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Intro: Models and outer-loop applications

Model N uncer%ain?y
e Model describes response of system to inputs, parameters quantification
e Many models described as differential equations
e Evaluating a model requires numerical simulations ; é
& =8
2 N
input output
model high-fidelity
model

Outer loop applications [P., Willcox, Gunzburger, SIAM Review, 2018]

e Form outer loops around a model
e In each iteration an input p is received and the corresponding model output y is computed

e An overall outer loop result is obtained at the termination of the outer loop

Challenge: Single model solve expensive; repeated solves in outer loop prohibitive
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Intro: Outer-loop applications

optimization

visualization

Force/DLR

multi-discipline coupling

kiwi.mit.edu

uncertainty quantification 3/50



Intro: Offline/online decomposition

Outer-loop application with high-fidelity (full) model:

runtime

un (1) un (p2) un(p3) up (j1a)

Outer-loop application with surrogate model:
offline phase online phase

ﬂ[H:Iﬂ e
—_—

(). (),

Offline (training) phase
e Generate snapshots (data) using the expensive, high-fidelity model
e Extract patterns from data and derive cheap surrogate model

Online (evaluation) phase
e Evaluate surrogate model instead of high-fidelity model (or both — multi-fidelity)
e Rapid prediction, control, optimization, uncertainty quantification
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simplified surrogates

Simplifying physics

Coarser discretizations

Linearized models

Early stopping of iterative
solvers

[P., Willcox, Gunzburger, SIAM Review, 2018]
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Three types of surrogate models

RA\'

reduced models
e Extract important dynamics of

Fitting model to data of
full-model states from data

input-output map given by
high-fidelity model e Approximate high-dimensional

Response surfaces states in subspaces

e Restrict solving governing
equations to subspaces

SVMs, Gaussian processes

Neural networks
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Outline

1. Introduction to projection-based model reduction
e Solution manifold, smoothness, low-rank structure

e Basis generation

e Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results
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MOR: Model problem

Steady heat conduction (thermal block) [Rozza et al., 2007]

Ftop

V- (c(x; w)Vu(x; p)) = g(x), x€Q,
u(x;p) =0, X € Ttop 3
Vu(x;pu) -n=0, x € gide

Vu(x;p)-n=1, X € MNpase

Conductivity coefficient o = [p1,...,uq]"T € D C RY 92

Q2

c(x; p) = pile(x)

Consider Hilbert space V and weak form of problem from above

a(u(p),w;p) =g(w;p), Vwey

Ibase

e Solution field u(p) : Q@ — R, bilinear form a:V x ¥V — R and linear form g : V — R
e Assume well posedness (here a coercive and a, g continuous for all u € D)
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MOR: Discretized (“full’) model problem

Exact solution u(pt) unavailable and therefore need to resort to numerical approximation

Approximation space Vy C V of dimension N € N

e Example: finite element method with triangulation and piecewise linear basis functions

e Basis of space {90/},1-\’:1

For each p € D, obtain the discrete problem via Galerkin projection (e.g., [Hesthaven et al., 2016])

a(un(p), wa; ) = g(wn; ), VYwy € Wy

and in algebraic form
A(pun(n) =g(w),  un(p) €R" (1)
with matrix A(p) € RV*N and vector g(p) € RV

Computing uy(p) means solving linear system of equations (1)
— computational costs depend directly on dimension N
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MOR: Solution manifold

Manifold of “exact” solutions
M={u(p)|peD}CV
Standard numerical analysis (e.g., FEM) spaces Vy - —o—eo

My ={un(p)|peD}CVyCV
e Typically ||u(p) — un(pe)]ly can be made arbitrarily small by
increasing dimension N of space Vy ...
e ... but might need large N to achieve acceptable accuracy RY

Model reduction exploits that solution manifold M, is often smooth
e There exist spaces V, with dimension r < N that approximate My well
e Can we find such a reduced space V,?
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MOR: Computing a basis of a reduced space

Best approximation error given by the Kolmogorov r-width [pinkus, 1085],[Maday <t al., 2002] [Binev <t al., 2011]

dr M = H f ) f o
— d'V’I(%X;Nf ”N(Zl)JepMN “r(ltn)ev, lun(e) = ur ()l

e Computationally not tractable in general

e Note that if d,(My) decays slowly with dimension r, then model reduction fails (— later)

