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Intro: Models and outer-loop applications
Model

• Model describes response of system to inputs, parameters
• Many models described as differential equations
• Evaluating a model requires numerical simulations
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Outer loop applications [P., Willcox, Gunzburger, SIAM Review, 2018]
• Form outer loops around a model
• In each iteration an input µ is received and the corresponding model output y is computed
• An overall outer loop result is obtained at the termination of the outer loop

Challenge: Single model solve expensive; repeated solves in outer loop prohibitive
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Intro: Outer-loop applications

optimization control
inference

multi-discipline coupling

model calibration

uncertainty quantification

visualization
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Intro: Offline/online decomposition

runtime
Outer-loop application with high-fidelity (full) model:

uN(µ1) uN(µ2) uN(µ3) uN(µ4) . . .

Outer-loop application with surrogate model:

runtime
offline phase online phase

ur(µ1), ur(µ2), . . .

Offline (training) phase
• Generate snapshots (data) using the expensive, high-fidelity model
• Extract patterns from data and derive cheap surrogate model

Online (evaluation) phase
• Evaluate surrogate model instead of high-fidelity model (or both → multi-fidelity)
• Rapid prediction, control, optimization, uncertainty quantification
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Intro: Three types of surrogate models

RN

x1

x2

xK

simplified surrogates
• Simplifying physics
• Coarser discretizations
• Linearized models
• Early stopping of iterative

solvers

data-fit surrogates
• Fitting model to data of

input-output map given by
high-fidelity model

• Response surfaces
• SVMs, Gaussian processes
• Neural networks

reduced models
• Extract important dynamics of

full-model states from data
• Approximate high-dimensional

states in subspaces
• Restrict solving governing

equations to subspaces

[P., Willcox, Gunzburger, SIAM Review, 2018]
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Outline

1. Introduction to projection-based model reduction
• Solution manifold, smoothness, low-rank structure
• Basis generation
• Online efficiency

2. Model reduction for time-dependent problems

3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results
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MOR: Model problem
Steady heat conduction (thermal block) [Rozza et al., 2007]

∇ · (c(x ;µ)∇u(x ;µ)) = g(x) , x ∈ Ω ,

u(x ;µ) = 0 , x ∈ Γtop

∇u(x ;µ) · n = 0 , x ∈ Γside

∇u(x ;µ) · n = 1 , x ∈ Γbase

Conductivity coefficient µ = [µ1, . . . , µd ]
T ∈ D ⊂ Rd

c(x ;µ) = µi1Ωi (x)

Ω3 Ω4

Ω1 Ω2

Γtop

Γbase

Consider Hilbert space V and weak form of problem from above

a(u(µ),w ;µ) = g(w ;µ) , ∀w ∈ V
• Solution field u(µ) : Ω → R, bilinear form a : V × V → R and linear form g : V → R
• Assume well posedness (here a coercive and a, g continuous for all µ ∈ D)
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MOR: Discretized (“full”) model problem

Exact solution u(µ) unavailable and therefore need to resort to numerical approximation

Approximation space VN ⊂ V of dimension N ∈ N
• Example: finite element method with triangulation and piecewise linear basis functions
• Basis of space {φi}Ni=1

For each µ ∈ D, obtain the discrete problem via Galerkin projection (e.g., [Hesthaven et al., 2016])

a(uN(µ),wN ;µ) = g(wN ;µ) , ∀wN ∈ VN

and in algebraic form
A(µ)uN(µ) = g(µ) , uN(µ) ∈ RN (1)

with matrix A(µ) ∈ RN×N and vector g(µ) ∈ RN

Computing uN(µ) means solving linear system of equations (1)
→ computational costs depend directly on dimension N
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MOR: Solution manifold

Manifold of “exact” solutions

M = {u(µ) |µ ∈ D} ⊂ V

Standard numerical analysis (e.g., FEM) spaces VN

MN = {uN(µ) |µ ∈ D} ⊂ VN ⊂ V

• Typically ∥u(µ)− uN(µ)∥V can be made arbitrarily small by
increasing dimension N of space VN ...

