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Projection-based Model Reduction

Let’s define a test basis 𝐖 and project the equation onto the test subspace,

Special case: Galerkin projection
If the test subspace is the same as the trial subspace (i.e., 𝐖 = 𝐕), then the 
ROM ODE is,
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Balanced Truncation

• Being biased towards the energetic structures, imposes limitations on 
the effectiveness of POD in control applications. As the modes captured 
by POD are not necessarily controllable.

• On the other hand, highly observable modes that contain low energy are 
also ignored by POD, which makes POD-based ROMs inaccurate and 
even unstable in certain applications.

Balanced Truncation (developed by Moore in 1981) accounts for the 
controllability and observability of the modes in building ROMs.

4

Introduction System Description System Realization System Gramians Balanced Truncation BPOD ERA Application I Application II



Balanced Truncation

Consider the LTI system (high-fidelity model),

We still want to find a hierarchical modal representation for the system, 
but the measure of “hierarchy” in balanced truncation is different (more 
useful) from POD.
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Balanced Truncation

We still want to find a hierarchical modal representation for the system, 
but the measure of “hierarchy” in balanced truncation is different (more 
useful) from POD.

Switch from                             as in POD, to
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Balanced Truncation

Gramians

Balancing transformation

Balancing modes

Balanced ROM: Error bounds:

𝑮: transfer function of FOM
𝑮𝒓: transfer function of ROM
𝜎' : the ith diagonal element of 𝜮

Diagonal matrix
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Antoulas, “Approximation of large-scale dynamical systems ”, SIAM, 2005



External Description of a System

Consider a linear discrete-time system. External description of the system 
is a mapping from the inputs to the outputs,
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𝒮: a linear operator
𝐡 : weighting pattern
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External Description of a System

Consider a linear discrete-time system. External description of the system 
is a mapping from the inputs to the outputs,

In matrix form,
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External Description of a System

Consider a linear discrete-time system. External description of the system 
is a mapping from the inputs to the outputs,

The system is time-invariant if,

The system is causal if,
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𝑝: number of outputs
𝑚: number of inputs
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External Description of a System

The weighting matrix for a linear time-invariant system is defined by the 
sequence of constant matrices,

This sequence is the output of the system when the input is excited by 
the unit impulse,
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External Description of a System

Definition:
• For a time-invariant, causal, and smooth continuous-time system, and
• For a time-invariant, causal discrete-time system,
the sequence of 𝑝×𝑚 matrices 𝐡' ,

which is called the sequence of Markov parameters, can be computed by 
the impulse response of the system.
• This sequence identifies the external description of the system.
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External Description of a System

Consider the external description of the system,

Taking Laplace transform of the external description,

And the transfer function of the system is,
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Internal Description of a System

Internal description of a system employs input 𝐮, and state 𝐱. For a linear 
continuous-time system we have,

Which is called the state-space representation of the system.

• If 𝐀 and 𝐁 are constant, the above system is a linear time-invariant (LTI) 
system.
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Internal Description of a System

The state-space representation of a linear discrete-time system is defined 
as,

The output equation is an algebraic equation for both the continuous-
time and the discrete-time systems,
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𝑘: time index

𝐂: output map
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Stability of Linear Systems

• A linear continuous-time system is stable if all of the eigenvalues of 𝐀
are located in the left half of the complex plane.

• A linear discrete-time system is stable if all of the eigenvalues of 𝐀 are 
located inside the unit circle. 

16

Introduction System Description System Realization System Gramians Balanced Truncation BPOD ERA Application I Application II



Internal Description of a System

Consider the continuous-time system,

The analytical solution of the system is,
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Internal Description of a System

Consider the output of the system,

The analytical solution of the continuous-time system is,

With x5 = 0, the impulse response is,

18

Introduction System Description System Realization System Gramians Balanced Truncation BPOD ERA Application I Application II



Internal Description of a System

Consider the discrete-time system,

The solution of the discrete-time system is,

Therefore, the impulse response of the system is,
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Internal Description of a System

Knowing the impulse response of the discrete-time system,

We can form the sequence of Markov parameters,

Proposition:
The system transfer function and Markov parameters are invariant under 
coordinate transformation.
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Example 1: 1-D Combustion problem

The one-dimensional Navier-Stokes equations with species transport and 
reaction are linearized and solved with a finite-volume approach.
The steady-state solution is a stationary flame in a two-species reaction.
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Physical	time	step 1×1089

Spatial	DoF 1000

CFL 0.1

Upstream	pressure 984.284	kPa

Upstream	temperature 300.16	K

Upstream	species	mass	
fraction

[1.0,	0.0]

Back	pressure 976.139	kPa
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Example 1: 1-D Combustion problem
In order to compute the sequence 
of Markov parameters in this 
particular case, we perturb the 
back pressure with unit impulse 
and collect the snapshots, which 
represent the Markov parameters.