Minimizing a discrete version of the Kolmogorov r-width (ce., [Benner et al., 2015], [Hesthaven et al., 2016])

e Select a finite subset D1 = {1, ...,y } C D of M parameters
e Consider M snapshots un(tt1), - -, un(pep)
e Find orthonormal vq,...,v, € Vy that minimize
1M
— inf u ) —u
v ;ur@pan{mww} lun(pe;) — urlly
e Define reduced space V, as span of vy,...,v,
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MOR: Computing a basis of a reduced space (cont’'d)

Optimal vq, ..., v, are the eigenvectors with largest eigenvalues \; > --- > )\, of operator

ZVUN v un(p;)

e Optimality property
1M M
o D lun(p) = Pelun(ull} = Y A
i=1 i=r+1
with projection P,[u] of u € Vy onto V, with respect to (-,-)y
e Optimality holds only for parameters in training set u € D; not for u € D

BaSiS Vigeooy Vr haS many NAMES (e.g., [Benner et al., 2015], [Hesthaven et al., 2016])

e Called proper orthogonal decomposition (POD) basis in model reduction

e Same basis is obtained with principal component analysis (PCA), Karhunen-Loéve, singular

value decomposition (SVD), etc.
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MOR: Linear algebra view on learning a POD space

Two steps to compute POD basis in practice
1. Assemble snapshot matrix

S=|un(py) ... un(py)| € RVM

2. Compute singular value decomposition with the first r left-singular vectors

V,=|vi ... v,| eRV*r

(Note: Replaced (-, )y with #2 inner product for computational convenience.)
Computational costs
1. Computing M high-fidelity solutions to assemble snapshot matrix
2. Singular value decomposition with complexity O(MN?) (or O(NM?))

— high costs but (extremely) efficiently implemented in standard numerical linear algebra packages
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MOR: Basis generation methods and references (senner et al., 2015]

Proper orthogonal decomposition (POD) [Lumley, 1967], [Sirovich, 1981]
e Use snapshot data to generate empirical eigenfunctions
e Easy to implement with standard numerical linear algebra packages

Interpolatory methods [Gallivan, Grimme, van Dooren, 1994], [Feldmann, Freund, 1995], [Gugercin et al., 2008]
e Rational interpolation

Balanced truncation [Moore, 1981], [Li, White, 2002], [Benner et al., 2008, 2013]
e Guaranteed stability and error bound for linear time-invariant systems
e Close connection between POD and balanced truncation [Wilicox, Peraire, 2002]

Reduced basis methods [Patera, Rozza, 2007], [Maday et al., 2002], [Veroy et al., 2001,2003, 2005], [Grepl, 2005]
e Efficient greedy methods for constructing basis
e Strong focus on error estimation for selected PDEs

Eigensystem realization algorithm (ERA) [Juang, Pappa, 1985], Dynamic mode decomposition
(DMD) [schmid, 2010], Loewner model reduction [Mayo, Antoulas, 2007]

e Constructing reduced models purely from data (data-driven, non-intrusive)
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MOR: Reduced model

Given a reduced space V,, reduced model solution u,(1) obtained via Galerkin projection

a(u (p),wip) =g(wip), VYwe,

Error of reduced solution

Ju(p) — ur(p)llv < [u(p) — un(p)llv + lun(p) — v (p)llv

€1 €2
e Select high-dimensional (fine mesh) space Vy to keep e; small

e Train a reduced space V, to keep e, small

Connection best-approximation in reduced space V, to error of reduced solution (stability)

(i) — ()l < (1 ; 7(“)) inf [lu(us) — uly

a(p) ) uev,

with coercivity and continuity constant «(u) and v(ut), respectively (restrictive setting)

[Rozza et al., 2007], [Hesthaven et al., 2016]
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MOR: Linear algebra view on reduced model
Reduced solution u,(pt) € R" solves

A (n)u(p) =g (),
with matrix A, () = V] A(u)V, € R™*" and vector g,(u) = V] g(u) € R

