A biased introduction to projection-based model reduction

Benjamin Peherstorfer
Courant Institute of Mathematical Sciences, New York University

August 2023

Intro: Models and outer-loop applications

Model

- Model describes response of system to inputs, parameters
- Many models described as differential equations
- Evaluating a model requires numerical simulations

Outer loop applications [P., Willcox, Gunzburger, SIAM Review, 2018]

- Form outer loops around a model
- In each iteration an input μ is received and the corresponding model output y is computed
- An overall outer loop result is obtained at the termination of the outer loop

Challenge: Single model solve expensive; repeated solves in outer loop prohibitive

Intro: Outer-loop applications

optimization

control

inference

model calibration

Intro: Offline/online decomposition

Outer-loop application with high-fidelity (full) model:

Outer-loop application with surrogate model:

Offline (training) phase

- Generate snapshots (data) using the expensive, high-fidelity model
- Extract patterns from data and derive cheap surrogate model

Online (evaluation) phase

- Evaluate surrogate model instead of high-fidelity model (or both \rightarrow multi-fidelity)
- Rapid prediction, control, optimization, uncertainty quantification

Intro: Three types of surrogate models

simplified surrogates

- Simplifying physics
- Coarser discretizations
- Linearized models
- Early stopping of iterative solvers
[P., Willcox, Gunzburger, SIAM Review, 2018]

data-fit surrogates

- Fitting model to data of input-output map given by high-fidelity model
- Response surfaces
- SVMs, Gaussian processes
- Neural networks

reduced models
- Extract important dynamics of full-model states from data
- Approximate high-dimensional states in subspaces
- Restrict solving governing equations to subspaces

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems
4. Multi-fidelity methods for certifying outer-loop results

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems
4. Multi-fidelity methods for certifying outer-loop results

MOR: Model problem

Steady heat conduction (thermal block) [Rozza et al., 2007]

$$
\begin{array}{rlrl}
\nabla \cdot(c(\boldsymbol{x} ; \boldsymbol{\mu}) \nabla u(\boldsymbol{x} ; \boldsymbol{\mu})) & =g(\boldsymbol{x}), & & \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x} ; \boldsymbol{\mu}) & =0, & & \boldsymbol{x} \in \Gamma_{\text {top }} \\
\nabla u(\boldsymbol{x} ; \boldsymbol{\mu}) \cdot n=0, & & \boldsymbol{x} \in \Gamma_{\text {side }} \\
\nabla u(\boldsymbol{x} ; \boldsymbol{\mu}) \cdot n=1, & & \boldsymbol{x} \in \Gamma_{\text {base }}
\end{array}
$$

Conductivity coefficient $\boldsymbol{\mu}=\left[\mu_{1}, \ldots, \mu_{d}\right]^{T} \in \mathcal{D} \subset \mathbb{R}^{d}$

$$
c(\boldsymbol{x} ; \boldsymbol{\mu})=\mu_{i} 1_{\Omega_{i}}(\boldsymbol{x})
$$

Consider Hilbert space \mathcal{V} and weak form of problem from above

$$
a(u(\boldsymbol{\mu}), w ; \boldsymbol{\mu})=g(w ; \boldsymbol{\mu}), \quad \forall w \in \mathcal{V}
$$

- Solution field $u(\mu): \Omega \rightarrow \mathbb{R}$, bilinear form $a: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ and linear form $g: \mathcal{V} \rightarrow \mathbb{R}$
- Assume well posedness (here a coercive and a, g continuous for all $\boldsymbol{\mu} \in \mathcal{D}$)

MOR: Discretized ("full") model problem

Exact solution $u(\mu)$ unavailable and therefore need to resort to numerical approximation
Approximation space $\mathcal{V}_{N} \subset \mathcal{V}$ of dimension $N \in \mathbb{N}$

- Example: finite element method with triangulation and piecewise linear basis functions
- Basis of space $\left\{\varphi_{i}\right\}_{i=1}^{N}$

For each $\boldsymbol{\mu} \in \mathcal{D}$, obtain the discrete problem via Galerkin projection (e.g., [Hesthaven et al., 2016])

$$
a\left(u_{N}(\boldsymbol{\mu}), w_{N} ; \boldsymbol{\mu}\right)=g\left(w_{N} ; \boldsymbol{\mu}\right), \quad \forall w_{N} \in \mathcal{V}_{N}
$$

and in algebraic form

$$
\begin{equation*}
\boldsymbol{A}(\mu) \boldsymbol{u}_{N}(\mu)=\boldsymbol{g}(\boldsymbol{\mu}), \quad \boldsymbol{u}_{N}(\boldsymbol{\mu}) \in \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

with matrix $\boldsymbol{A}(\mu) \in \mathbb{R}^{N \times N}$ and vector $\boldsymbol{g}(\boldsymbol{\mu}) \in \mathbb{R}^{N}$
Computing $u_{N}(\boldsymbol{\mu})$ means solving linear system of equations (1)
\rightarrow computational costs depend directly on dimension N

MOR: Solution manifold

Manifold of "exact" solutions

$$
\mathcal{M}=\{u(\boldsymbol{\mu}) \mid \boldsymbol{\mu} \in \mathcal{D}\} \subset \mathcal{V}
$$

Standard numerical analysis (e.g., FEM) spaces \mathcal{V}_{N}

$$
\mathcal{M}_{N}=\left\{u_{N}(\boldsymbol{\mu}) \mid \boldsymbol{\mu} \in \mathcal{D}\right\} \subset \mathcal{V}_{N} \subset \mathcal{V}
$$

- Typically $\left\|u(\boldsymbol{\mu})-u_{N}(\boldsymbol{\mu})\right\|_{\mathcal{V}}$ can be made arbitrarily small by increasing dimension N of space $\mathcal{V}_{N} \ldots$
- ... but might need large N to achieve acceptable accuracy

Model reduction exploits that solution manifold \mathcal{M}_{N} is often smooth

- There exist spaces \mathcal{V}_{r} with dimension $r \ll N$ that approximate \mathcal{M}_{N} well
- Can we find such a reduced space \mathcal{V}_{r} ?

MOR: Computing a basis of a reduced space

Best approximation error given by the Kolmogorov r-width [Pinkus, 1985],[Maday et al., 2002],[Binev et al., 2011]

$$
d_{r}\left(\mathcal{M}_{N}\right)=\inf _{\substack{\mathcal{V}_{r} \subset \mathcal{V}_{N} \\ \operatorname{dim}\left(\mathcal{V}_{r}\right)=r}} \sup _{u_{N}(\boldsymbol{\mu}) \in \mathcal{M}_{N}} \inf _{u_{r}(\boldsymbol{\mu}) \in \mathcal{V}_{r}}\left\|u_{N}(\boldsymbol{\mu})-u_{r}(\boldsymbol{\mu})\right\|_{\mathcal{V}}
$$

- Computationally not tractable in general
- Note that if $d_{r}\left(\mathcal{M}_{N}\right)$ decays slowly with dimension r, then model reduction fails (\rightarrow later)

Minimizing a discrete version of the Kolmogorov r-width (e.g., [Benner et al., 2015], [Hesthaven et al., 2016])

- Select a finite subset $\mathcal{D}_{T}=\left\{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{M}\right\} \subset \mathcal{D}$ of M parameters
- Consider M snapshots $u_{N}\left(\boldsymbol{\mu}_{1}\right), \ldots, u_{N}\left(\boldsymbol{\mu}_{M}\right)$
- Find orthonormal $v_{1}, \ldots, v_{r} \in \mathcal{V}_{N}$ that minimize

$$
\frac{1}{M} \sum_{i=1}^{M} \inf _{u_{r} \in \operatorname{span}\left\{v_{1}, \ldots, v_{r}\right\}}\left\|u_{N}\left(\boldsymbol{\mu}_{i}\right)-u_{r}\right\|_{\mathcal{V}}
$$