Each snapshot is one column of M:
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Reachability

Consider the reachability matrix, 

Definition:
A system is reachable if all of its states can be excited by the control 
action.
Theorem:
An LTI system (both continuous-time and discrete-time) is reachable, if 
and only if ℛ 𝒫 = 𝑛.

• In an LTI system, reachability reduces to an algebraic definition that 
depends only on the system matrices rather than time or input function.
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Reachability

Notes:
• Reachability is basis independent. For a nonsingular transformation 

matrix 𝐓,
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The Duality Principle in Linear Systems

The dual system of a system with matrices 𝐀, 𝐁, 𝐂, 𝐃 is defined as, 
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(*)	denotes	complex	conjugate	transpose.
−𝐂∗ : input map 
𝐁∗ : output map
−𝐀∗: dynamics matrix

Primal system:
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Observability

Observability determines whether we are able to identify the state from 
the output of the system.

Let’s define the observability matrix as, 

An LTI system (both continuous-time and discrete-time) is observable, if 
and only if ℛ 𝒪 = 𝑛.

Certain state variables may be inaccessible (𝑦 𝑡 = 0 for all 𝑡 ≥ 0) and 
therefore unobservable.
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Observability

Similar to the reachability, observability is also invariant under coordinate 
transformation.

Theorem:
Observability and reachability are dual concepts.

ØA system is reachable, if and only if its dual (adjoint) system is 
observable.
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Highlights:
§ System’s external description is identified by 

the input-output behavior.
§ For a linear, time-invariant, causal system, this 

behavior is given by the response of the system 
to unit impulse.

§ System’s internal description is given by the 
state-space representation.

§ The concepts of reachability and observability, 
determine whether all of the states of a system 
are reachable or observable.

§ Reachability, observability, and Markov 
parameters are transformation-invariant.



System Realization

Given the external description of the system,

the goal of system realization is to obtain the internal description (i.e., the 
triplet 𝐀, 𝐁, 𝐂),
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System Realization

The solution of the system realization problem is not unique:

• For any system, there are infinitely many realizations that generate 
the same output for a particular input.

The realization with the smallest state-space dimension is called the 
minimum realization.
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System Realization

System realization relies on the Hankel matrix that is constructed based 
on the sequence of Markov parameters (impulse response for an LTI 
system):

The Eigensystem Realization Algorithm (ERA) uses this matrix to build the 
minimum realization (we will learn this method by the end of the 
semester).
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The Reachability Gramian

For a stable continuous-time system, we can define the reachability 
Gramian as,

This Gramian is the solution to the following Lyapunov equation,
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The Reachability Gramian

In discrete-time systems the reachability Gramian is defined as,

The largest eigenvalues of 𝒲Z correspond to the most reachable states.

The infinite reachability Gramian of a stable discrete-time system is the 
solution of the following Lyapunov equation:
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𝒞: the reachability matrix
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The Observability Gramian

For a stable continuous-time system, we can define the observability 
Gramian as,

This Gramian is the solution to the following Lyapunov equation,
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The Observability Gramian

In discrete-time systems the observability Gramian is defined as,

The largest eigenvalues of 𝒲\ correspond to the most observable states.

The infinite observability Gramian of a stable discrete-time system is the 
solution of the following Lyapunov equation:
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𝒪: the observability matrix
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Implementation 

Use the control systems library in Python or use MATLAB,
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Controllability matrix
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Implementation 

Use the control systems library in Python or use MATLAB,
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Observability matrix
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Implementation 

Use the control systems library in Python or use MATLAB,

38

Controllability Gramian
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Implementation 

Use the control systems library in Python or use MATLAB,
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Observability Gramian
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Highlights:
§ System realization consists of determining the 

internal description from the external 
description.

§ In non-intrusive model reduction we are 
looking for the lowest-dimensional system that 
performs this task.