Realizing offline/online splitting via affine parameter dependence
o Affine parameter dependence means (our model problem has affine parameter dependence)

a(u, w; p) Z@(a) ai(u,w), g(w;p) = Z@ e(a’,e§g>;p—>R

1

e Pre-compute offline (parameter independent)

AD—VIADY,, gD —VIgh, i-1..q.

j=1,...,Q,
e Assemble online (fast)
Qg
Z O (WA, g(m)=3 0 (e
j=1
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MOR: Offline/online computations

Offline (training):

1. Select training set

Dr={p1:-- -, by}
2. Compute snapshots via full-model solves
S ={un(py), .-, un(py)} CRY
3. Construct reduced basis (e.g., POD)
V =|[vy,...,v,] € RN*"
4. Project operators

A — VZ-A(i)V,,

r

g¥ =v/gl

Online (evaluation):

1. Receive € D\ Dt not in training set

2. Assemble reduced operators

Qg
g () =Y 0 (u)g?
j=1

3. Solve r x r system to compute u,(p)
A (w)u(p) =g (1)
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MOR: Computational costs

Offline complexity O(MN? + Q,rN? + QgrN)
e M snapshots and POD basis O(MN + MN?)
e Computing Afl), cee AﬁQa) matrices O(Q,rN?)
e Computing gﬁl), e ,g&Qf) matrices O(QgrlV)
Online complexity O(Q.r? + Qgr + r®)
e Assemble reduced operators: O(Q,r? + Qgr)
e Solving for dense reduced system: O(r®)
— independent of N

Runtime for k simulations
e Full model alone: t = k X tqy
o Reduced model: t = toffiine + kK X tonline
e Model reduction pays off only for kK > k* with k* =

(P)

(Pn)

toffline
thull — tonline

k:*

full model (P) vs. reduced model (Py)

[Haasdonk, 2017]
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MOR: Error bounds and error estimation
Large part of model reduction community working on a posteriori error estimation

lun(p) = u ()l <n(wm), peD

Computable, upper bound of (generalization) error over D (not only training set D)

Strong theoretical foundations for linear state dependence [Patera, Rozza, 2007], [Maday et al., 2002],
[Veroy et al., 2001,2003, 2005], [Grepl, 2005]

Heuristics via error indicators available through, e.g., residual

Not many rigorous statements beyond linear state dependence

Other error bounds

e Error bounds for linear time-invariant systems of ODEs [Moore, 1981]

e A priori analysis of reduced models for elliptic problems with greedy basis construction [Maday et
al., 2002], [Binev et al., 2011]
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MOR: Thermal block

Tiop
Steady heat conduction (thermal block) [Rozza et al., 2007]
Q3 Qy
V- (c(x;p)Vu(x;p)) =g(x),  xeQ,
Conductivity coefficient with parameter u € D C RY
0 Q9
c(x; p) = pile(x)

Thase

Examples of solutions uy(pt) (we take M = 1000 snapshots with uniform random p)
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MOR: Thermal block: First 8 POD basis functions
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MOR: Thermal block: Singular values and error
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e Singular values decay fast; empirically shows that low-dimensional spaces are sufficient here
e State error over test set Diest decays with a similar rate as the singular values in this example
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MOR: Thermal block: Computational costs

online runtime
Online runtime of full and reduced model

Y o
e Online runtime to compute one solution P
} . ) 1072 F | —€— full model
e Increasing dimension N of full model, —— reduced model
increases full-model runtime
e Runtime of solving reduced model is
independent of N, if reduced dimension I
. o 1077
r = 20 fixed =
g
=
(&)
£
5
10-4 L
102 10°

dimension of full-model space
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MOR: Thermal block: Computational costs

runtime diagram
Online runtime of full and reduced model

. . . 8
e Online runtime to compute one solution 10

. . . =—©— full model
e Increasing dimension N of full model, —#— reduced model

increases full-model runtime

e Runtime of solving reduced model is
independent of N, if reduced dimension
r = 20 fixed

Runtime diagram

e Break even is at 103 online evaluations

online + offline runtime [s]

e Costs of reduced model dominated by
offline costs until about 10° online
evaluations