- Define reduced space \mathcal{V}_{r} as span of v_{1}, \ldots, v_{r}

MOR: Computing a basis of a reduced space (cont'd)

Optimal v_{1}, \ldots, v_{r} are the eigenvectors with largest eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{r}$ of operator

$$
C(v)=\frac{1}{M} \sum_{i=1}^{M}\left\langle v, u_{N}\left(\boldsymbol{\mu}_{i}\right)\right\rangle_{\mathcal{V}} u_{N}\left(\boldsymbol{\mu}_{i}\right)
$$

- Optimality property

$$
\frac{1}{M} \sum_{i=1}^{M}\left\|u_{N}\left(\boldsymbol{\mu}_{i}\right)-\mathcal{P}_{r}\left[u_{N}\left(\boldsymbol{\mu}_{i}\right)\right]\right\|_{\mathcal{V}}^{2}=\sum_{i=r+1}^{M} \lambda_{i}
$$

with projection $\mathcal{P}_{r}[u]$ of $u \in \mathcal{V}_{N}$ onto \mathcal{V}_{r} with respect to $\langle\cdot, \cdot\rangle_{\mathcal{V}}$

- Optimality holds only for parameters in training set $\boldsymbol{\mu} \in \mathcal{D}_{T}$; not for $\boldsymbol{\mu} \in \mathcal{D}$

Basis v_{1}, \ldots, v_{r} has many names (e.g., [Benner et al., 2015], [Hesthaven et al., 2016])

- Called proper orthogonal decomposition (POD) basis in model reduction
- Same basis is obtained with principal component analysis (PCA), Karhunen-Loève, singular value decomposition (SVD), etc.

MOR: Linear algebra view on learning a POD space

Two steps to compute POD basis in practice

1. Assemble snapshot matrix

$$
\boldsymbol{S}=\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{u}_{N}\left(\boldsymbol{\mu}_{1}\right) & \ldots & \boldsymbol{u}_{N}\left(\boldsymbol{\mu}_{M}\right) \\
\mid & & \mid
\end{array}\right] \in \mathbb{R}^{N \times M}
$$

2. Compute singular value decomposition with the first r left-singular vectors

$$
\boldsymbol{V}_{r}=\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{v}_{1} & \ldots & \boldsymbol{v}_{r} \\
\mid & & \mid
\end{array}\right] \in \mathbb{R}^{N \times r}
$$

(Note: Replaced $\langle\cdot, \cdot\rangle_{\mathcal{V}}$ with ℓ^{2} inner product for computational convenience.)

Computational costs

1. Computing M high-fidelity solutions to assemble snapshot matrix
2. Singular value decomposition with complexity $\mathcal{O}\left(M N^{2}\right)\left(\right.$ or $\mathcal{O}\left(N M^{2}\right)$)
\rightarrow high costs but (extremely) efficiently implemented in standard numerical linear algebra packages

MOR: Basis generation methods and references [Bemere et al. 2015]

Proper orthogonal decomposition (POD) [Lumley, 1967], [Sirovich, 1981]

- Use snapshot data to generate empirical eigenfunctions
- Easy to implement with standard numerical linear algebra packages

Interpolatory methods [Gallivan, Grimme, van Dooren, 1994], [Feldmann, Freund, 1995], [Gugercin et al., 2008]

- Rational interpolation

Balanced truncation [Moore, 1981], [Li, White, 2002], [Benner et al., 2008, 2013]

- Guaranteed stability and error bound for linear time-invariant systems
- Close connection between POD and balanced truncation [Willcox, Peraire, 2002]

Reduced basis methods [Patera, Rozza, 2007], [Maday et al., 2002], [Veroy et al., 2001,2003, 2005], [Grepl, 2005]

- Efficient greedy methods for constructing basis
- Strong focus on error estimation for selected PDEs

Eigensystem realization algorithm (ERA) [Juang, Pappa, 1985], Dynamic mode decomposition (DMD) [Schmid, 2010], Loewner model reduction [Mayo, Antoulas, 2007]

- Constructing reduced models purely from data (data-driven, non-intrusive)

MOR: Reduced model

Given a reduced space \mathcal{V}_{r}, reduced model solution $u_{r}(\boldsymbol{\mu})$ obtained via Galerkin projection

$$
a\left(u_{r}(\boldsymbol{\mu}), w ; \boldsymbol{\mu}\right)=g(w ; \boldsymbol{\mu}), \quad \forall w \in \mathcal{V}_{r}
$$

Error of reduced solution

$$
\left\|u(\boldsymbol{\mu})-u_{r}(\boldsymbol{\mu})\right\| \mathcal{V} \leq \underbrace{\left\|u(\boldsymbol{\mu})-u_{N}(\boldsymbol{\mu})\right\|_{\mathcal{V}}}_{e_{1}}+\underbrace{\left\|u_{N}(\boldsymbol{\mu})-u_{r}(\boldsymbol{\mu})\right\|_{\mathcal{V}}}_{e_{2}}
$$

- Select high-dimensional (fine mesh) space \mathcal{V}_{N} to keep e_{1} small
- Train a reduced space \mathcal{V}_{r} to keep e_{2} small

Connection best-approximation in reduced space \mathcal{V}_{r} to error of reduced solution (stability)

$$
\left\|u(\boldsymbol{\mu})-u_{r}(\boldsymbol{\mu})\right\|_{\mathcal{V}} \leq\left(1+\frac{\gamma(\boldsymbol{\mu})}{\alpha(\boldsymbol{\mu})}\right) \inf _{u \in \mathcal{V}_{r}}\|u(\boldsymbol{\mu})-u\|_{\mathcal{V}}
$$

with coercivity and continuity constant $\alpha(\boldsymbol{\mu})$ and $\gamma(\boldsymbol{\mu})$, respectively (restrictive setting)

MOR: Linear algebra view on reduced model

Reduced solution $\boldsymbol{u}_{r}(\boldsymbol{\mu}) \in \mathbb{R}^{r}$ solves

$$
\boldsymbol{A}_{r}(\boldsymbol{\mu}) \boldsymbol{u}_{r}(\boldsymbol{\mu})=\boldsymbol{g}_{r}(\boldsymbol{\mu}),
$$

with matrix $\boldsymbol{A}_{r}(\boldsymbol{\mu})=\boldsymbol{V}_{r}^{T} \boldsymbol{A}(\boldsymbol{\mu}) \boldsymbol{V}_{r} \in \mathbb{R}^{r \times r}$ and vector $\boldsymbol{g}_{r}(\boldsymbol{\mu})=\boldsymbol{V}_{r}^{T} \boldsymbol{g}(\boldsymbol{\mu}) \in \mathbb{R}^{r}$
Realizing offline/online splitting via affine parameter dependence

- Affine parameter dependence means (our model problem has affine parameter dependence)

$$
a(u, w ; \boldsymbol{\mu})=\sum_{i=1}^{Q_{a}} \Theta_{i}^{(a)}(\boldsymbol{\mu}) a_{i}(u, w), \quad g(w ; \boldsymbol{\mu})=\sum_{j=1}^{Q_{g}} \Theta_{j}^{(f)}(\boldsymbol{\mu}) g_{j}(w), \quad \Theta_{i}^{(a)}, \Theta_{j}^{(g)}: \mathcal{D} \rightarrow \mathbb{R}
$$

- Pre-compute offline (parameter independent)

$$
\boldsymbol{A}_{r}^{(i)}=\boldsymbol{V}_{r}^{T} \boldsymbol{A}^{(i)} \boldsymbol{V}_{r}, \quad \boldsymbol{g}_{r}^{(j)}=\boldsymbol{V}_{r}^{T} \boldsymbol{g}^{(j)}, \quad i=1, \ldots, Q_{a}, \quad j=1, \ldots, Q_{g}
$$