• ... but might need large N to achieve acceptable accuracy RN

x1

x2

xK

Model reduction exploits that solution manifold MN is often smooth
• There exist spaces Vr with dimension r ≪ N that approximate MN well
• Can we find such a reduced space Vr?
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MOR: Computing a basis of a reduced space
Best approximation error given by the Kolmogorov r-width [Pinkus, 1985],[Maday et al., 2002],[Binev et al., 2011]

dr (MN) = inf
Vr⊂VN

dim(Vr )=r

sup
uN (µ)∈MN

inf
ur (µ)∈Vr

∥uN(µ)− ur (µ)∥V

• Computationally not tractable in general
• Note that if dr (MN) decays slowly with dimension r , then model reduction fails (→ later)

Minimizing a discrete version of the Kolmogorov r-width (e.g., [Benner et al., 2015], [Hesthaven et al., 2016])

• Select a finite subset DT = {µ1, . . . ,µM} ⊂ D of M parameters
• Consider M snapshots uN(µ1), . . . , uN(µM)

• Find orthonormal v1, . . . , vr ∈ VN that minimize

1
M

M∑
i=1

inf
ur∈span{v1,...,vr}

∥uN(µi )− ur∥V

• Define reduced space Vr as span of v1, . . . , vr
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MOR: Computing a basis of a reduced space (cont’d)
Optimal v1, . . . , vr are the eigenvectors with largest eigenvalues λ1 ≥ · · · ≥ λr of operator

C (v) =
1
M

M∑
i=1

⟨v , uN(µi )⟩V uN(µi )

• Optimality property
1
M

M∑
i=1

∥uN(µi )− Pr [uN(µi )]∥2
V =

M∑
i=r+1

λi

with projection Pr [u] of u ∈ VN onto Vr with respect to ⟨·, ·⟩V
• Optimality holds only for parameters in training set µ ∈ DT ; not for µ ∈ D

Basis v1, . . . , vr has many names (e.g., [Benner et al., 2015], [Hesthaven et al., 2016])

• Called proper orthogonal decomposition (POD) basis in model reduction
• Same basis is obtained with principal component analysis (PCA), Karhunen-Loève, singular

value decomposition (SVD), etc.
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MOR: Linear algebra view on learning a POD space
Two steps to compute POD basis in practice

1. Assemble snapshot matrix

S =

 | |
uN(µ1) . . . uN(µM)

| |

 ∈ RN×M

2. Compute singular value decomposition with the first r left-singular vectors

V r =

 | |
v1 . . . v r

| |

 ∈ RN×r

(Note: Replaced ⟨·, ·⟩V with ℓ2 inner product for computational convenience.)
Computational costs

1. Computing M high-fidelity solutions to assemble snapshot matrix
2. Singular value decomposition with complexity O(MN2) (or O(NM2))

→ high costs but (extremely) efficiently implemented in standard numerical linear algebra packages
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MOR: Basis generation methods and references [Benner et al., 2015]

Proper orthogonal decomposition (POD) [Lumley, 1967], [Sirovich, 1981]

• Use snapshot data to generate empirical eigenfunctions
• Easy to implement with standard numerical linear algebra packages

Interpolatory methods [Gallivan, Grimme, van Dooren, 1994], [Feldmann, Freund, 1995], [Gugercin et al., 2008]

• Rational interpolation

Balanced truncation [Moore, 1981], [Li, White, 2002], [Benner et al., 2008, 2013]

• Guaranteed stability and error bound for linear time-invariant systems
• Close connection between POD and balanced truncation [Willcox, Peraire, 2002]

Reduced basis methods [Patera, Rozza, 2007], [Maday et al., 2002], [Veroy et al., 2001,2003, 2005], [Grepl, 2005]