10° 102 10% 10° 108
number of online evaluations 22/59



MOR: Thermal block: Making the problem

normalized singular values

10

normalized singular values

10

5 10 15 20 25 30 35 40
number of modes

-10 |

-15 |

harder

=—0— 2 blocks
=¥ 4 blocks
=—— 6 blocks

=—RF— 16 blocks

15 20 25 30 35 40
number of modes

e Singular values saturate quickly for increasing full-model dimension N

e In contrast, increasing number of blocks (parameters) leads to slower decay of singular values
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Outline

1. Introduction to projection-based model reduction
e Solution manifold, smoothness, low-rank structure

e Basis generation

e Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results
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Time: Systems of ordinary differential equations

System of ordinary differential equations (e.g., after discretization in space)

%u(t; u,) = f(U(t; /L),g(t); M)

State u(t; u) € RN and parameter pu € D

Input g(t) € RP

Right-hand side function f : RN x R? x D — RV

Time discretized into K timesteps 0 =tg < t; <--- <tk =T

Special case: Linear time-invariant systems

%u(t; p) =A(p)u(t: p) + B(p)g(t),

e Matrices A(p) € RV*N and B(u) € RV*P
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Time: Reduced model via POD

Can apply same procedure as for steady-state problem to system of ODEs
1. Snapshot collection over parameters and time

S = |un(ty;py) .. un(te; ) un(ty; ) - un(tk; Bay)

| | |
2. POD basis V, € RVNX" via, e.g., (randomized) SVD of S

3. Projection

c RNXKM

%ur(t; 1) = A (w)u,(t; 1) + B.()g(t)

Limitations
e No reduction in time (same number of time steps in full and reduced model)

e Asymptotic stability (passivity, etc.) of full model not necessarily preserved

e In general, structure such as Hamiltonian, Lagrangian, second-order not preserved [Beattie et al.,

2011], [Gugercin et al., 2012], [Chaturantabut et al., 2016], [Peng et al., 2016], [Afkham, Hesthaven, 2017]
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Time: Frequency domain view on LTI systems

LTI systems with outputs (no parameter for simplicity)

%u(t) =Au(t) + Bg(t),

y(t) =Cu(t)
e Single input g(t) € R and single output y(t) € R but high-dimensional state u(t) € RV
e Often care about approximating input-output map g(t) — y(t)

Input-output map is specified by transfer function (e.g., [Antoulas, 2005], [Antoulas et al., 2020])
H(s)=C'(sl - A)'B, seC
e Approximation H, of H with error in H

IH = Hlln. = sup [H(s) = Hi(s)]
s|=

e If H, approximates H well in || - ||3_.., then y,(t) approximates y(t) well (e.g., [Benner et al., 2015])

Iy = yell < IH = Helln llglle
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Time: Interpolating transfer functions

Select 2r interpolation points
S1y...,52 eC

Construct bases as (e.g., [Antoulas, 2005], [Benner et al., 2015], [Antoulas et al., 2020])
V,=[(sl —A)'B ... (s1—A)"1B] e RV
W, =[(ss2l —AT)IC ... (spf — AT)7IC] € RV

Projection via Petrov-Galerkin to obtain reduced operators

E.=w/v.,, A =wWTAv,, B, =w!B, C,=CV,

Corresponding reduced model has transfer function H, that interpolates H at s1,..., s,

H(S,‘): Hr(S,'), i = 1,...,2r

Requires 2r “full-model solves,” which is typically less than what is required with POD
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Time: Interpolating transfer functions (cont’d)

Choice of interpolation points
A.C.ANTOULAS + C. A. BEATTIE + S. GUGERCIN

e Optimal (first-order) selection of points
e lterative Rational Krylov Algorithm (IRKA)

Learning reduced models from data Interpolqtory Methods
e Matrices A, B, C not necessarily needed for Model Reduction
e Loewner constructs reduced model from data alone

{(51, H(Sl)), ey (52,,7 H(Sgr))} C (C2

e Extends scope to problems with data only

Various extensions
e Matching moments of transfer function
e Multi-input-multi-output (MIMO) systems

& Siam.
° Parametrlzed Systems, Computational Science and Engineering
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Outline

1. Introduction to projection-based model reduction
e Solution manifold, smoothness, low-rank structure

e Basis generation

e Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems
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Nonlinear: From linear to nonlinear

Needed linearity in state and affine parameter dependence for efficient online phase
e Compute in offline phase with cost complexity scaling with N