- Assemble online (fast)

$$
\boldsymbol{A}_{r}(\boldsymbol{\mu})=\sum_{i=1}^{Q_{z}} \Theta_{i}^{(a)}(\boldsymbol{\mu}) \boldsymbol{A}_{r}^{(i)}, \quad \boldsymbol{g}_{r}(\boldsymbol{\mu})=\sum_{j=1}^{Q_{g}} \Theta_{j}^{(g)}(\boldsymbol{\mu}) \boldsymbol{g}_{r}^{(j)}
$$

MOR: Offline/online computations

Offline (training):

1. Select training set

$$
\mathcal{D}_{T}=\left\{\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{M}\right\}
$$

2. Compute snapshots via full-model solves

$$
\mathcal{S}=\left\{\boldsymbol{u}_{N}\left(\boldsymbol{\mu}_{1}\right), \ldots, \boldsymbol{u}_{N}\left(\boldsymbol{\mu}_{M}\right)\right\} \subset \mathbb{R}^{N}
$$

3. Construct reduced basis (e.g., POD)

$$
\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right] \in \mathbb{R}^{N \times r}
$$

4. Project operators

$$
\boldsymbol{A}_{r}^{(i)}=\boldsymbol{V}_{r}^{T} \boldsymbol{A}^{(i)} \boldsymbol{V}_{r}, \quad \boldsymbol{g}_{r}^{(j)}=\boldsymbol{V}_{r}^{T} \boldsymbol{g}^{(j)}
$$

Online (evaluation):

1. Receive $\boldsymbol{\mu} \in \mathcal{D} \backslash \mathcal{D}_{T}$ not in training set
2. Assemble reduced operators

$$
\boldsymbol{A}_{r}(\boldsymbol{\mu})=\sum_{i=1}^{Q_{a}} \Theta_{i}^{(a)}(\boldsymbol{\mu}) \boldsymbol{A}_{r}^{(i)}
$$

$$
\boldsymbol{g}_{r}(\boldsymbol{\mu})=\sum_{j=1}^{Q_{g}} \Theta_{i}^{(g)}(\boldsymbol{\mu}) \boldsymbol{g}_{r}^{(j)}
$$

3. Solve $r \times r$ system to compute $\boldsymbol{u}_{r}(\boldsymbol{\mu})$

$$
\boldsymbol{A}_{r}(\boldsymbol{\mu}) \boldsymbol{u}_{r}(\boldsymbol{\mu})=\boldsymbol{g}_{r}(\boldsymbol{\mu})
$$

MOR: Computational costs

Offline complexity $\mathcal{O}\left(M N^{2}+Q_{a} r N^{2}+Q_{g} r N\right)$

- M snapshots and POD basis $\mathcal{O}\left(M N+M N^{2}\right)$
- Computing $\boldsymbol{A}_{r}^{(1)}, \ldots, \boldsymbol{A}_{r}^{\left(Q_{a}\right)}$ matrices $\mathcal{O}\left(Q_{a} r N^{2}\right)$
- Computing $\boldsymbol{g}_{r}^{(1)}, \ldots, \boldsymbol{g}_{r}^{\left(Q_{f}\right)}$ matrices $\mathcal{O}\left(Q_{g} r N\right)$

Online complexity $\mathcal{O}\left(Q_{a} r^{2}+Q_{g} r+r^{3}\right)$

- Assemble reduced operators: $\mathcal{O}\left(Q_{a} r^{2}+Q_{g} r\right)$
- Solving for dense reduced system: $\mathcal{O}\left(r^{3}\right)$
\rightarrow independent of N

full model (P) vs. reduced model $\left(\mathrm{P}_{\mathrm{N}}\right)$
[Haasdonk, 2017]

Runtime for k simulations

- Full model alone: $t=k \times t_{\text {full }}$
- Reduced model: $t=t_{\text {offline }}+k \times t_{\text {online }}$
- Model reduction pays off only for $k>k^{*}$ with $k^{*}=\frac{t_{\text {offline }}}{t_{\text {full }}-t_{\text {online }}}$

MOR: Error bounds and error estimation

Large part of model reduction community working on a posteriori error estimation

$$
\left\|u_{N}(\boldsymbol{\mu})-u_{r}(\boldsymbol{\mu})\right\| \leq \eta(\boldsymbol{\mu}), \quad \boldsymbol{\mu} \in \mathcal{D}
$$

- Computable, upper bound of (generalization) error over \mathcal{D} (not only training set \mathcal{D}_{T})
- Strong theoretical foundations for linear state dependence [Patera, Rozza, 2007], [Maday et al., 2002], [Veroy et al., 2001,2003, 2005], [Grepl, 2005]
- Heuristics via error indicators available through, e.g., residual
- Not many rigorous statements beyond linear state dependence

Other error bounds

- Error bounds for linear time-invariant systems of ODEs [Moore, 1981]
- A priori analysis of reduced models for elliptic problems with greedy basis construction [Maday et al., 2002], [Binev et al., 2011]

MOR: Thermal block

Steady heat conduction (thermal block) [Rozza et al., 2007]

$$
\nabla \cdot(c(\boldsymbol{x} ; \boldsymbol{\mu}) \nabla u(\boldsymbol{x} ; \boldsymbol{\mu}))=g(\boldsymbol{x}), \quad \boldsymbol{x} \in \Omega,
$$

Conductivity coefficient with parameter $\boldsymbol{\mu} \in \mathcal{D} \subset \mathbb{R}^{d}$

$$
c(\boldsymbol{x} ; \boldsymbol{\mu})=\mu_{i} 1_{\Omega_{i}}(\boldsymbol{x})
$$

Examples of solutions $u_{N}(\boldsymbol{\mu})$ (we take $M=1000$ snapshots with uniform random $\boldsymbol{\mu}$)

MOR: Thermal block: First 8 POD basis functions

MOR: Thermal block: Singular values and error

- Singular values decay fast; empirically shows that low-dimensional spaces are sufficient here
- State error over test set $\mathcal{D}_{\text {test }}$ decays with a similar rate as the singular values in this example

MOR: Thermal block: Computational costs

Online runtime of full and reduced model

- Online runtime to compute one solution
- Increasing dimension N of full model, increases full-model runtime
- Runtime of solving reduced model is independent of N, if reduced dimension $r=20$ fixed

MOR: Thermal block: Computational costs

Online runtime of full and reduced model

- Online runtime to compute one solution
- Increasing dimension N of full model, increases full-model runtime
- Runtime of solving reduced model is independent of N, if reduced dimension $r=20$ fixed

Runtime diagram

- Break even is at 10^{3} online evaluations
- Costs of reduced model dominated by offline costs until about 10^{5} online evaluations
runtime diagram

MOR: Thermal block: Making the problem harder

- Singular values saturate quickly for increasing full-model dimension N
- In contrast, increasing number of blocks (parameters) leads to slower decay of singular values

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems
4. Multi-fidelity methods for certifying outer-loop results

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems
4. Multi-fidelity methods for certifying outer-loop results

Time: Systems of ordinary differential equations

System of ordinary differential equations (e.g., after discretization in space)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{u}(t ; \boldsymbol{\mu})=\boldsymbol{f}(\boldsymbol{u}(t ; \boldsymbol{\mu}), \boldsymbol{g}(t) ; \boldsymbol{\mu})
$$

- State $\boldsymbol{u}(t ; \boldsymbol{\mu}) \in \mathbb{R}^{N}$ and parameter $\boldsymbol{\mu} \in \mathcal{D}$
- Input $\boldsymbol{g}(t) \in \mathbb{R}^{p}$
- Right-hand side function $\boldsymbol{f}: \mathbb{R}^{N} \times \mathbb{R}^{p} \times \mathcal{D} \rightarrow \mathbb{R}^{N}$
- Time discretized into K time steps $0=t_{0}<t_{1}<\cdots<t_{K}=T$