• Efficient greedy methods for constructing basis
• Strong focus on error estimation for selected PDEs

Eigensystem realization algorithm (ERA) [Juang, Pappa, 1985], Dynamic mode decomposition
(DMD) [Schmid, 2010], Loewner model reduction [Mayo, Antoulas, 2007]

• Constructing reduced models purely from data (data-driven, non-intrusive)
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MOR: Reduced model
Given a reduced space Vr , reduced model solution ur (µ) obtained via Galerkin projection

a(ur (µ),w ;µ) = g(w ;µ) , ∀w ∈ Vr

Error of reduced solution

∥u(µ)− ur (µ)∥V ≤ ∥u(µ)− uN(µ)∥V︸ ︷︷ ︸
e1

+ ∥uN(µ)− ur (µ)∥V︸ ︷︷ ︸
e2

• Select high-dimensional (fine mesh) space VN to keep e1 small
• Train a reduced space Vr to keep e2 small

Connection best-approximation in reduced space Vr to error of reduced solution (stability)

∥u(µ)− ur (µ)∥V ≤
(

1 +
γ(µ)

α(µ)

)
inf
u∈Vr

∥u(µ)− u∥V

with coercivity and continuity constant α(µ) and γ(µ), respectively (restrictive setting)
[Rozza et al., 2007], [Hesthaven et al., 2016]
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MOR: Linear algebra view on reduced model
Reduced solution ur (µ) ∈ Rr solves

Ar (µ)ur (µ) = g r (µ) ,

with matrix Ar (µ) = V T
r A(µ)V r ∈ Rr×r and vector g r (µ) = V T

r g(µ) ∈ Rr

Realizing offline/online splitting via affine parameter dependence
• Affine parameter dependence means (our model problem has affine parameter dependence)

a(u,w ;µ) =
Qa∑
i=1

Θ
(a)
i (µ)ai (u,w) , g(w ;µ) =

Qg∑
j=1

Θ
(f )
j (µ)gj(w) , Θ

(a)
i ,Θ

(g)
j : D → R

• Pre-compute offline (parameter independent)

A(i)
r = V T

r A(i)V r , g (j)
r = V T

r g (j) , i = 1, . . . ,Qa, j = 1, . . . ,Qg

• Assemble online (fast)

Ar (µ) =

Qa∑
i=1

Θ
(a)
i (µ)A(i)

r , g r (µ) =

Qg∑
j=1

Θ
(g)
j (µ)g (j)

r
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MOR: Offline/online computations

Offline (training):
1. Select training set

DT = {µ1, . . . ,µM}

2. Compute snapshots via full-model solves

S = {uN(µ1), . . . ,uN(µM)} ⊂ RN

3. Construct reduced basis (e.g., POD)

V = [v1, . . . , v r ] ∈ RN×r

4. Project operators

A(i)
r = V T

r A(i)V r , g (j)
r = V T

r g (j)

Online (evaluation):
1. Receive µ ∈ D \ DT not in training set

2. Assemble reduced operators

Ar (µ) =
Qa∑
i=1

Θ
(a)
i (µ)A(i)

r ,

g r (µ) =

Qg∑
j=1

Θ
(g)
i (µ)g (j)

r

3. Solve r × r system to compute ur (µ)

Ar (µ)ur (µ) = g r (µ)
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MOR: Computational costs

Offline complexity O(MN2 + QarN
2 + Qg rN)

• M snapshots and POD basis O(MN +MN2)

• Computing A(1)
r , . . . ,A(Qa)

r matrices O(QarN
2)

• Computing g (1)
r , . . . , g (Qf )

r matrices O(Qg rN)

Online complexity O(Qar
2 + Qg r + r3)

• Assemble reduced operators: O(Qar
2 + Qg r)

• Solving for dense reduced system: O(r3)

→ independent of N full model (P) vs. reduced model (PN)
[Haasdonk, 2017]

