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High-fidelity simulations of rocket combustion are expensive

1 element

(1-2 weeks on 1000s of cores)

Purdue HAMSTER experiment

(Harvazinski et al., 2020 AIAA SciTech)

~2M CPU hours

affordable!

9 elements 

(1-2 months on 1000s 

of cores)

Purdue 9-element transverse chamber

(Harvazinski et al., 2019 AIAA SciTech)

10M CPU hours

RD-170 element distribution

(Haeseler and Haidn, 2017)

100s of elements 

(> 10-20 months on > 10,000s of cores)

100M CPU hours (still 

under-resolved!)

Goal

Given no Full-Order Model (FOM) of the full-scale engine, develop ROM 

framework to model a class of rocket engines to engage CFD in design
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Component-based ROM Framework

With no FOM available, develop ROM Framework for a class of systems

• Develop sufficiently rich FOM dataset to construct injector ROM with

– One (or small number of) injector

– Boundary perturbations to excite essential dynamics

ROM Training
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Component-based ROM Framework

With no FOM available, develop ROM Framework for a class of systems

• Develop sufficiently rich FOM dataset to construct injector ROM

• Couple different components to enable the full system modeling

– Flexible predictions (number of injectors, operating conditions, etc)
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Domain Decomposition and Components Coupling
ROM / FOM Coupling
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** Information is exchanged between components in full states

• Consistent formulation as FOM/FOM interfacing for parallel implementation

➢ Easy implementation in existing (multi-domain/paralell) solvers/codes

• Complex interface dynamics (e.g., flow separation or reverse flow) inherently 

accounted if ROM ‘sees’ such physics

• Compatible with different types of ROMs (both non-intrusive and intrusive)

• Making ROM training and coupling relatively independent of each other

• Easily extendable to structured/unstructured mesh coupling
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Outline

• Test Case I: 2D Single-Injector Rocket Combustors with Variable Geometries

• Test Case II: 2D Single Injector with Variable Mass Flow Rates

• Test Case III: 2D Multi-Injector Rocket Combustors with Variable Geometries
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Test Case I: 2D Single-Injector Rocket Combustors with Variable Geometries

100% CH4

@ 300K
42% O2 

+ 58% H2O 

@ 660K
Lchamber = 0.28, 0.35, and 0.42 m

WA WB

LA = 0.14 m LB

1L – 1100Hz

1L – 1300Hz

1L – 1650Hz

Lchamber

0.42m

0.35m

0.28m
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ROM Training: Reduced-domain + Buffer

• A buffer region is added downstream to the reduced-domain 

ROM Training

(Reduced-domain 

+ Buffer)

** Buffer region with exponentially stretched mesh in longitudinal 

direction → 10% ~ 20% meshes of reduced domain
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ROM Training: Reduced-domain + Buffer

• A buffer region is added downstream to the reduced-domain 

– To attenuate acoustic wave reflections from the downstream boundary

ROM Training

(Reduced-domain 

+ Buffer)

** Buffer region with exponentially stretched mesh in longitudinal 

direction → 10% ~ 20% meshes of reduced domain

( )
1

sin 2

N f

k k

k

A f t
=
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Resonant frequency 

@ 1000Hz
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ROM Training: Reduced-domain + Buffer

• A buffer region is added downstream to the reduced-domain 

– To attenuate acoustic wave reflections from the downstream boundary

– To account for reverse flow dynamics at the interface

ROM Training

(Reduced-domain 

+ Buffer)

** Buffer region with exponentially stretched mesh in longitudinal 

direction → 10% ~ 20% meshes of reduced domain

( )
1

sin 2

N f

k k

k
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

Non-reflecting BC

Interface
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ROM Training: Reduced-domain + Buffer

• A buffer region is added downstream to the reduced-domain 

– To attenuate acoustic wave reflections from the downstream boundary

– To account for reverse flow dynamics at the interface

– Only upstream portion used to construct the ROM (buffer region excluded)

ROM Training

(Reduced-domain 

+ Buffer)

** Buffer region with exponentially stretched mesh in longitudinal 

direction → 10% ~ 20% meshes of reduced domain

( )
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k k

k
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Non-reflecting BC
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Component-based ROM Framework

• ROM training: downstream perturbations to mimic full-domain acoustics

– Nf = 2 with f 1 = 1100Hz (1L for Lchamber = 0.42 m) and A1 = 0.05

                      f 2 = 1300Hz (1L for Lchamber = 0.35 m) and A2 = 0.05

• ROM/FOM Coupling: flux exchange at interface 

– FOM is used in the downstream to evaluate the framework performance

ROM Training

(Reduced-domain 

+ Buffer)

Framework 

Coupling

Interface

ROM FOM
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1
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k k

k
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=



** no hyper-reduction in ROM
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Comparisons of Local Pressure Signals – Unstable Configurations