Special case: Linear time-invariant systems

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{u}(t ; \boldsymbol{\mu})=\boldsymbol{A}(\boldsymbol{\mu}) \boldsymbol{u}(t ; \boldsymbol{\mu})+\boldsymbol{B}(\boldsymbol{\mu}) \boldsymbol{g}(t),
$$

- Matrices $\boldsymbol{A}(\boldsymbol{\mu}) \in \mathbb{R}^{N \times N}$ and $\boldsymbol{B}(\boldsymbol{\mu}) \in \mathbb{R}^{N \times p}$

Time: Reduced model via POD

Can apply same procedure as for steady-state problem to system of ODEs

1. Snapshot collection over parameters and time

$$
\boldsymbol{S}=\left[\begin{array}{cccccc}
\mid & & \mid & & \mid & \\
\boldsymbol{u}_{N}\left(t_{1} ; \boldsymbol{\mu}_{1}\right) & \ldots & \boldsymbol{u}_{N}\left(t_{K} ; \boldsymbol{\mu}_{1}\right) & \ldots & \boldsymbol{u}_{N}\left(t_{1} ; \boldsymbol{\mu}_{M}\right) & \ldots \\
\mid & & \mid & \boldsymbol{u}_{N}\left(t_{K} ; \boldsymbol{\mu}_{M}\right)
\end{array}\right] \in \mathbb{R}^{N \times K M}
$$

2. POD basis $\boldsymbol{V}_{r} \in \mathbb{R}^{N \times r}$ via, e.g., (randomized) SVD of \boldsymbol{S}
3. Projection

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{u}_{r}(t ; \boldsymbol{\mu})=\boldsymbol{A}_{r}(\boldsymbol{\mu}) \boldsymbol{u}_{r}(t ; \boldsymbol{\mu})+\boldsymbol{B}_{r}(\boldsymbol{\mu}) \boldsymbol{g}(t)
$$

Limitations

- No reduction in time (same number of time steps in full and reduced model)
- Asymptotic stability (passivity, etc.) of full model not necessarily preserved
- In general, structure such as Hamiltonian, Lagrangian, second-order not preserved [Beattie et al., 2011], [Gugercin et al., 2012], [Chaturantabut et al., 2016], [Peng et al., 2016], [Afkham, Hesthaven, 2017]

Time: Frequency domain view on LTI systems

LTI systems with outputs (no parameter for simplicity)

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{u}(t) & =\boldsymbol{A} \boldsymbol{u}(t)+\boldsymbol{B} g(t), \\
y(t) & =\boldsymbol{C u}(t)
\end{aligned}
$$

- Single input $g(t) \in \mathbb{R}$ and single output $y(t) \in \mathbb{R}$ but high-dimensional state $\boldsymbol{u}(t) \in \mathbb{R}^{N}$
- Often care about approximating input-output map $g(t) \mapsto y(t)$

Input-output map is specified by transfer function (e.g., [Antoulas, 2005], [Antoulas et al., 2020])

$$
H(s)=\boldsymbol{C}^{T}(s \boldsymbol{I}-\boldsymbol{A})^{-1} \boldsymbol{B}, \quad s \in \mathbb{C}
$$

- Approximation H_{r} of H with error in \mathcal{H}_{∞}

$$
\left\|H-H_{r}\right\|_{\mathcal{H}_{\infty}}=\sup _{|s|=1}\left|H(s)-H_{r}(s)\right|
$$

- If H_{r} approximates H well in $\|\cdot\|_{\mathcal{H}_{\infty}}$, then $y_{r}(t)$ approximates $y(t)$ well (e.g., [Benner et al., 2015])

$$
\left\|y-y_{r}\right\|_{L_{2}} \leq\left\|H-H_{r}\right\|_{\mathcal{H}_{\infty}}\|g\|_{L_{2}}
$$

Time: Interpolating transfer functions

Select $2 r$ interpolation points

$$
s_{1}, \ldots, s_{2 r} \in \mathbb{C}
$$

Construct bases as (e.g., [Antoulas, 2005], [Benner et al., 2015], [Antoulas et al., 2020])

$$
\begin{aligned}
\boldsymbol{V}_{r} & =\left[\begin{array}{lll}
\left(s_{1} \boldsymbol{I}-\boldsymbol{A}\right)^{-1} \boldsymbol{B} & \ldots & \left(s_{r} \boldsymbol{I}-\boldsymbol{A}\right)^{-1} \boldsymbol{B}
\end{array}\right] \in \mathbb{R}^{\boldsymbol{N} \times r} \\
\boldsymbol{W}_{r} & =\left[\begin{array}{lll}
\left(s_{r+1} \boldsymbol{I}-\boldsymbol{A}^{T}\right)^{-1} \boldsymbol{C} & \ldots & \left(s_{2 r} \boldsymbol{I}-\boldsymbol{A}^{T}\right)^{-1} \boldsymbol{C}
\end{array}\right] \in \mathbb{R}^{N \times r}
\end{aligned}
$$

Projection via Petrov-Galerkin to obtain reduced operators

$$
\boldsymbol{E}_{r}=\boldsymbol{W}_{r}^{T} \boldsymbol{V}_{r}, \quad \boldsymbol{A}_{r}=\boldsymbol{W}^{\top} \boldsymbol{A} \boldsymbol{V}_{r}, \quad \boldsymbol{B}_{r}=\boldsymbol{W}_{r}^{T} \boldsymbol{B}, \quad \boldsymbol{C}_{r}=\boldsymbol{C} \boldsymbol{V}_{r}
$$

Corresponding reduced model has transfer function H_{r} that interpolates H at $s_{1}, \ldots, s_{2 r}$

$$
H\left(s_{i}\right)=H_{r}\left(s_{i}\right), \quad i=1, \ldots, 2 r
$$

Requires $2 r$ "full-model solves," which is typically less than what is required with POD

Time: Interpolating transfer functions (cont'd)

Choice of interpolation points

- Optimal (first-order) selection of points
- Iterative Rational Krylov Algorithm (IRKA)

Learning reduced models from data

- Matrices $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ not necessarily needed
- Loewner constructs reduced model from data alone

$$
\left\{\left(s_{1}, H\left(s_{1}\right)\right), \ldots,\left(s_{2 r}, H\left(s_{2 r}\right)\right)\right\} \subset \mathbb{C}^{2}
$$

- Extends scope to problems with data only

Various extensions

- Matching moments of transfer function
- Multi-input-multi-output (MIMO) systems

Interpolatory Methods
for Model Reduction

- Parametrized systems, ...

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems
4. Multi-fidelity methods for certifying outer-loop results

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems

3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results

Nonlinear: From linear to nonlinear

Needed linearity in state and affine parameter dependence for efficient online phase

- Compute in offline phase with cost complexity scaling with N

$$
\boldsymbol{A}_{r}^{(i)}=\boldsymbol{V}_{r}^{T} \boldsymbol{A}^{(i)} \boldsymbol{V}_{r}
$$

- Cost complexity of online assembly independent of N (provided cost of $\Theta_{i}^{(a)}$ independent of N)

$$
\boldsymbol{A}_{r}(\boldsymbol{\mu})=\sum_{i=1}^{Q_{\mathrm{a}}} \Theta_{i}^{(\mathrm{a})}(\boldsymbol{\mu}) \boldsymbol{A}_{r}^{(i)}
$$

System with nonlinear term (e.g., reaction term)

$$
\boldsymbol{A} \boldsymbol{u}_{N}(\boldsymbol{\mu})+\boldsymbol{f}\left(\boldsymbol{u}_{N}(\boldsymbol{\mu}) ; \boldsymbol{\mu}\right)=\boldsymbol{g}
$$