Runtime for k simulations
• Full model alone: t = k × tfull

• Reduced model: t = toffline + k × tonline

• Model reduction pays off only for k > k∗ with k∗ = toffline
tfull−tonline
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MOR: Error bounds and error estimation

Large part of model reduction community working on a posteriori error estimation

∥uN(µ)− ur (µ)∥ ≤ η(µ) , µ ∈ D

• Computable, upper bound of (generalization) error over D (not only training set DT )

• Strong theoretical foundations for linear state dependence [Patera, Rozza, 2007], [Maday et al., 2002],

[Veroy et al., 2001,2003, 2005], [Grepl, 2005]

• Heuristics via error indicators available through, e.g., residual

• Not many rigorous statements beyond linear state dependence

Other error bounds
• Error bounds for linear time-invariant systems of ODEs [Moore, 1981]

• A priori analysis of reduced models for elliptic problems with greedy basis construction [Maday et

al., 2002], [Binev et al., 2011]
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MOR: Thermal block

Steady heat conduction (thermal block) [Rozza et al., 2007]

∇ · (c(x ;µ)∇u(x ;µ)) = g(x) , x ∈ Ω ,

Conductivity coefficient with parameter µ ∈ D ⊂ Rd

c(x ;µ) = µi1Ωi (x)

Ω3 Ω4

Ω1 Ω2

Γtop

Γbase

Examples of solutions uN(µ) (we take M = 1000 snapshots with uniform random µ)
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MOR: Thermal block: First 8 POD basis functions

v1 v2 v3 v4

v5 v6 v7 v8
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MOR: Thermal block: Singular values and error
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• Singular values decay fast; empirically shows that low-dimensional spaces are sufficient here
• State error over test set Dtest decays with a similar rate as the singular values in this example
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MOR: Thermal block: Computational costs

Online runtime of full and reduced model
• Online runtime to compute one solution
• Increasing dimension N of full model,

increases full-model runtime
• Runtime of solving reduced model is

independent of N, if reduced dimension
r = 20 fixed

Runtime diagram
• Break even is at 103 online evaluations
• Costs of reduced model dominated by

offline costs until about 105 online
evaluations

online runtime
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10 -2
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MOR: Thermal block: Making the problem harder
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• Singular values saturate quickly for increasing full-model dimension N
• In contrast, increasing number of blocks (parameters) leads to slower decay of singular values
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Outline

1. Introduction to projection-based model reduction
• Solution manifold, smoothness, low-rank structure
• Basis generation
• Online efficiency

2. Model reduction for time-dependent problems

3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results

24 / 59



Outline

1. Introduction to projection-based model reduction
• Solution manifold, smoothness, low-rank structure
• Basis generation
• Online efficiency

2. Model reduction for time-dependent problems

3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results

24 / 59



Time: Systems of ordinary differential equations

System of ordinary differential equations (e.g., after discretization in space)

d
dt

u(t;µ) = f (u(t;µ), g(t);µ)

• State u(t;µ) ∈ RN and parameter µ ∈ D
• Input g(t) ∈ Rp

• Right-hand side function f : RN × Rp ×D → RN

• Time discretized into K time steps 0 = t0 < t1 < · · · < tK = T

Special case: Linear time-invariant systems

d
dt

u(t;µ) =A(µ)u(t;µ) + B(µ)g(t) ,

• Matrices A(µ) ∈ RN×N and B(µ) ∈ RN×p
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Time: Reduced model via POD
Can apply same procedure as for steady-state problem to system of ODEs

1. Snapshot collection over parameters and time

S =

 | | | |
uN(t1;µ1) . . . uN(tK ;µ1) . . . uN(t1;µM) . . . uN(tK ;µM)

| | | |

 ∈ RN×KM

2. POD basis V r ∈ RN×r via, e.g., (randomized) SVD of S
3. Projection

d
dt

ur (t;µ) = Ar (µ)ur (t;µ) + B r (µ)g(t)