§ The system Gramians determine the degree of 
reachability and observability.



Balanced Truncation

Consider the LTI system (high-fidelity model),

The goal is to find a coordinate transformation 𝐓 such that the 
transformed Gramians are equal and diagonal,

41

Introduction System Description System Realization System Gramians Balanced Truncation BPOD ERA Application I Application II



Balanced Truncation

The goal is to find a coordinate transformation 𝐓 such that the 
transformed Gramians are equal and diagonal,

Why balancing? 
Because we want to give equal weight to the controllability and 
observability.

As a result, states that are difficult to reach are also the states that are 
difficult to observe (we can truncate them!).
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Balanced Truncation

Gramians

Balancing transformation

Balancing modes

Balanced ROM: Error bounds:

𝑮: transfer function of FOM
𝑮𝒓: transfer function of ROM
𝜎' : the ith diagonal element of 𝜮

Diagonal matrix
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Antoulas, “Approximation of large-scale dynamical systems ”, SIAM, 2005



Empirical Gramians

Balanced truncation generates ROMs with stability guarantees, however, 
computing the analytical Gramians becomes restrictive when,
• We don’t have access to the internal description.
• The system is unstable*.
• Dimension of the system is higher than a few thousands**.

* It is possible to decompose the system into stable and unstable sub-systems to bypass this issue.

** We can still use analytical BT for systems with up to a million DoFs using low-rank Lyapunov solvers.
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Empirical Gramians

Balanced truncation generates ROMs with stability guarantees, however, 
computing the analytical Gramians becomes restrictive when,
• We don’t have access to the internal description.
• The system is unstable*.
• Dimension of the system is higher than a few thousands**.

One way to address these limitations is to use empirical Gramians.

* It is possible to decompose the system into stable and unstable sub-systems to bypass this issue.

** We can still use analytical BT for systems with up to a million DoFs using low-rank Lyapunov solvers.
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Empirical Gramians

Consider the discrete-time direct system,

The direct system impulse response snapshots matrix is,
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Empirical Gramians

Consider the discrete-time direct system,

The direct system impulse response snapshots matrix is,

Therefore, the empirical reachability Gramian can be computed as, 
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Empirical Gramians

Consider the discrete-time adjoint system,

The adjoint system impulse response snapshots matrix is,
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Empirical Gramians

Consider the discrete-time adjoint system,

The adjoint system impulse response snapshots matrix is,

And the empirical observability Gramian is given by,
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Empirical Gramians

Empirical Gramians approach the analytical Gramians (i.e., they are 
accurate) only if we collect impulse response snapshots with a high 
enough frequency and for a long enough time.
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Empirical Gramians

Empirical Gramians approach the analytical Gramians (i.e., they are 
accurate) only if we collect impulse response snapshots with a high 
enough frequency and for a long enough time.

Sampling frequency and total sampling time are adhoc parameters.

• Collect until the snapshots matrices are full-rank?
• Collect until the Impulse response dies out?

The rule of thumb is to collect until the dynamics of all active 
eigenvectors are captured.
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Empirical Gramians

Empirical Gramians approach the analytical Gramians (i.e., they are 
accurate) only if we collect impulse response snapshots with a high 
enough frequency and for a long enough time.

The rule of thumb is to collect until the dynamics of all active 
eigenvectors are captured.

You can use the “emgr” package to compute the empirical Gramians (time 
step and total time are still decided by you.).
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Balanced POD

Instead of the empirical Gramians, use the product 𝒪𝒫 to compute the 
Hankel matrix,

Where 𝒪 and 𝒫 matrices are built by the impulse response of the adjoint
and direct systems, respectively.
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Balanced POD

1. Instead of the empirical Gramians, use the product 𝒪𝒫 to compute 
the Hankel matrix.

2. Compute SVD of the Hankel matrix:
3. Truncate singular vectors corresponding to smaller singular values.
4. Compute the direct and adjoint modes:

5. Build the balanced ROM matrices:
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Willcox and Peraire, “Balanced Model Reduction via the Proper Orthogonal Decomposition ”, AIAAJ, 2002

Rowley, “Model Reduction for Fluids, using Balanced Proper Orthogonal Decomposition ”, IJBC, 2005
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Balanced POD