- Lifting bottleneck when evaluating reduced nonlinear term $\boldsymbol{f}_{r}: \mathbb{R}^{r} \times \mathcal{D} \rightarrow \mathbb{R}^{r}$ [Barrault et al., 2004]

$$
\boldsymbol{f}_{r}\left(\boldsymbol{u}_{r}(\boldsymbol{\mu}) ; \boldsymbol{\mu}\right)=\underbrace{\boldsymbol{V}_{r}^{T}}_{r \times N} \boldsymbol{f}(\underbrace{\boldsymbol{V}_{r}}_{N \times r} \boldsymbol{u}_{r}(\boldsymbol{\mu}) ; \boldsymbol{\mu})
$$

- Cost complexity of evaluating reduced \boldsymbol{f}_{r} online is the same as evaluating \boldsymbol{f} of full model
- Breaks online efficiency \rightarrow no or little speedups

Nonlinear: Interpolation in subspace

Approximate map $\boldsymbol{u}_{r} \mapsto \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right)$ in subspace given by

$$
\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right] \in \mathbb{R}^{N \times m}
$$

Nonlinear: Interpolation in subspace

Approximate map $\boldsymbol{u}_{r} \mapsto \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right)$ in subspace given by

$$
\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right] \in \mathbb{R}^{N \times m}
$$

Find coefficients $\boldsymbol{c}\left(\boldsymbol{u}_{r}\right) \in \mathbb{R}^{m}$ such that

$$
\boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right) \approx \boldsymbol{Q c}\left(\boldsymbol{u}_{r}\right)
$$

Nonlinear: Interpolation in subspace

Approximate map $\boldsymbol{u}_{r} \mapsto \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right)$ in subspace given by

$$
\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right] \in \mathbb{R}^{N \times m}
$$

Find coefficients $\boldsymbol{c}\left(\boldsymbol{u}_{r}\right) \in \mathbb{R}^{m}$ such that

$$
\boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right) \approx \boldsymbol{Q c}\left(\boldsymbol{u}_{r}\right)
$$

Enforce interpolation conditions by selecting m components p_{1}, \ldots, p_{m} of \boldsymbol{f} such that

$$
\boldsymbol{P}^{T} \boldsymbol{Q} \boldsymbol{c}\left(\boldsymbol{u}_{r}\right)=\boldsymbol{P}^{T} \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right)
$$

where \boldsymbol{P}^{T} extracts the m rows with indices p_{1}, \ldots, p_{m}

$$
\boldsymbol{P}=\left[\boldsymbol{e}_{p_{\mathbf{1}}}, \ldots, \boldsymbol{e}_{\boldsymbol{p}_{m}}\right] \in \mathbb{R}^{N \times m}
$$

Nonlinear: Interpolation in subspace

Approximate map $\boldsymbol{u}_{r} \mapsto \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right)$ in subspace given by

$$
\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right] \in \mathbb{R}^{N \times m}
$$

Find coefficients $\boldsymbol{c}\left(\boldsymbol{u}_{r}\right) \in \mathbb{R}^{m}$ such that

$$
\boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right) \approx \boldsymbol{Q c}\left(\boldsymbol{u}_{r}\right)
$$

Enforce interpolation conditions by selecting m components p_{1}, \ldots, p_{m} of \boldsymbol{f} such that

$$
\boldsymbol{P}^{T} \boldsymbol{Q} \boldsymbol{c}\left(\boldsymbol{u}_{r}\right)=\boldsymbol{P}^{T} \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right)
$$

where \boldsymbol{P}^{T} extracts the m rows with indices p_{1}, \ldots, p_{m}

$$
\boldsymbol{P}=\left[\boldsymbol{e}_{p_{1}}, \ldots, \boldsymbol{e}_{p_{m}}\right] \in \mathbb{R}^{N \times m}
$$

Solve for $\boldsymbol{c}\left(\boldsymbol{u}_{r}\right)$ via system of linear equations

$$
\boldsymbol{c}\left(\boldsymbol{u}_{r}\right)=\left(\boldsymbol{P}^{T} \boldsymbol{Q}\right)^{-1} \boldsymbol{P}^{T} \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}\right)
$$

\rightsquigarrow requires evaluating \boldsymbol{f} at only $m \ll N$ components
[Barrault et al., 2004], [Everson, Sirovich, 1995], [Astrid et al., 2004, 2008], [Chaturantabut, Sorensen, 2010], [Drmač, Gugercin, 2016]

Nonlinear: Empirical interpolation in model reduction

Step 1.: Compute POD basis $\boldsymbol{Q} \in \mathbb{R}^{N \times m}$ of nonlinear snapshots

$$
\left\{\boldsymbol{f}\left(\boldsymbol{u}\left(\boldsymbol{\mu}_{1}\right)\right), \ldots, \boldsymbol{f}\left(\boldsymbol{u}\left(\boldsymbol{\mu}_{M}\right)\right)\right\} \subset \mathbb{R}^{N \times M}
$$

Step 2.: Select interpolation points $\boldsymbol{P} \in\{0,1\}^{N \times m}$ at which components to evaluate \boldsymbol{f} online Step 3.: Approximate \boldsymbol{f} online as

$$
\underbrace{\boldsymbol{V}_{r}^{T} \boldsymbol{A} \boldsymbol{V}_{r}}_{r \times r} \boldsymbol{u}_{r}(\boldsymbol{\mu})+\underbrace{\boldsymbol{V}_{r}^{T} \boldsymbol{Q}\left(\boldsymbol{P}^{\top} \boldsymbol{Q}\right)^{-1}}_{r \times m} \underbrace{\boldsymbol{P}^{\top} \boldsymbol{f}\left(\boldsymbol{V}_{r} \boldsymbol{u}_{r}(\boldsymbol{\mu})\right)}_{m \times 1}=\boldsymbol{V}^{\top} \boldsymbol{g}
$$

- Requires evaluating \boldsymbol{f} at $m \ll N$ components online
- Empirical interpolation avoids lifting bottleneck

Nonlinear: Selecting interpolation points

Error of EIM approximation

$$
\left\|\boldsymbol{f}(\boldsymbol{u})-\boldsymbol{Q}\left(\boldsymbol{P}^{\top} \boldsymbol{Q}\right)^{-1} \boldsymbol{P}^{\top} \boldsymbol{f}(\boldsymbol{u})\right\|_{2} \leq \underbrace{\left\|\left(\boldsymbol{P}^{\top} \boldsymbol{Q}\right)^{-1}\right\|_{2}}_{\text {points }} \underbrace{\left\|\boldsymbol{f}(\boldsymbol{u})-\boldsymbol{Q} \boldsymbol{Q}^{\top} \boldsymbol{f}(\boldsymbol{u})\right\|_{2}}_{\text {space }}
$$

- Choice of interpolation points \boldsymbol{P} enter in $\left\|\left(\boldsymbol{P}^{T} \boldsymbol{Q}\right)^{-1}\right\|_{2}$ only
- Term $\left\|\left(\boldsymbol{P}^{T} \boldsymbol{Q}\right)^{-1}\right\|_{2}$ is a Lebesgue constant and grows with dimension m of EIM space

Select interpolation points with greedy algorithm [Barrault et al., 2004], [Chaturantabut, Sorensen, 2010]

```
function p = deim(Q, m)
[~, n] = size(Q);
r = Q(:, 1); [~, p] = max(abs(r));
for i=2:m
    a = Q(p, 1:i-1)\Q(p, i);
    r = Q(:, i) - Q(:, 1:i-1)*a;
    [~, I] = max(abs(r));
    p(i) = I(1);
end
```


Nonlinear: Empirical interpolation (cont'd)

Model reduction with EIM works well in practice

- Considered a "breakthrough" in model reduction
- Leap towards efficient reduction of nonlinear problems

Nonlinear model reduction via discrete empirical interpolation SChaturantabut, DC Sorensen - SIAM Journal on Scientific Computing, 2010 - SIAM . method called discrete empirical interpolation is proposed and ... The original empirical interpolation method (EIM) is a ... We propose a discrete empirical interpolation method (DEIM), a is Save 5 Cite Cited by 1884 Related articles All 14 versions 20