A = vTAly,

e Cost complexity of online assembly independent of N (provided cost of @,(-a) independent of N)

System with nonlinear term (e.g., reaction term)

Aup(p) + Flun(p)ip) = g
e Lifting bottleneck when evaluating reduced nonlinear term f, : R" X D — R" [Barrault et al., 2004]

fr r , = VT f V. u, )
(ur(p); p) D (Vo ur()i )
rx N Nxr

e Cost complexity of evaluating reduced f, online is the same as evaluating f of full model
e Breaks online efficiency — no or little speedups
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Nonlinear: Interpolation in subspace

Approximate map u, — f(V,u,) in subspace given by
Q: [qlv"'vqm] GRNX”’
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Nonlinear: Interpolation in subspace

Approximate map u, — f(V,u,) in subspace given by
Q=g ..,q,] eRV"
Find coefficients c(u,) € R™ such that
f(V,u,)~ Qc(u,)
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Nonlinear: Interpolation in subspace
Approximate map u, — f(V,u,) in subspace given by

Q=g ..,q,] eRV"
Find coefficients c(u,) € R™ such that
f(V,u,) =~ Qc(u,)
Enforce interpolation conditions by selecting m components py,
P"Qc(u,)=P"f(V,u,)
where PT extracts the m rows with indices pi, . .., pm
P=le,,....,ep] € RNVxm

.., pm of f such that
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Nonlinear: Interpolation in subspace

Approximate map u, — f(V,u,) in subspace given by

Q=g ..,q,] eRV"
Find coefficients c(u,) € R™ such that

f(V,u,) =~ Qc(u,)

Enforce interpolation conditions by selecting m components py, ..., py, of f such that

P"Qc(u,)=P"f(V,u,)
where PT extracts the m rows with indices pi, . .., pm

P=le,,....,ep] € RNVxm
Solve for c(u,) via system of linear equations

c(u;) =(PTQ) P F(V,u,)

~ requires evaluating f at only m < N components

[Barrault et al., 2004], [Everson, Sirovich, 1995], [Astrid et al., 2004, 2008], [Chaturantabut, Sorensen, 2010], [Drma¢, Gugercin,

2016]
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Nonlinear: Empirical interpolation in model reduction

Step 1.: Compute POD basis @ € RVN*™ of nonlinear snapshots

{F(u(py)), ..., Flu(py))} c RVM

Step 2.: Select interpolation points P € {0,1}"V*™ at which components to evaluate f online

Step 3.: Approximate f online as

V/AV, u,(n)+ V/ QPP Q) PTf(V,u(pn)=V'g
N—_——

rxr rxm mx1

e Requires evaluating f at m < N components online

e Empirical interpolation avoids lifting bottleneck
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Nonlinear: Selecting interpolation points

Error of EIM approximation
1F(u) = QPTQ)PTF(u)ll2 < [I(PTQ) |2 ||f(u) — QQT F(u)]

points space

e Choice of interpolation points P enter in ||(PT @)~1|2 only
e Term ||(PT@)7Y||2 is a Lebesgue constant and grows with dimension m of EIM space

Select interpolation points with greedy algorithm [Barrault et al., 2004], [Chaturantabut, Sorensen, 2010]

function p = deim(Q, m)
[¥, n] = size(Q);
r = QC, 1); [7, pl] = max(abs(r));
for i=2:m
a = Q(p, 1:i-1)\Q(p, 1);
r =QC, i) - QC:, 1:i-1)*a;
[, I] = max(abs(r));
p(i) = I(1);
end
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Nonlinear: Empirical interpolation (cont’d)

Nonlinear model reduction via discrete empirical interpolation
S Chaturantabut, DC Sorensen - SIAM Journal on Scientific Computing, 2010 - SIAM
.. method called discrete empirical interpolation is proposed and ... The original empirical

M odel red uction With E | M Works We" in pra ctice interpolation method (EIM) is a ... We propose a discrete empirical interpolation method (DEIM), a ...