ØUnlike POD, BPOD accounts for observability of the modes.
ØUnlike balanced truncation, BPOD is applicable to large-scale systems.
ØUnlike balanced truncation, BPOD ROMs are NOT guaranteed to be 

stable.
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BPOD Example: Supersonic Engine Inlet
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• 2D	Euler		equations	are	solved	with	𝑁 = 11,370
• 𝑝 = 1: number of inputs (density disturbance of the inlet flow)
• 𝑞 = 1: number of outputs (average Mach number at the diffuser throat)

Amsallem and Farhat, “Stabilization of projection-based reduced-order models”, IJNME, 2012
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BPOD Example: Supersonic Engine Inlet
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Amsallem and Farhat, “Stabilization of projection-based reduced-order models”, IJNME, 2012

Introduction System Description System Realization System Gramians Balanced Truncation BPOD ERA Application I Application II



Eigensystem Realization Algorithm (ERA)

ERA builds balanced ROMs using only the direct system impulse response.

• More suitable for multi-output systems
• Applicable to experiments
• Does not require access to the FOM operators
• Can be applied to highly stiff systems (unlike the analytical BT)
• Stability relies on the sampling properties.
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The Eigensystem Realization Algorithm

ERA is the data-driven non-intrusive extension of BT for discrete-time systems (Ma et al., 2011).

Hankel matrix: Shifted Hankel 
matrix:

Balanced ROM matrices:
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Ma et al., “Reduced-order	models	for	control	of	fluids	using	the	eigensystem
realization	algorithm	”, Theoret.	Comput.	Fluid	Dyn., 2011
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Highlights:
§ The analytical balanced truncation is an 

intrusive model reduction method that 
provides theoretical error bounds.

§ The computation cost of analytical Gramians
encourages us to use empirical Gramians.

§ BPOD bypasses computation of the Gramians, 
but BPOD ROMs do not necessarily satisfy 
theoretical error bounds.

§ ERA is a non-intrusive version of balanced 
truncation that bypasses the computation of 
Gramians and adjoint system simulations.



Nonlinear FOM

One-dimensional Navier-Stokes equations with species transport and reaction,

Nonlinear FOM is solved with the finite volume approach using the second-order Roe scheme and dual 
time-stepping.

𝑌c : mass fraction of the 𝑙ef species
ℎ5: stagnation enthalpy
𝜏: shear stress
𝑞: heat flux
𝑉c : diffusion velocity of the 𝑙ef species
𝜔̇c : production rate of the 𝑙ef species

𝒒m : conservative variables
𝒒: primitive variables
𝒇: inviscid fluxes
𝒇o: viscous fluxes
𝒔: source term
𝜏: pseudo time 
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PERFORM

The nonlinear FOM is solved with PERFORM (Prototyping Environment for Reacting Flow Order Reduction 
Methods).
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Code is available at https://github.com/cwentland0/perform

PERFORM is a framework for rapid testing of model reduction methods with readily available one-dimensional 
benchmark problems including:

§ One-dimensional standing and transient flames
§ Contact surfaces
§ Sod shock tube

Documentation and more information:
§ https://perform.readthedocs.io/en/latest/
§ https://romworkshop.engin.umich.edu/test-cases

One-dimensional example demonstration: today at 4:30 p.m.



Steady-state Solution

Nonlinear FOM is solved with non-reflective characteristic boundary conditions at the inlet and outlet. Steady-
state solution represents a stationary flame in a two-species reaction.

Physical time step 1×1089

Spatial DoF 1000

CFL 0.1

Upstream pressure 984.284 kPa

Upstream temperature 300.16 K

Upstream species mass 
fraction

[1.0, 0.0]

Back pressure 976.139 kPa
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Linearized FOM

The nonlinear FOM is linearized about the steady-state solution to create linear ROMs.

Linearized FOM

Integrated with the 3rd order Runge-Kutta
scheme (∆𝑡 = 1×108r).

κ 𝐽 = 4.82×10xy

The linearized FOM is stable with eigenvalues located in the left-half of the complex plane.
max 𝑅𝑒 𝜆 = −180.444
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Norm of the state based on unit impulse 
response demonstrates lightly damped 
oscillations that need to be captured in the 
training samples for construction of Hankel 
matrix.

Pressure Velocity

Temperature

Species mass fraction

77 pressure and velocity modes, 50 
temperature and 19 mass fraction modes 
capture 99.99% of the input-output energy.