• ROM (trained using ~ 1.6 ms) + FOM to predict 20 ms full-domain dynamics

• ROM+FOM framework reasonably captures the instability characteristics of the longer 
chamber lengths

Lchamber = 0.42 mLchamber = 0.35 cm

FOM + FOM

ROM + FOM
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• ROM (trained using ~ 1.6 ms) + FOM to predict 20 ms full-domain dynamics

• ROM+FOM framework reasonably captures the oscillation amplitude but fails to 
predict the dominant frequencies of the shorter chamber length

Lchamber = 0.28 m

Comparisons of Local Pressure Signals – Stable Configuration

FOM + FOM

ROM + FOM
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Comparisons of Unsteady Pressure Fields – Lchamber = 0.42 m 

• Distinguishable mismatches at ROM/FOM interface

– The upstream ROM is not able to predict the correct pressure dynamics with the 
information (e.g., upstream running characteristics) from the downstream FOM

ROM/FOM Interface

ROM + FOM

FOM + FOM
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Comparisons of RMS Fields – Lchamber = 0.42 m 

** distinguishable mismatches at ROM/FOM Interface

ROM + FOM

FOM + FOM

ROM + FOM

FOM + FOM

Pressure

Temperature

** significantly under-predicted temperature RMS by ROM
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Domain Decomposition (ROM/FOM)

W1 W2

1/2W

( )
1/2,2,,1 1 on , 0T

p p W = Wr qW q ( )
1/2,2 2,1,,  on0  pp W = Wr qq

FOMROM

** We can reproduce the 

      similar issues at the interface 

      in simple 1D problems

Two types of remedies

• Improve ROM predictive capabilities

– More POD modes + more 
training dataset

– Adaptive ROM

• Impose constraints at the interface to 
match the conditions between 
two domains
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Domain Decomposition with Constraints (ROM/FOM)
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FOMROM

❖ Farhat et al,  2000
❖ Lucia et al.,   2003
❖ Baiges et al,  2013
❖ Hoang et al., 2020
❖ Xiao et al,      2021

Imposing constraints in ROM 

eliminates the interface 

mismatch BUT compromises 

the ROM accuracy
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Domain Decomposition with Constraints (ROM/FOM)

W1 W2

1/2W

FOMROM

Imposing constraints in ROM 

eliminates the interface 

mismatch BUT compromises 

the ROM accuracy
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Domain Decomposition (Adaptive-basis ROM/FOM)

1/2W

Adaptive-basis ROM 

eliminates the interface 

mismatch AND improves the 

ROM accuracy



23

Component-based ROM Framework

• ROM training: downstream perturbations to mimic full-domain acoustics

– Nf = 2 with f 1 = 1100Hz (1L for Lchamber = 0.42 m) and A1 = 0.05

                      f 2 = 1300Hz (1L for Lchamber = 0.35 m) and A2 = 0.05

• ROM/FOM Coupling: flux exchange at interface 

– FOM is used in the downstream to evaluate the framework performance

ROM Training

(Reduced-domain 

+ Buffer)

Framework 

Coupling

Interface

Adaptive ROM FOM

( )
1

sin 2

N f

k k

k

A f t
=



** no hyper-reduction in adaptive ROM
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Comparisons of Local Pressure Signals

• ROM (trained using ~ 0.01 ms) + FOM to predict 20 ms full-domain dynamics

• Adaptive ROM+FOM framework accurately predict the instability behaviors for different 
chamber lengths

ROM + FOM

FOM + FOM

Lchamber = 0.28 m

Lchamber = 0.42 m Lchamber = 0.35 m
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• Adaptive ROM+FOM framework accurately predict the RMS for different chamber lengths

Comparisons of RMS Fields

FOM + FOM

Adaptive-basis ROM + FOM

FOM + FOM

Adaptive-basis ROM + FOM

FOM + FOM

Adaptive-basis ROM + FOM

Lchamber = 0.42 m

Lchamber = 0.35 m

Lchamber = 0.28 m

PRMS TRMS
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Outline

• Test Case I: 2D Single-Injector Rocket Combustors with Variable Geometries

• Test Case II: 2D Single Injector with Variable Mass Flow Rates

• Test Case III: 2D Multi-Injector Rocket Combustors with Variable Geometries
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Test Case II: 2D Single Injector with Variable Mass Flow Rates

Single-injector simulated with reference mass flow rates (fref = 0.8) from 0 – 30ms

• Mass flow rates of both fuel and ox are changed after 30ms leading to different limit cycles
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Component-based ROM Framework

• ROM Training: Reduced-domain + buffer

    → Single downstream boundary forcing

    → Adaptive ROM with 2% sampling points and zs = 5

• ROM/FOM Coupling: flux exchange at interface 

– FOM is used in the downstream to evaluate the framework performance

ROM Training

(Reduced-domain 

+ Buffer)

