction

It is not always possible/efficient to collect high-dimensional measurement 
data.

Is it possible to measure the quantity of interest at a few sensor locations 
and use these measurements to reconstruct the entire signal?
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Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,
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Sampling and Reconstruction

Let’s consider a signal 𝒙 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝒂 ∈ ℝ#,

Goal:
Instead of using the entire signal 𝐱, we want to subsample 𝐱, and see if we 
can reconstruct 𝐱 using sparse measurements.
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Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

In order to subsample 𝐱, let’s define a matrix 𝐏 ∈ ℝ)×!, so that,

is the signal obtained by subsampling 𝐱.
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Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

Example:
If 𝐱 ∈ ℝ*, and we want to sample only the fourth and second 
measurements of 𝐱, then matrix 𝑷 takes the form,
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Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

In order to subsample 𝐱, let’s define a matrix 𝑷 ∈ ℝ)×!, such that 𝑦,

is the signal obtained by subsampling 𝐱.

Therefore,
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Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

We subsample 𝐱 by,

Therefore, the basis coefficients 𝐚 can be estimated as,
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Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

We subsample 𝐱 by,

Therefore, the basis coefficients 𝐚 can be estimated as,

And reconstruct 𝐱 as,

55



Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

We subsample 𝐱 by,

And reconstruct 𝐱 as,

Note: 
If the original signal had 𝑝 non-zero coefficients, then 𝑝 measurements 
reconstruct the signal exactly.
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Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

And reconstruct 𝐱 as,

Questions:
• How do we know C𝐚 is sparse?
• What if we have noisy measurements?
• How to choose optimal sensor locations?

57



Sampling and Reconstruction

Let’s consider a signal 𝐱 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

And reconstruct 𝐱 as,

Questions:
• How do we know C𝐚 is sparse?
• What if we have noisy measurements?
• How to choose optimal sensor locations?
• How many measurements do we collect?
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Sampling and Reconstruction

Questions:
• How do we know C𝐚 is sparse?

Sparse basis coefficients can be found by solving,

This optimization problem is convex.
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Sampling and Reconstruction

Questions:
• What if we have noisy measurements?

Sparse basis coefficients can be found by solving,
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Sampling and Reconstruction

Questions:
• How to choose optimal sensor locations? (how to define matrix 𝑷?)

Rule:
Rows of 𝑷 have to be orthogonal to the columns of Ψ.
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Sampling and Reconstruction

Questions:
• How to choose optimal sensor locations? (how to define matrix 𝑷?)

Possible choices for matrix 𝑷,

62
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Sampling and Reconstruction

Questions:
• How to choose optimal sensor locations? (how to define matrix 𝑷?)

An example of a bad choice for matrix 𝑷,

63Brunton and Kutz, 2019

𝐲 𝑷 𝐚𝚿



Sampling and Reconstruction

Questions:
• How to choose optimal sensor locations? (how to define matrix 𝑷?)

An example of a bad choice for matrix 𝑷,

64Brunton and Kutz, 2019

𝐲 𝑷 𝐚𝚿 𝐚𝐲 𝚯



Sampling and Reconstruction

Questions:
• How many measurements do we collect?

Theorem:
According to the Shannon-Nyquist sampling theorem, in order to recover 
a signal we should sample the signal twice the rate of its highest 
frequency.
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Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix 𝐏 such that the inverse 
problem is as well-conditioned as possible.

67
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Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix 𝐏 such that the inverse 
problem is as well-conditioned as possible.

In general, we may use randomly placed sensors to estimate 𝐚. However, 
when 𝑝 = 𝑛 (the number of measurements equals the number of modes),  
𝐏Ψ is often numerically singular.

68

𝐚 ∈ ℝ'



Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix 𝐏 such that the inverse 
problem is as well-conditioned as possible.

In general, we may use randomly placed sensors to estimate 𝐚. However, 
when 𝑝 = 𝑛 (the number of measurements equals the number of modes),  
𝐏Ψ is often numerically singular.

Solution:
• Oversampling
• Using QR factorization
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Sensing: Empirical Interpolation

Goal:
We want to design a sparse measurement matrix 𝐏 such that the inverse 
problem is as well-conditioned as possible.