Limitations
• No reduction in time (same number of time steps in full and reduced model)
• Asymptotic stability (passivity, etc.) of full model not necessarily preserved
• In general, structure such as Hamiltonian, Lagrangian, second-order not preserved [Beattie et al.,

2011], [Gugercin et al., 2012], [Chaturantabut et al., 2016], [Peng et al., 2016], [Afkham, Hesthaven, 2017]

26 / 59



Time: Frequency domain view on LTI systems
LTI systems with outputs (no parameter for simplicity)

d
dt

u(t) =Au(t) + Bg(t) ,

y(t) =Cu(t)

• Single input g(t) ∈ R and single output y(t) ∈ R but high-dimensional state u(t) ∈ RN

• Often care about approximating input-output map g(t) 7→ y(t)

Input-output map is specified by transfer function (e.g., [Antoulas, 2005], [Antoulas et al., 2020])

H(s) = CT (sI − A)−1B , s ∈ C

• Approximation Hr of H with error in H∞

∥H − Hr∥H∞ = sup
|s|=1

|H(s)− Hr (s)|

• If Hr approximates H well in ∥ · ∥H∞ , then yr (t) approximates y(t) well (e.g., [Benner et al., 2015])

∥y − yr∥L2 ≤ ∥H − Hr∥H∞∥g∥L2
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Time: Interpolating transfer functions
Select 2r interpolation points

s1, . . . , s2r ∈ C

Construct bases as (e.g., [Antoulas, 2005], [Benner et al., 2015], [Antoulas et al., 2020])

V r =
[
(s1I − A)−1B . . . (sr I − A)−1B

]
∈ RN×r

W r =
[
(sr+1I − AT )−1C . . . (s2r I − AT )−1C

]
∈ RN×r

Projection via Petrov-Galerkin to obtain reduced operators

E r = W T
r V r , Ar = W TAV r , B r = W T

r B , C r = CV r

Corresponding reduced model has transfer function Hr that interpolates H at s1, . . . , s2r

H(si ) = Hr (si ) , i = 1, . . . , 2r

Requires 2r “full-model solves,” which is typically less than what is required with POD
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Time: Interpolating transfer functions (cont’d)
Choice of interpolation points

• Optimal (first-order) selection of points
• Iterative Rational Krylov Algorithm (IRKA)

Learning reduced models from data
• Matrices A,B,C not necessarily needed
• Loewner constructs reduced model from data alone

{(s1,H(s1)), . . . , (s2r ,H(s2r ))} ⊂ C2

• Extends scope to problems with data only

Various extensions
• Matching moments of transfer function
• Multi-input-multi-output (MIMO) systems
• Parametrized systems, ...
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Nonlinear: From linear to nonlinear
Needed linearity in state and affine parameter dependence for efficient online phase

• Compute in offline phase with cost complexity scaling with N

A(i)
r = V T

r A(i)V r

• Cost complexity of online assembly independent of N (provided cost of Θ(a)
i independent of N)

Ar (µ) =
Qa∑
i=1

Θ
(a)
i (µ)A(i)

r

System with nonlinear term (e.g., reaction term)

AuN(µ) + f (uN(µ);µ) = g
• Lifting bottleneck when evaluating reduced nonlinear term f r : Rr ×D → Rr [Barrault et al., 2004]

f r (ur (µ);µ) = V T
r︸︷︷︸

r×N

f ( V r︸︷︷︸
N×r

ur (µ);µ)

• Cost complexity of evaluating reduced f r online is the same as evaluating f of full model
• Breaks online efficiency → no or little speedups
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Nonlinear: Interpolation in subspace
Approximate map ur 7→ f (V rur ) in subspace given by

Q = [q1, . . . ,qm] ∈ RN×m

Find coefficients c(ur ) ∈ Rm such that

f (V rur ) ≈ Qc(ur )