Yr Save 99 Cite Citedby 1884 Related articles All 14 versions 99

e Considered a “breakthrough” in model reduction

An 'empirical interpolation'method: application to efficient reduced-basis
discretization of partial differential equations

e Leap towards efficient reduction of nonlinear problems  sarut vy scNouen. ar ater - Comptes Renss ., 2004 - Eisever
. equations is certainly a natural candidate for the application of this ‘empirical interpolation’
method; we would like to thank this group for many stimulating and beneficial exchanges. ...
Y¢ Save U9 Cite Cited by 1806 Related articles ~All 13 versions

Issues with EIM
e Stability with poorly chosen points — oversample (gappy POD) [Astrid et al., 2004, 2008], [Carlberg et
al., 2011], [Zimmermann, Willcox, 2016], [P., Drmac, Gugercin, 2020]
e Can need tremendous amounts of points if no low-rank structure — adaptivity [P., Willcox, 2015]
e Have to “go back” to full model during online phase — implementation more difficult

Alternatives to EIM for efficient model reduction of nonlinear problems
e Structured nonlinear problems (bilinear, quadratic-bilinear) [Benner, Breiten, 2015], [Benner, Goyal,
Gugercin, 2018], [Antoulas et al., 2020]
e Lifting of generally nonlinear problems into quadratic-bilinear problems [Gu, 2011], [Kramer, Willcox,

2019], [Swischuk, Kramer, Huang, Willcox, 2019], [Qian, Kramer, P., Willcox, 2019]
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Using surrogate models alone often means loss of guarantees

Replace model g with a surrogate model
e Costs of outer loop reduced

e Often orders of magnitude speedups

Estimate depends on surrogate accuracy
e Control with error bounds/estimators
e Rebuild if accuracy too low

e No guarantees without bounds/estimators

Surrogates alone often mean loss of guarantees
e Propagation of surrogate error on estimate
e Surrogates without error control

e Costs of rebuilding a surrogate model

output y

uncertainty
quantification

surrogate
model

X 1ndul
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Multi-fidelity methods to certify outer-loop results

SIAM R © 2018 SIAM, Pl by SAM under tho s
Vol 60.Na 5. pp.550-591 e Creative Commons 40 icense

uncertainty
— e — Survey of Multifidelity Methods

uantification ; : .
4 in Uncertainty Propagation,
Inference, and Optimization*

Benjamin Peherstorfer!
Karen Willcox!
Max Gunzburger’

high-fidelity
model

Abstract. In many situations across computational science and engineering, multiple computational
models are available that describe a system of interest. These different models have vary-
ing evaluation costs and varying fidelities. Typically, a computationally expensive high-
fidelity model describes the system with the accuracy required by the current application
at hand, while lower-fidelity models are less accurate but computationally cheaper than

su I’rogate the high-fidelity model. Outer-loop applications, such as optimization, inference, and

uncertainty quantification, require multiple model evaluations at many different inputs,

which often leads to computational demands that exceed available resources if only the
model high-fidelity model is used. This work surveys multifidelity methods that accelerate the
solution of outer-loop applications by combining high-fidelity and low-fidelity model eval-

V. uations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g.,

\ a simplified physics approximation, a reduced model, a data-fit surrogate) that approxi-

mates the same output quantity as the high-fidelity model. The overall premise of these

multifidelity methods s that low-fidelity models are leveraged for speedup while the high-
fidelity model is kept in the loop to establish accuracy and/or convergence guarantees.

. We categorize multifidelity methods according to three classes of strategies: adaptation,

fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts

of uncertainty propagation, inference, and optimization.

x 1ndul

output y

surrogate Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification,
g multifidelity uncertainty propagation, multifidelity statistical inference, multifidelity op-
timization

model
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Monte Carlo estimators with surrogate models

—(i 1 mj .
y =" g"(X), i=1,....k

m;
Multifidelity Monte Carlo (MFMC) estimator
K
S= Fm tya (F-70)
S ——

~—~ i=1

from HFM from surrogate models

e Control variates help reducing variance of estimator

e Speedup depends on model costs and correlation

. _Covlg(X). 80(X)]
' Varlg ()] Varlg I (X)]

e Estimator remains unbiased

E[§] = E[g(X)]

output y

uncertainty
quantification

( )
high-fidelity

model
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model

surrogate
model

z ndur
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MFMC: Numerical example
Locally damaged plate in bending

e Inputs: nominal thickness, load, damage
e Output: maximum deflection of plate

e Only distribution of inputs known

Estimate expected deflection

Six models

High-fidelity model: FEM, 300 DoFs
Reduced model: POD, 10 DoFs
Reduced model: POD, 5 DoFs
Reduced model: POD, 2 DoFs
Data-fit model: linear interp., 256 pts

Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples

| 0.08

: 0.07
' 0.06°
0.05

0 02 04 06 08 1
spatial coordinate x;

o O o
S (o] (e¢] =

thickness

o
N

spatial coordinate x

o
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MFMC: Speedups in uncertainty propagation
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Monte Carlo, high-fidelity alone —=—
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k

le-04  1e-02 1e+00 1le+02 1e+04

runtime [s]

e Monte Carlo needs 12h runtime for estimate with error below 10~7

e Multifidelity provides estimator with error below 10~7 after 9 seconds 4250
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MFMC: Speedups in uncertainty propagation

1e+00 T T - T - T T
Monte Carlo, high-fidelity alone —=—
le-01 ¢ Monte Carlo, surrogate alone - #-
L le02 multifidelity —s—
N
=  le03 }
e
(o]
5 1le-04 +
£
0 1e-05 +
(0]
1e-06 +
1e-07 + g
‘ - : ‘ \ 12 hours

1e-04 %WLOO 1e+02  le+04
runtime [s]

9 seconds: enables design, control, sensitivity analysis under uncertainty

e Monte Carlo needs 12h runtime for estimate with error below 10~7

e Multifidelity provides estimator with error below 10~7 after 9 seconds 4250



MFMC: Combining many models

1e+00 one model (Monte Carlo) ==
le-01 } two models =gt
L 1le-02 three models =i |
[%2]
= six models =—f—
- 1e-03 1
Q
©
E  le04 | ]
=
3
le-05 ]
le-06 ]
le-07

le-04 le-02  1e4+00 1e+02 1le+04

runtime [s]
e Largest improvement from “single — two" and “two — three”

e Adding yet another reduced/SVM model reduces variance only slightly
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MFMC: Distribution of model evaluations
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Learning surrogate models (from data) is key for making tractable outer-loop applications

-

... but they typically come without accuracy guarantees.

Certify outer-loop results with multi-fidelity methods

high-fidelity _|_ surrogate surrogate surrogate
model model model model

... to establish trust for making high-consequence decision and enabling downstream tasks.
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Summary: Multi-fidelity methods to certify outer-loop results
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SIAM Review

© 7018 SIAM. Published by SIAM under the terms

V. 60, No. 3, pp. 550-591 of the Creative Commons 40 ficense

Survey of Multifidelity Methods
in Uncertainty Propagation,
Inference, and Optimization*

Benjamin Peherstorfer!
Karen Willcox
Max Gunzburger’

Abstract. In many situations across computational science and engineering, multiple computational

models are available that describe a system of interest. These different models have vary-
ing evaluation costs and varying fidelities. Typically, a computationally expensive high-
fidelity model describes the system with the accuracy required by the current application
at hand, while lower-fidelity models are less accurate but computationally cheaper than
the high-fidelity model. Outer-loop applications, such as optimization, inference, and
uncertainty quantification, require multiple model evaluations at many different inputs,
which often leads to computational demands that exceed available resources if only the
high-fidelity model is used. This work surveys multifidelity methods that accelerate the
solution of outer-loop applications by combining high-fidelity and low-fidelity model eval-
uations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g.,
a simplified physics approximation, a reduced model, a data-fit surrogate) that approxi-
mates the same output quantity as the high-fidelity model. The overall premise of these
multifidelity methods is that low-fidelity models are leveraged for speedup while the high-
fidelity model is kept in the loop to establish accuracy and/or convergence guarantees.
We categorize multifidelity methods according to three classes of strategies: adaptation,
fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts
of uncertainty propagation, inference, and optimization

Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification,

AMS subject classifications. 65-

¥ uncertainty y statistical inference, multifidelity op-
timization
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Summary: Software

~/AOR

https://pymor.org/

Operator Inference
https://pypi.org/project/rom-operator-inference/

5

https://github.com/pressio/pressio

RBmatlab

https://www.morepas.org/software/rbmatlab/
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