Idea:
If we know the type of the signal, it is possible to design optimized 
sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a 𝑷∗ by solving,
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Sensing: Empirical Interpolation

Idea:
If we know the type of he signal, it is possible to design optimized sensors 
using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a 𝑷∗ by solving,

71

Reconstruction of 𝐱 using 
sparse basis coefficients



Sampling and Reconstruction

Let’s consider a signal 𝒙 ∈ ℝ!,  represented by basis Ψ ∈ ℝ!×# and basis 
coefficients 𝐚 ∈ ℝ#,

We subsample 𝒙 by,

Therefore, the basis coefficients 𝐚 can be estimated as,

And reconstruct 𝒙 as,
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Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized 
sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a 𝑷∗ by solving,

If 𝑝 = 𝑛, then,
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Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized 
sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a 𝑷∗ by solving,

For an orthonormal basis Ψ,
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Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized 
sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a 𝑷∗ by solving,

For an orthonormal basis Ψ,

75Projection error



Sensing: Empirical Interpolation

Idea:
If we know the type of the signal, it is possible to design optimized 
sensors using low-rank features extracted from patterns in the data.

Given a basis Ψ, we can find a 𝑷∗ by solving,

For an orthonormal basis Ψ,

76Projection error

Sampling error



Sensing: Discrete Empirical Interpolation 

Given a basis Ψ, we can find a 𝑷∗ by solving,

For an orthonormal basis Ψ,

Therefore, the sensor selection process reduces to,
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Sea Surface temperature dataset (Manohar et al.)
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix (sensor locations).

Why QR factorization?
Reminder:  we want to design a sparse measurement matrix 𝐏 such that 
the inverse problem is as well-conditioned as possible.

QR factorization with pivoting, maximizes the submatrix volume and 
controls the condition number.
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Sensing: QDEIM

Side Note: QR factorization with column pivoting
QR decomposition with column pivoting decomposes a matrix into a 
unitary matrix 𝐐, an upper triangular matrix 𝐑, and a column permutation 
matrix Φ,

Where, 𝐐 ∈ ℂ#×# and 𝐑 ∈ ℂ#×!.
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Sensing: QDEIM

Side Note: QR factorization with column pivoting
Given 𝐖 ∈ ℝ#×!, with a column pivoted QR decomposition we have,

Where, 𝐐 ∈ ℂ#×# and 𝐑 ∈ ℂ#×!, therefore,

𝑹𝟏 ∈ ℂ#×# is an upper triangular matrix.

The columns of 𝐖 are permuted such that the diagonal elements of 𝑹𝟏
are non-increasing.
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Sensing: QDEIM

Side Note: QR factorization with column pivoting
Given 𝐖 ∈ ℝ#×!, with a column pivoted QR decomposition we have,

Where, 𝐐 ∈ ℂ#×# and 𝐑 ∈ ℂ#×!, therefore,

𝑹𝟏 ∈ ℂ#×# is an upper triangular matrix.

Also,
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix (sensor locations).

Let’s set 𝐖 = Ψ+ , and

We want to solve
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix (sensor locations).

Let’s set 𝐖 = Ψ+ , and

We want to solve

Therefore,
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix (sensor locations).

We want to solve

Therefore,

and,
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix (sensor locations).

We want to solve

Therefore,

and,
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We should keep 𝜎()'(𝐑*)
as large as possible.



Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix (sensor locations).

We want to minimize sampling error,

QR factorization with column pivoting expands the submatrix volume by 
enforcing a diagonal dominance structure (Manohar, 2018),

87

We should keep 𝜎()'(𝐑*)
as large as possible.



Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix (sensor locations).

Let’s set 𝐖 = Ψ+ in

QDEIM solves the column pivoted QR factorization

and the optimal sampling matrix is,
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Sensing: QDEIM

The QDEIM approach uses QR factorization to obtain the sampling 
matrix 𝐂.

89
𝑝: number of sensors
𝑟: number of basis functions 𝐚 ∈ ℝ!

Brunton and Kutz, 2019