Enforce interpolation conditions by selecting m components p1, . . . , pm of f such that

PTQc(ur ) = PT f (V rur )

where PT extracts the m rows with indices p1, . . . , pm

P = [ep1 , . . . , epm ] ∈ RN×m

Solve for c(ur ) via system of linear equations

c(ur ) = (PTQ)−1PT f (V rur )

⇝ requires evaluating f at only m ≪ N components
[Barrault et al., 2004], [Everson, Sirovich, 1995], [Astrid et al., 2004, 2008], [Chaturantabut, Sorensen, 2010], [Drmač, Gugercin,

2016]
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Nonlinear: Empirical interpolation in model reduction

Step 1.: Compute POD basis Q ∈ RN×m of nonlinear snapshots

{f (u(µ1)), . . . , f (u(µM))} ⊂ RN×M

Step 2.: Select interpolation points P ∈ {0, 1}N×m at which components to evaluate f online

Step 3.: Approximate f online as

V T
r AV r︸ ︷︷ ︸
r×r

ur (µ) + V T
r Q(PTQ)−1︸ ︷︷ ︸

r×m

PT f (V rur (µ))︸ ︷︷ ︸
m×1

= V Tg

• Requires evaluating f at m ≪ N components online

• Empirical interpolation avoids lifting bottleneck
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Nonlinear: Selecting interpolation points
Error of EIM approximation

∥f (u)− Q(PTQ)−1PT f (u)∥2 ≤ ∥(PTQ)−1∥2︸ ︷︷ ︸
points

∥f (u)− QQT f (u)∥2︸ ︷︷ ︸
space

• Choice of interpolation points P enter in ∥(PTQ)−1∥2 only
• Term ∥(PTQ)−1∥2 is a Lebesgue constant and grows with dimension m of EIM space

Select interpolation points with greedy algorithm [Barrault et al., 2004], [Chaturantabut, Sorensen, 2010]

1 function p = deim(Q, m)
2 [~, n] = size(Q);
3 r = Q(:, 1); [~, p] = max(abs(r));
4 for i=2:m
5 a = Q(p, 1:i-1)\Q(p, i);
6 r = Q(:, i) - Q(:, 1:i-1)*a;
7 [~, I] = max(abs(r));
8 p(i) = I(1);
9 end
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Nonlinear: Empirical interpolation (cont’d)

Model reduction with EIM works well in practice
• Considered a “breakthrough” in model reduction
• Leap towards efficient reduction of nonlinear problems

Issues with EIM
• Stability with poorly chosen points → oversample (gappy POD) [Astrid et al., 2004, 2008], [Carlberg et

al., 2011], [Zimmermann, Willcox, 2016], [P., Drmac, Gugercin, 2020]

• Can need tremendous amounts of points if no low-rank structure → adaptivity [P., Willcox, 2015]

• Have to “go back” to full model during online phase → implementation more difficult

Alternatives to EIM for efficient model reduction of nonlinear problems
• Structured nonlinear problems (bilinear, quadratic-bilinear) [Benner, Breiten, 2015], [Benner, Goyal,

Gugercin, 2018], [Antoulas et al., 2020]

• Lifting of generally nonlinear problems into quadratic-bilinear problems [Gu, 2011], [Kramer, Willcox,

2019], [Swischuk, Kramer, Huang, Willcox, 2019], [Qian, Kramer, P., Willcox, 2019]
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Outline

1. Introduction to projection-based model reduction
• Solution manifold, smoothness, low-rank structure
• Basis generation
• Online efficiency

2. Model reduction for time-dependent problems

3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results
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Using surrogate models alone often means loss of guarantees

Replace model g with a surrogate model
• Costs of outer loop reduced
• Often orders of magnitude speedups

Estimate depends on surrogate accuracy
• Control with error bounds/estimators
• Rebuild if accuracy too low
• No guarantees without bounds/estimators