Long-term Behavior of the System
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POD-Galerkin ROM Prediction for 𝑓 = 215	𝑘𝐻𝑧

ROM prediction compared against the linearized FOM at 𝑥 = 0.0045. ROM is trained with impulse response and tested 
with sinusoidal input when back pressure is perturbed with 𝑝��m�×108� amplitude and 𝑓 = 215	𝑘𝐻𝑧 frequency.
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Predictive Performance of ROMs at 215 kHz

Pressure Velocity

Temperature

Species mass fraction

Relative error of ROM predictions for 
forcing frequency of 215 kHz. Galerkin and 
LSPG ROMs are trained with snapshots of 
200, 210 and 220 kHz.

Impulse response snapshots are collected 
every 100 time steps and total impulse 
response sampling time is 100	𝜇𝑠𝑒𝑐. The last 
100 cells are not included in the analysis.

𝑛e: number of time steps.
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ERA with Domain Decomposition and Tangential Interpolation

Balanced ROM predictions for the case with back pressure perturbation with an amplitude of 𝑝��m�×108� and a 
frequency of 𝑓 = 215	𝑘𝐻𝑧. 

Wall-clock	Time	(sec) ROM	1 ROM	2 ROM	3 Total

With	Tangential	
Interpolation

6.17 495.35 No	improvements 1603.85

Without Tangential	
Interpolation

81.89 1609.32 1102.33	 2793.54
One-time offline costs.

Online 0.116 sec

Online speedup 138.12
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Rezaian et al., “Non-intrusive balancing transformation of highly stiff systems with lightly damped impulse response”, 
Philosophical Transactions of the Royal Society A, 2022



Aeroacoustic Response Prediction

The high-fidelity model is based in the solution of the two-dimensional nonlinear Euler equations,

𝑢: horizontal component of velocity
𝑣: vertical component of velocity
𝑝: pressure
𝜌: density
𝑒: total energy
𝛾: ratio of specific heats

A cell-centered finite volume approach is used with the second-order Roe scheme to compute the fluxes 
subject to far-field boundary conditions. The second-order R-K scheme is used for time integration. 

The equations are also linearized about a steady-state solution:
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Actuator Selection with the Low-fidelity Gappy POD Method

1 ⃣

2 ⃣⃣

3 ⃣⃣⃣

4 ⃣⃣⃣⃣

Markov sequences corresponding to all of the input channels 
are computed using the coarser grid and stored in matrix 𝐐.

POD modes are computed based on SVD of 𝐐.

The observation matrix is defined as:

Considering an over-sampled case, the sampling matrix 𝐏 is 
obtained by QR factorization with column pivoting:

5 ⃣⃣⃣⃣⃣ The POD coefficients are computed as:

6 ⃣⃣⃣⃣⃣⃣ The POD modes and coefficients are then used to reconstruct 
the Markov sequence: 

Location of the critical input channels chosen 
by the low-fidelity gappy POD approach.

Eigenvalues of the ERA ROMs.

Motivation: to avoid running the FOM 604 times to collect the Markov 
sequence corresponding to each input channel for training the ERA ROM.
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Rezaian and Duraisamy, “Data-driven Balanced Truncation for Predictive Model Order 
Reduction of Aeroacoustic Response”, AIAAJ, 2023



ERA ROMs in a Purely Predictive Setting

FOM (left) and ROM (right) snapshots at 𝑡 = 48.5.

State fluctuations computed at 𝑥, 𝑦 = (0.4628,	
−0.3129), when the far-field boundary is perturbed 
by a sinusoidal input,  
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ERA ROMs in a Purely Predictive Setting

State fluctuations computed at 𝑥, 𝑦 = (0.2920,	
0.3221), when the far-field boundary is perturbed 
by a triangular wave input, 
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ERA ROMs in a Purely Predictive Setting

Speedup

Offline 1. Linearization reduced the cost of computing each 
Markov sequence by an order of magnitude.

2. The low-fidelity gappy POD approach reduced 
the input channels by a factor of 4 and the 
computation time of the training data by 353 hr. 

3. Constructing ROM matrices without the gappy
POD approach was infeasible.

Online The ERA ROM achieved a speedup factor of 258.

State fluctuations computed at 𝑥, 𝑦 = (0.4628,	−0.3129), 
when the far-field boundary is perturbed by a step input, 
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