Framework 

Coupling

Interface

ROM FOM

Buffer region with exponentially stretched mesh 

in longitudinal direction

( )
1

sin 2

N f

k k

k

A f t
=


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• As the calculations proceed, phase differences between FOM+FOM and 
ROM+FOM show up in the local pressure signals

ROM + FOM

FOM + FOM

FOM

+ FOM

ROM

+ FOM

FOM

+ FOM

ROM

+ FOM

( ), ,100% 100%  0.8f ref ox refm m f+ =
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• As the calculations proceed, phase differences between FOM+FOM and 
ROM+FOM show up in the local pressure signals

ROM + FOM

FOM + FOM

FOM

+ FOM

ROM

+ FOM

FOM

+ FOM

ROM

+ FOM

( ), ,50% 100%  0.4f ref ox refm m f+ =
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• As the calculations proceed, phase differences between FOM+FOM and 
ROM+FOM show up in the local pressure signals

ROM + FOM

FOM + FOM

FOM

+ FOM

ROM

+ FOM

FOM

+ FOM

ROM

+ FOM

( ), ,150% 100%  1.2f ref ox refm m f+ =
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DMD Spectra Comparisons – Equivalence Ratio Effects

• DMD analysis based on snapshots from 40 to 65ms

( ), ,50% 100%  0.4f ref ox refm m f+ = ( ), ,100% 100%  0.8f ref ox refm m f+ = ( ), ,150% 100%  1.2f ref ox refm m f+ =
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• Phase shifts in local pressure signals are minor here but still present

ROM + FOM

FOM + FOM

FOM

+ FOM

ROM

+ FOM

FOM

+ FOM

ROM

+ FOM

( ), ,50% 50%  0.8f ref ox refm m f+ =
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• Phase shifts in local pressure signals are minor here but still present

ROM + FOM

FOM + FOM

FOM

+ FOM

ROM

+ FOM

FOM

+ FOM

ROM

+ FOM

( ), ,150% 150%  0.8f ref ox refm m f+ =
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DMD Spectra Comparisons – Mean Flow Effects

• DMD analysis based on snapshots from 40 to 65ms

( ), ,50% 50%  0.8f ref ox refm m f+ = ( ), ,100% 100%  0.8f ref ox refm m f+ = ( ), ,150% 150%  0.8f ref ox refm m f+ =
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Outline

• Test Case I: 2D Single-Injector Rocket Combustors with Variable Geometries

• Test Case II: 2D Single Injector with Variable Mass Flow Rates

• Test Case III: 2D Multi-Injector Rocket Combustors with Variable Geometries
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Test Case III: 2D Multi-Injector Rocket Combustors with Variable Geometries

3-injector 5-injector 7-injector

DMD Spectra of Pressure

1W

1L 1L
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3-injector Training for ROM of Interior Injector (ROM-I)

• Two auxiliary injectors included to:

– Account for interactions between injectors

– Incorporate the complex interface dynamics

• Extended buffer regions included to:

– Account for reverse flow at the interface

– Mitigate the effects of numerical wave reflections 

from the boundaries

• Run FOM for 100 time steps

exponentially 

stretched mesh

Non-reflecting BC
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2-injector Training for ROM of Wall Injector (ROM-W)

exponentially 

stretched mesh

exponentially 

stretched mesh
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M
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Non-reflecting BC

• One auxiliary injectors included to:

– Account for interactions between injectors

– Incorporate the complex interface dynamics

• Extended buffer regions included to:

– Account for reverse flow at the interface

– Mitigate the effects of numerical wave reflections 

from the boundaries

• Run FOM for 100 time steps
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Adaptive ROM (One ROM-I and Two ROM-W)

FOM
CBROM 

Framework
FOM

CBROM 

Framework

FOM vs CBROM Framework: 3-injector Configuration

FOM

CBROM Framework

Pressure

Temperature
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Adaptive ROM (Three ROM-I and Two ROM-W)

FOM
CBROM 

Framework
FOM

CBROM 

Framework

FOM vs ROM Framework: 5-injector Configuration

Pressure

Temperature

FOM

CBROM Framework
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Adaptive ROM (Five ROM-I and Two ROM-W)

FOM vs ROM Framework: 7-injector Configuration

FOM
CBROM 

Framework
FOM

CBROM 

Framework
Pressure

Temperature

FOM

CBROM Framework
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Summary

Component-based ROM framework demonstrated on modeling self-
excited combustion dynamics in rocket combustors

• ROM training with reduced number of injectors + buffer

➢No need to perform FOM simulations on the full configuration

• Adaptivity enables predictive ROM in the framework

➢Accurate predictions of the dynamics for different combustor configurations and 

operating conditions

Huang, Duraisamy, and Merkle, Frontiers in Physics 2022

Huang, AIAA SciTech 2023
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