Surrogates alone often mean loss of guarantees
• Propagation of surrogate error on estimate
• Surrogates without error control
• Costs of rebuilding a surrogate model

surrogate
model

uncertainty
quantification

ou
tp

ut
y input
x
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Multi-fidelity methods to certify outer-loop results

high-fidelity
model

...

surrogate
model

surrogate
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uncertainty
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.
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[Figure: PeakPX]

Monte Carlo estimation

Take realizations of input random variable

X1, . . . ,Xn ∼ X

Compute model outputs via numerical simulations

g(X1), . . . , g(Xn)

Monte Carlo estimator

yn =
1
n

∑n

i=1
g(Xi )

Estimator is unbiased E[g(X )] = E[yn] with

e(yn) =
1
n
Var[g(X )]

Why Monte Carlo?
• Models treated as black box

• Dimension independent

• Easily parallelizable
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Monte Carlo estimators with surrogate models

ȳ (i)
mi

=
1
mi

∑mi

i=1
g (i)(Xi ) , i = 1, . . . , k

Multifidelity Monte Carlo (MFMC) estimator

ŝ = ym1︸︷︷︸
from HFM

+
k∑

i=1

αi

(
y (i)
mi

− y (i)
mi−1

)
︸ ︷︷ ︸

from surrogate models

• Control variates help reducing variance of estimator
• Speedup depends on model costs and correlation

ρi =
Cov[g(X ), g (i)(X )]

Var[g(X )] Var[g (i)(X )]

• Estimator remains unbiased

E[ŝ] = E[g(X )]
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MFMC: Numerical example
Locally damaged plate in bending

• Inputs: nominal thickness, load, damage
• Output: maximum deflection of plate
• Only distribution of inputs known
• Estimate expected deflection

Six models
• High-fidelity model: FEM, 300 DoFs
• Reduced model: POD, 10 DoFs
• Reduced model: POD, 5 DoFs
• Reduced model: POD, 2 DoFs
• Data-fit model: linear interp., 256 pts
• Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples
spatial coordinate x1
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MFMC: Speedups in uncertainty propagation
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Monte Carlo, high-fidelity alone

• Monte Carlo needs 12h runtime for estimate with error below 10−7

• Multifidelity provides estimator with error below 10−7 after 9 seconds
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• Monte Carlo needs 12h runtime for estimate with error below 10−7

• Multifidelity provides estimator with error below 10−7 after 9 seconds

12 hours

9 seconds: enables design, control, sensitivity analysis under uncertainty
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MFMC: Combining many models
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• Largest improvement from “single → two” and “two → three”

• Adding yet another reduced/SVM model reduces variance only slightly
43 / 59



MFMC: Distribution of model evaluations
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Multi-fidelity Monte Carlo in the wild

47 / 59



Multi-fidelity Monte Carlo in the wild

47 / 59



Multi-fidelity Monte Carlo in the wild

47 / 59



Multi-fidelity Monte Carlo in the wild

47 / 59



Multi-fidelity Monte Carlo in the wild

47 / 59



Multi-fidelity Monte Carlo in the wild

47 / 59



Multi-fidelity Monte Carlo in the wild

47 / 59



Learning surrogate models (from data) is key for making tractable outer-loop applications

... but they typically come without accuracy guarantees.

Certify outer-loop results with multi-fidelity methods

high-fidelity
model + surrogate

model
surrogate

model · · · surrogate
model

... to establish trust for making high-consequence decision and enabling downstream tasks.
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Summary and additional resources
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Summary: Introduction material on reduced basis method
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Summary: Introduction material on systems approaches
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Summary: Multi-fidelity methods to certify outer-loop results
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Summary: Software

https://pymor.org/ https://github.com/pressio/pressio

Operator Inference RBmatlab
https://pypi.org/project/rom-operator-inference/ https://www.morepas.org/software/rbmatlab/
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