An 'empirical interpolation'method: application to efficient reduced-basis discretization of partial differential equations
M Barrault, Y Maday, NC Nguyen, AT Patera - Comptes Rendus ..., 2004 - Elsevier equations is certainly a natural candidate for the application of this 'empirical interpolation method; we would like to thank this group for many stimulating and beneficial exchanges. is Save 5 Cite Cited by 1806 Related articles All 13 versions

Issues with EIM

- Stability with poorly chosen points \rightarrow oversample (gappy POD) [Astrid et al., 2004, 2008], [Carlberg et al., 2011], [Zimmermann, Willcox, 2016], [P., Drmac, Gugercin, 2020]
- Can need tremendous amounts of points if no low-rank structure \rightarrow adaptivity [P., Willcox, 2015]
- Have to "go back" to full model during online phase \rightarrow implementation more difficult

Alternatives to EIM for efficient model reduction of nonlinear problems

- Structured nonlinear problems (bilinear, quadratic-bilinear) [Benner, Breiten, 2015], [Benner, Goyal, Gugercin, 2018], [Antoulas et al., 2020]
- Lifting of generally nonlinear problems into quadratic-bilinear problems [Gu, 2011], [Kramer, Willcox, 2019], [Swischuk, Kramer, Huang, Willcox, 2019], [Qian, Kramer, P., Willcox, 2019]

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems
4. Multi-fidelity methods for certifying outer-loop results

Outline

1. Introduction to projection-based model reduction

- Solution manifold, smoothness, low-rank structure
- Basis generation
- Online efficiency

2. Model reduction for time-dependent problems
3. Model reduction for nonlinear problems

4. Multi-fidelity methods for certifying outer-loop results

Using surrogate models alone often means loss of guarantees

Replace model g with a surrogate model

- Costs of outer loop reduced
- Often orders of magnitude speedups

Estimate depends on surrogate accuracy

- Control with error bounds/estimators
- Rebuild if accuracy too low
- No guarantees without bounds/estimators

Surrogates alone often mean loss of guarantees

- Propagation of surrogate error on estimate
- Surrogates without error control
- Costs of rebuilding a surrogate model

Multi-fidelity methods to certify outer-loop results

SIAM REVVEW
Vol. 60 . No. 3. pp. 550-591
c) 2018 SIAM. Publisted by SIAM under the terms

Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization*

Benjamin Peherstorfer Karen Willcox ${ }^{+}$ Max Gunzburger

Abstract. In many situations across computational science and engineering, multiple computationa models are available that describe a system of interest. These different models have vary delity model describes the system with the accuracy required by the current application thand, while lower-fidelity models are less accurate but computationally cheaper than the high-fidelity model. Outer-loop applications, such as optimization, inference, and incertainty quantification, require multiple model evaluations at many different inputs, which often leads to computational demands that exceed available resources if only the high-fidelity model is used. This work surveys multifidelity methods that accelerate the solution of outer-loop applications by combining high-fidelity and low-fidelity model evaluations, where the low-fidelity evaluations arise from an explicit low-fidelity model (e.g. simplified physics approximation, a reduced model, a data-fit surrogate) that approxi mates the same output quantity as the high-fidelity model. The overall premise of thes multifidelity methods is that low-fidelity models are leveraged for speedup while the high fidelity model is kept in the loop to establish accuracy and/or convergence guarantees We categorize multifidelity methods according to three classes of strategies: adaptation, fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts of uncertainty propagation, inference, and optimization.

Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification, multifidelity uncertainty propagation, multifidelity statistical inference, multifidelity op
timization

AMS subject classifications. 65-02, 62-02, 49-02

[^0]
Monte Carlo estimation

Take realizations of input random variable

$$
X_{1}, \ldots, X_{n} \sim X
$$

Compute model outputs via numerical simulations

$$
g\left(X_{1}\right), \ldots, g\left(X_{n}\right)
$$

Monte Carlo estimator

$$
\bar{y}_{n}=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)
$$

Estimator is unbiased $\mathbb{E}[g(X)]=\mathbb{E}\left[\bar{y}_{n}\right]$ with

$$
e\left(\bar{y}_{n}\right)=\frac{1}{n} \operatorname{Var}[g(X)]
$$

Monte Carlo estimation

Take realizations of input random variable

$$
X_{1}, \ldots, X_{n} \sim X
$$

Compute model outputs via numerical simulations

$$
g\left(X_{1}\right), \ldots, g\left(X_{n}\right)
$$

Monte Carlo estimator

$$
\bar{y}_{n}=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)
$$

Estimator is unbiased $\mathbb{E}[g(X)]=\mathbb{E}\left[\bar{y}_{n}\right]$ with

$$
e\left(\bar{y}_{n}\right)=\frac{1}{n} \operatorname{Var}[g(X)]
$$

Why Monte Carlo?

- Models treated as black box

Monte Carlo estimation

Take realizations of input random variable

$$
X_{1}, \ldots, X_{n} \sim X
$$

Compute model outputs via numerical simulations

$$
g\left(X_{1}\right), \ldots, g\left(X_{n}\right)
$$

Monte Carlo estimator

$$
\bar{y}_{n}=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)
$$

Estimator is unbiased $\mathbb{E}[g(X)]=\mathbb{E}\left[\bar{y}_{n}\right]$ with

$$
e\left(\bar{y}_{n}\right)=\frac{1}{n} \operatorname{Var}[g(X)]
$$

Why Monte Carlo?

- Models treated as black box
- Dimension independent

Monte Carlo estimation

Take realizations of input random variable

$$
X_{1}, \ldots, X_{n} \sim X
$$

Compute model outputs via numerical simulations

$$
g\left(X_{1}\right), \ldots, g\left(X_{n}\right)
$$

Monte Carlo estimator

$$
\bar{y}_{n}=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)
$$

Estimator is unbiased $\mathbb{E}[g(X)]=\mathbb{E}\left[\bar{y}_{n}\right]$ with

$$
e\left(\bar{y}_{n}\right)=\frac{1}{n} \operatorname{Var}[g(X)]
$$

Why Monte Carlo?

- Models treated as black box
- Dimension independent
- Easily parallelizable

Monte Carlo estimators with surrogate models

$$
\bar{y}_{m_{i}}^{(i)}=\frac{1}{m_{i}} \sum_{i=1}^{m_{i}} g^{(i)}\left(X_{i}\right), \quad i=1, \ldots, k
$$

Multifidelity Monte Carlo (MFMC) estimator

$$
\hat{s}=\underbrace{\bar{y}_{m_{1}}}_{\text {from HFM }}+\sum_{i=1}^{k} \alpha_{i} \underbrace{\left(\bar{y}_{m_{i}}^{(i)}-\bar{y}_{m_{i-1}}^{(i)}\right)}_{\text {from surrogate models }}
$$

- Control variates help reducing variance of estimator
- Speedup depends on model costs and correlation

$$
\rho_{i}=\frac{\operatorname{Cov}\left[g(X), g^{(i)}(X)\right]}{\operatorname{Var}[g(X)] \operatorname{Var}\left[g^{(i)}(X)\right]}
$$

- Estimator remains unbiased

$$
\mathbb{E}[\hat{s}]=\mathbb{E}[g(X)]
$$

MFMC: Numerical example

Locally damaged plate in bending

- Inputs: nominal thickness, load, damage
- Output: maximum deflection of plate
- Only distribution of inputs known
- Estimate expected deflection

Six models

- High-fidelity model: FEM, 300 DoFs
- Reduced model: POD, 10 DoFs
- Reduced model: POD, 5 DoFs
- Reduced model: POD, 2 DoFs
- Data-fit model: linear interp., 256 pts
- Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples

MFMC: Speedups in uncertainty propagation

- Monte Carlo needs 12 h runtime for estimate with error below 10^{-7}
- Multifidelity provides estimator with error below 10^{-7} after 9 seconds

MFMC: Speedups in uncertainty propagation

- Monte Carlo needs 12 h runtime for estimate with error below 10^{-7}
- Multifidelity provides estimator with error below 10^{-7} after 9 seconds

MFMC: Speedups in uncertainty propagation

- Monte Carlo needs 12 h runtime for estimate with error below 10^{-7}
- Multifidelity provides estimator with error below 10^{-7} after 9 seconds

MFMC: Speedups in uncertainty propagation

- Monte Carlo needs 12 h runtime for estimate with error below 10^{-7}
- Multifidelity provides estimator with error below 10^{-7} after 9 seconds

MFMC: Speedups in uncertainty propagation

9 seconds: enables design, control, sensitivity analysis under uncertainty

- Monte Carlo needs 12 h runtime for estimate with error below 10^{-7}
- Multifidelity provides estimator with error below 10^{-7} after 9 seconds

MFMC: Combining many models

- Largest improvement from "single \rightarrow two" and "two \rightarrow three"
- Adding yet another reduced/SVM model reduces variance only slightly

MFMC: Distribution of model evaluations

Multi-fidelity speed up (Lonestar6/TACC) 72 days $\rightarrow \mathbf{4}$ hours
confined particles

Enables UQ in design, e.g., robust coils to maximize confinement in fusion devices

Multi-fidelity speed up (Lonestar6/TACC) 72 days $\rightarrow 4$ hours

Enables UQ in design, e.g., robust coils to maximize confinement in fusion devices

confined particles

leaving particles

Learning from indirect measurements

Learning from indirect measurements

Learning from indirect

SVGD

Multi-fidelity Monte Carlo in the wild

Learning surrogate models (from data) is key for making tractable outer-loop applications

... but they typically come without accuracy guarantees.

Certify outer-loop results with multi-fidelity methods

| high-fidelity
 model | $+\quad$surrogate
 model |
| :---: | :---: | | surrogate |
| :---: |
| model |$\quad \ldots . \quad$| surrogate |
| :---: |
| model |

... to establish trust for making high-consequence decision and enabling downstream tasks.

Summary and additional resources

Summary: Introduction material on reduced basis method

SPRINGER BRIEFS IN MATHEMATICS

Jan S. Hesthaven
Gianluigi Rozza
Benjamin Stamm
Certified Reduced Basis Methods for Parametrized Partial Differential Equations
(bcam)
Springer

G. Rozzn - D.B.P. Huynh - A.t. Patern

Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
Application to transport and continuum mechanics

Summary: Introduction material on systems approaches

A Survey of Projection-Based
Model Reduction Methods for
Parametric Dynamical Systems*

 communities to sarvey the state of the art in paramentric model reduction methods.
Paranuetric model reduction targets the broud clace of problems for whidht Parametric model reduction targets the broud cluss of problems for which the equas
tions gevering the system behevior depend ou a set of parameters. Examples include

 eters. This paper surveys state-of-the-art methods in projection -baxed paranmetric model
reduction, deecriting the different approucheses within nech cluss of methods for handing parametric variation and providining ocomparative discussion that leads ins inits to po-

 undertainty quan
parametete value
Key words. dyynumical systems, parameterimod moder reduction, (Petrow-)Galerkin projection, Krylev, truncation, greedy mulgorithm
MS subject classifications. $36 \mathrm{~B} 30,37 \mathrm{M} 99,41 \mathrm{A05}, 65 \mathrm{~K} 99,93 \mathrm{A15}, 93 \mathrm{Co5}$
DOL. 10,1137//130932715

- Reveived by the editors Ausurut 13 , 2013, accepted for publeation (in rewised form) June 29 ,
2015; publisbed electronically Nowember 5,2015 .

Max Planck Instiute for Dysamice of Complex Technical Systens, Sandtorstr. 1, D-3906
 TDepartment of Mathematics, Virginin Irch, Blacksburg, VA $24061-0123$ (gugercinimmath.
vt.edu). The work of this anthor wns supported by NSF grant DMS- 1217156 (Progran Manager

Summary: Multi-fidelity methods to certify outer-loop results

SIAM REvEN
Vol. 0 . No. 3. pp. $550-591$
(C) 2018 SLAM. Publisted by SIAM under the terms
of the Creative Commons 4.0 license

Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization*

Benjamin Peherstorfer Karen Willcox
Max Gunzburger ${ }^{\S}$
Abstract. In many situations across computational science and engineering, multiple computational models are available that describe a system of interest. These different models have vary ing evaluation costs and varying fidelities. Typically, a computationally expensive highfidelity model describes the system with the accuracy required by the current application at hand, while lower-fidelity models are less accurate but computationally cheaper than he high-fidelity model. Outer-loop applications, such as optimization, inference, and which high-fidelity model is used. This work surveys multifidelity methods that accelerate the olution of outer-loop applications by combining high-fidelity and low-fidelity model eval solution of outer-loop applications by combining high-fidelity and low-fidelity model eval simplified physics approximation, a reduced model, a data-fit surrogate) that approximates the same output quantity as the high-fidelity model. The overall premise of these multifidelity methods is that low-fidelity models are leveraged for speedup while the highfidelity model is kept in the loop to establish accuracy and/or convergence guarantees. We categorize multifidelity methods according to three classes of strategies: adaptation, fusion, and filtering. The paper reviews multifidelity methods in the outer-loop contexts of uncertainty propagation, inference, and optimization.

Key words. multifidelity, surrogate models, model reduction, multifidelity uncertainty quantification multifidelity uncertainty propagation, multifidelity statistical inference, multifidelity optimization

AMS subject classifications. 65-02, 62-02, 49-02
DOI. 10.1137/16M1082469

Summary: Software

https://pymor.org/

https://github.com/pressio/pressio

RBmatlab

https://www.morepas.org/software/rbmatlab/

References I

[1] B. M. Afkham and J. S. Hesthaven. Structure preserving model reduction of parametric hamiltonian systems. SIAM Journal on Scientific Computing, 39(6):A2616-A2644, 2017.
[2] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. SIAM, 2005.
[3] A. C. Antoulas. The Loewner framework and transfer functions of singular/rectangular systems. Applied Mathematics Letters, 54:36-47, 2016.
[4] A. C. Antoulas and B. D. Q. Anderson. On the scalar rational interpolation problem. IMA Journal of Mathematical Control \& Information, 3(2-3):61-88, 1986.
[5] A. C. Antoulas, C. Beattie, and S. Gugercin. Interpolatory model reduction of large-scale dynamical systems. In J. Mohammadpour and K. Grigoriadis, editors, Efficient Modeling and Control of Large-Scale Systems. Springer-Verlag, 2010.
[6] A. C. Antoulas, C. A. Beattie, and S. Güğercin. Interpolatory Methods for Model Reduction. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2020.
[7] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in models described by proper orthogonal decomposition. In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 2, pages 1767-1772 Vol.2, Dec 2004.
[8] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control, 53(10):2237-2251, 2008.
[9] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, 339(9):667-672, 2004.
[10] C. Beattie and S. Gugercin. Structure-preserving model reduction for nonlinear port-hamiltonian systems. In $201150 t h$ IEEE Conference on Decision and Control and European Control Conference, pages 6564-6569, 2011.
[11] P. Benner and T. Breiten. Interpolation-based $\mathcal{H}_{\mathbf{2}}$-model reduction of bilinear control systems. SIAM Journal on Matrix Analysis and Applications, 33(3):859-885, 2012.
[12] P. Benner and T. Damm. Lyapunov equations, energy functionals, and model order reduction of bilinear and stochastic systems. SIAM Journal on Control and Optimization, 49(2):686-711, 2011.

References II

[13] P. Benner, P. Goyal, B. Kramer, B. Peherstorfer, and K. Willcox. Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms. Computer Methods in Applied Mechanics and Engineering, 372:113433, 2020.
[14] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Review, 57(4):483-531, 2015.
[15] P. Benner, P. Kürschner, and J. Saak. Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numerical Algorithms, 62(2):225-251, Feb 2013.
[16] P. Benner, J.-R. Li, and T. Penzl. Numerical solution of large-scale lyapunov equations, riccati equations, and linear-quadratic optimal control problems. Numerical Linear Algebra with Applications, 15(9):755-777, 2008.
[17] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM Journal on Mathematical Analysis, 43(3):1457-1472, 2011.
[18] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15):3932-3937, 2016.
[19] T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems with high-dimensional parametric input space. SIAM Journal on Scientific Computing, 30(6):3270-3288, 2008.
[20] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering, 86(2):155-181, 2011.
[21] S. Chaturantabut, C. Beattie, and S. Gugercin. Structure-preserving model reduction for nonlinear port-hamiltonian systems. SIAM Journal on Scientific Computing, 38(5):B837-B865, 2016.
[22] S. Chaturantabut and D. C. Sorensen. Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing, 32(5):2737-2764, 2010.

References III

[23] J. Degroote, J. Vierendeels, and K. Willcox. Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis. International Journal for Numerical Methods in Fluids, 63(2):207-230, 2010.
[24] Z. Drmač and S. Gugercin. A new selection operator for the Discrete Empirical Interpolation Method - improved a priori error bound and extensions. SIAM Journal on Scientific Computing, 38(2):A631-A648, 2016.
[25] M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM Journal on Scientific Computing, 34(2):A937-A969, 2012.
[26] J. Eftang and A. Patera. Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. International Journal for Numerical Methods in Engineering, 96(5):269-302, 2013.
[27] R. Everson and L. Sirovich. Karhunen-Loève procedure for gappy data. J. Opt. Soc. Am. A, 12(8):1657-1664, Aug 1995.
[28] P. Feldmann and R. Freund. Efficient linear circuit analysis by Padé approximation via the Lanczos process. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(5):639-649, 1995.
[29] K. Gallivan, E. Grimme, and P. Van Dooren. Padé Approximation of Large-Scale Dynamic Systems with Lanczos Methods. Proceedings of the 33rd IEEE Conference on Decision and Control, December 1994.
[30] M. A. Grepl and A. T. Patera. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN, 39(1):157-181, 2005.
[31] S. Gugercin, A. C. Antoulas, and C. Beattie. \mathcal{H}_{2} Model Reduction for Large-Scale Linear Dynamical Systems. SIAM Journal on Matrix Analysis and Applications, 30(2):609-638, Jan. 2008.
[32] S. Gugercin, R. V. Polyuga, C. Beattie, and A. van der Schaft. Structure-preserving tangential interpolation for model reduction of port-hamiltonian systems. Automatica, 48(9):1963-1974, 2012.
[33] B. Haasdonk. Convergence rates of the POD-Greedy method. ESAIM: Mathematical Modelling and Numerical Analysis, 47:859-873, 2013.
[34] B. Haasdonk. Chapter 2: Reduced Basis Methods for Parametrized PDEs—A Tutorial Introduction for Stationary and Instationary Problems, pages 65-136. SIAM, 2017.

References IV

[35] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: M2AN, 42(2):277-302, 2008.
[36] M. Heinkenschloss, T. Reis, and A. C. Antoulas. Balanced truncation model reduction for systems with inhomogeneous initial conditions. Automatica, 47(3):559-564, 2011.
[37] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathmatics. Springer International Publishing, 2016.
[38] C. Himpe and M. Ohlberger. Cross-gramian-based combined state and parameter reduction for large-scale control systems. Mathematical Problems in Engineering, 2014, 2014.
[39] A. Ionita and A. C. Antoulas. Data-Driven Parametrized Model Reduction in the Loewner Framework. SIAM Journal on Scientific Computing, 36(3):A984-A1007, Jan. 2014.
[40] J.-N. Juang and R. S. Pappa. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics, 8(5):620-627, 1985.
[41] J.-R. Li and J. White. Low-rank solution of Lyapunov equations. SIAM Review, 46(4):693-713, 2004.
[42] J. Lumley. The structures of inhomogeneous turbulent flow. Atmospheric Turbulence and Radio Wave Propagation, pages 166-178, 1967.
[43] Y. Maday, A. Patera, J. D. Penn, and M. Yano. PBDW state estimation: Noisy observations; configuration-adaptive background spaces; physical interpretations. ESAIM: Proc., 50:144-168, 2015.
[44] Y. Maday, A. T. Patera, and G. Turinici. Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. Comptes Rendus Mathematique, 335(3):289294, 2002.
[45] A. Mayo and A. C. Antoulas. A framework for the solution of the generalized realization problem. Linear Algebra and its Applications, 425(2-3):634-662, 2007.
[46] R. Milk, S. Rave, and F. Schindler. pyMOR - generic algorithms and interfaces for model order reduction. SIAM Journal on Scientific Computing, 38(5):S194-S216, 2016.

References V

[47] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26(1):17-32, 1981.
[48] H. Panzer, J. Mohring, R. Eid, and B. Lohmann. Parametric model order reduction by matrix interpolation. at Automatisierungstechnik, 58(8):475-484, 2010.
[49] A. Patera and G. Rozza. Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2007.
[50] B. Peherstorfer. Sampling low-dimensional markovian dynamics for pre-asymptotically recovering reduced models from data with operator inference. SIAM Journal on Scientific Computing, 2020.
[51] B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Review, 60(3):550-591, 2018.
[52] L. Peng and K. Mohseni. Symplectic model reduction of hamiltonian systems. SIAM Journal on Scientific Computing, 38(1):A1-A27, 2016.
[53] A. Pinkus. n-Widths in Approximation Theory. Springer, Berlin, Heidelberg, 1985.
[54] C. Prud'homme, Y. Maday, A. T. Patera, G. Turinici, D. V. Rovas, K. Veroy, and L. Machiels. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods. Journal of Fluids Engineering, 124(1):70-80, 2001.
[55] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox. Lift \& learn: Physics-informed machine learning for large-scale nonlinear dynamical systems. Physica D: Nonlinear Phenomena, Volume 406, 2020.
[56] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation for parametrized partial differential equations and applications. Journal of Mathematics in Industry, 1(1):1-49, 2011.
[57] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 656:5-28, 2010.
[58] L. Sirovich. Turbulence and the dynamics of coherent structures. Quarterly of Applied Mathematics, pages 561-571, 1987.

References VI

[59] R. Swischuk, B. Kramer, C. Huang, and K. Willcox. Learning physics-based reduced-order models for a single-injector combustion process. AIAA Journal, 58(6):2658-2672, 2020.
[60] R. Swischuk, L. Mainini, B. Peherstorfer, and K. Willcox. Projection-based model reduction: Formulations for physics-based machine learning. Computers \& Fluids, 179:704-717, 2019.
[61] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391-421, 2014.
[62] W. Uy and B. Peherstorfer. Probabilistic error estimation for non-intrusive reduced models learned from data of systems governed by linear parabolic partial differential equations. arXiv:2005.05890, 2020.
[63] K. Veroy and A. T. Patera. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. International Journal for Numerical Methods in Fluids, 47(8-9):773-788, 2005.
[64] K. Veroy, C. Prud'homme, D. Rovas, and A. T. Patera. A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations. In 16th AIAA Computational Fluid Dynamics Conference, Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics, 2003.
[65] K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40(11):2323-2330, 2002.
[66] R. Zimmermann and K. Willcox. An accelerated greedy missing point estimation procedure. SIAM Journal on Scientific Computing, 38(5):A2827-A2850, 2016.

Equations

(4)

[^0]: DOI. 10.1137/16M1082469

